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Abstract: A Bloom Filter (BF) is a data structure suitable for performing set membership queries very efficiently. A Standard Bloom 

Filter representing a set of n elements is generated by an array of m bits and uses k independent hash functions. Bloom Filters have 

some attractive properties including low storage requirement, fast membership checking and no false negatives. False positives are 

possible but their probability may be controlled and significantly lowered depending upon the application requirements. There are 

many variants of the standard Bloom Filter – counting BF, variable increment BF, compressed BF, scalable BF, generalized BF, stable 

BF and Bloomier Filter. Bloom Filters are increasingly finding applications in fast and approximate search, encrypted search in the 

cloud, routing and controlling of network traffic, network intrusion detection and differential database and file updating. This paper 

explores the typical properties of Bloom Filters, their variants and their suitability for use in present day applications. 
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1. INTRODUCTION 
A Bloom Filter is a space efficient probabilistic data structure 

which is used to represent a set and perform membership 

queries [1] i.e. to query whether an element is a member of 

the set or not. The Bloom Filter data structure was introduced 

by Burton H. Bloom [2] in 1970. A Bloom Filter occupies 

negligible space compared to the entire set. Space saving 

comes at the cost of false positives but this drawback does not 

affect the processing of information if the probability of an 

error is made sufficiently low. Bloom Filters typically find 

applications in situations that involve determining 

membership of an element for a sufficiently large set in small 

amount of time. Today, Bloom Filters are used in wide variety 

of applications including spell checking, network traffic 

routing and monitoring, database search, differential file 

updating, distributed network caches, and textual analysis. In 

this paper we will describe bloom filter, its variants and its 

applications in different areas of computer science. 
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Fig. 1  Set Operation in a Standard Bloom Filter 

 

1.1 Standard Bloom Filter 
A Bloom Filter for representing a set S = {s1, s2, …., sn} of n 

elements is described by an array of m bits, initially all set to 

0. A Bloom Filter uses k independent hash functions h1, h2,…, 

hk with range {1, … , m}. Each hash function maps every 

item to some random number over the range {1,…,m}. For 

each element x ∈ S, the bits hi(x) are set to 1 for 1 ≤ i ≤ k. 

To check if an item y is in S, we check whether all hi (y) are 

set to 1. If any of hi (y) is 0 then clearly y does not belong to 

S. If all hi (y) are set to 1 then y may belong to S. 

Following are the properties of a Standard Bloom Filter: 

• The amount of space needed to store the Bloom Filter [3] is 

very small as compared to the entire set. 

• The time needed to check whether an element is present or 

not is independent of the number of elements present in the 

set. 

• False negatives are not possible. False positives are possible 

but their probability can be significantly lowered. 

• Bloom Filters can be easily halved in size allowing 

applications to shrink a Bloom Filter. 

• Bloom Filters can also be used to approximate the 

intersection between two sets. 

• If two Bloom Filters represent sets S1 and S2 with same 

number of bits and same number of hash functions then a 

Bloom Filter representing the union of these two sets can be 

obtained by taking OR of the two bit-vectors of the original 

Bloom filters [4]. 

The remaining part of the paper is organized as follows. 

Section 2 describes different variants of the bloom filter. 

Different applications of bloom filters in area of approximate / 

encrypted search, network security and database updating are 
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explained in Section 3. Concluding remarks are mentioned in 

Section 4. 

2. VARIANTS OF BLOOM FILTER 
In this section we explore and describe variants of Bloom 

Filter [5] built on the Standard Bloom Filter data structure.  

2.1 Counting Bloom Filter 
The Standard Bloom Filter works fine when the members of 

the set do not change over time. Addition of elements only 

requires hashing the additional item and setting the 

corresponding bit locations in the array. However, deletion is 

not possible in the Standard Bloom Filter since it will require 

setting 0’s in the array to already set 1’s that was result of 

hashing another item which is still a member of the set. To 

overcome this deficiency of Standard Bloom Filter, Fan et al. 

[6] introduced the idea of Counting Bloom Filter. In Counting 

Bloom Filter, bits of the array are replaced by a small counter. 

When an element is inserted, the corresponding counters are 

incremented; when the element is deleted, the corresponding 

counters are decremented. The value of the counter gives the 

number of items hashed to it. Since each counter size is 

limited, the n-bit counter will overflow if it reaches a value of 

2n. The figure below shows the structure and set operation in a 

Counting Bloom Filter. Analysis carried out by Fan et al 

shows that a 4-bit counter is adequate for most applications. 
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Fig. 2  Set Operation in a Counting Bloom Filter 

2.2 Variable Increment Bloom Filter 
The Variable Increment Counting Bloom Filter (VI – Bloom) 

[7] is a generalization of the Counting Bloom Filter that uses 

variable increments to update each entry. In this structure, a 

set of possible variable increments are defined. For each 

counter update by an element we hash the element into the 

variable increment set and use it to increment the counter. 

Similarly, to delete an element we decrement by its hashed 

value in the variable increment set. To determine if an 

element is part of the set, we check in each of its counters if 

its hashed value in the variable increment set could be part of 

the sum. If this be the case in at least one counter the element 

definitely does not belong to the set. Otherwise, the element 

may belong to the set with some probability of false positive. 

VI – Bloom can be used in Approximate Concurrent State 

Machine [8], Counter Braids [9] and Fingerprint-based 

schemes. 

2.3 Compressed Bloom Filter 
Using a larger but sparser Bloom Filter can yield the same 

false positive rate with a smaller number of transmitted bits. 

The resulting bloom filter is called a Compressed Bloom 

Filter [10]. By using Compressed Bloom Filters networking 

protocols reduce the number of bits broadcast, the false 

positive rate and the amount of computation per look up. 

Costs involved are larger computation time for compression 

and decompression. 

2.4 Scalable Bloom Filter 
A Scalable Bloom Filters consist of two or more Standard 

Bloom Filters, allowing arbitrary growth of the set being 

represented. When one Bloom Filter gets filled due to the 

limit on the fill ratio, a new filter is added. Querying an 

element involves testing the presence in each filter. Each 

successive bloom filter is created with a tighter maximum 

error probability on a geometric progression [11]. 

2.5 Generalized Bloom Filter 
Generalized Bloom Filter [12] uses hash functions that can set 

as well as reset bits. In Generalized Bloom Filter, the initial 

value of the bits of the array is not restricted to zero anymore. 

For each element xi ∈ S bits corresponding to the positions h1 

(xi), h2 (xi) , … , hk (xi) are set and the bits corresponding to 

the positions g1(xi), g2(xi),…, gk(xi) are reset. In case of 

collision between function hi and gi the resulting bit is always 

reset. To check if element belongs to the set we check whether 

bits corresponding to hi are all set and bits corresponding to gi 

are all reset. If at least one bit is inverted then the element 

does not belong to the set with high probability. If no bit is 

inverted, then the element belong to set with high probability. 

2.6 Bloomier Filters 
Bloomier Filters [13] associate a value with each element that 

had been inserted thereby implementing an associative array. 

These structures achieve a small space overhead by accepting 

a small probability of false positives. In this type of Bloom 

Filter, a false positive is defined as returning a result when the 

key is not in the map. The map will never return the wrong 

value for a key that is in the map. 

2.7 Stable Bloom Filter 
This variant of Bloom Filter is particularly useful in data 

streaming applications. In these applications when more and 

more elements arrive, the number of 1’s in the array of bloom 

filter will increase significantly, finally reaching the limit 

where every distinct element is reported as duplicate 

indicating that bloom filter can no longer be used. In Stable 

Bloom Filters [14], this state is avoided by eviction of some 

information. In this approach a random deletion operation is 

incorporated in the Bloom Filter so that it does not exceed its 

capacity. 

3. APPLICATIONS OF BLOOM FILTER 

3.1 General Applications 

3.1.1 Spell Checkers 
Bloom Filters are particularly useful in spell checking 

software. They are used to determine if the word is a valid 

word in its language. This is done by creating Bloom Filter of 

all possible words of that language and checking a candidate 

word against that Bloom Filter. Suggested corrections are 

generated by making all single substitutions in rejected words 

and then checking if these results are members of the set [15]. 

3.1.2 Longest Prefix Matching 
Bloom Filters are used for longest prefix matching algorithms 

[16] as these are typically used for efficient exact match 

searches. The basic idea is to create a hash table consisting of 

prefixes of various lengths that have to be potentially matched 

against a given string with the goal of finding the longest 

possible match. By using Bloom Filter one can avoid 
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unnecessary look up into a hash table when the corresponding 

prefix does not exist in the table. 

3.1.3 Refining Web Search Results 
Bloom Filters are extremely useful in refining search results 

[17] returned by search engines.  Most of the top search 

results returned by search engines contain similar contents. 

This technique involves removing or grouping all near-

duplicate documents in the results presented to the user. 

Bloom Filter is also used for similarity detection of text 

documents. For finding similar documents, Bloom Filters are 

compared by using bit wise AND operation. In case the two 

documents share large number of 1’s after applying bit-wise 

AND to their bloom filter, the documents are assumed to be 

similar. 

3.2 Networking Applications 

3.2.1 Routing 
If the network is in the form of a rooted tree with nodes 

holding resources and a node receives a request for resource, 

it checks its unified list to ascertain if it has a way of routing 

that request to the resource [18]. False positives in this cause 

may forward the routing request to an incorrect path. In such a 

case backtracking of the tree is necessary. Another similar 

application needs to verify if the requested file has a replica 

nearby and in such cases the request may be routed efficiently 

along the shortest path [19, 20]. Each node in the network 

keeps an array of Bloom Filter for each adjacent edge i.e. The 

kth Bloom Filter in the array keeps track of the files reachable 

via k hops from the node in the network.  

Bloom Filters are also used for geographic routing system for 

mobile computers [21]. In this scheme each node contains a 

Bloom Filter representing the list of mobile hosts reachable 

through itself or through its three siblings at each level. 

3.2.2 Loop Prevention 
Normally, packets trapped in the network loop are detected 

using the IP Time-To-Live field but these are not of much 

help if the loops are small. A small Bloom Filter can be used 

which can be carried in the packet header and which keeps 

track of the set of nodes visited [22]. Each node has a mask 

that can be ORed into the Bloom Filter as its passes; if the 

filter does not change there is a loop. 

3.2.3 IP Traceback and IP Multicast 
Bloom filter is also used to trace the route that a packet 

traversed in a network [23]. Bloom Filters reduce the amount 

of information [24] that needs to be stored in order to 

summarize the set of packets seen. A router mistakenly 

identifying a packet as having been seen would be treated as a 

false positive. 

Bloom filters are also used as alternative of interface lists that 

the router associates with multicast addresses to send packets 

through a multicast tree [25]. There can be Bloom Filter of 

addresses associated with each interface. When a packet with 

multicast addresses arrives on one interface, the Bloom Filters 

of all other interfaces are queried to check if packets with that 

address should be forwarded along that interface. This helps 

in significant space savings. 

3.2.4 Network Traffic 
Bloom filters are widely used to reduce network traffic. 

Bloom filters are used in caching proxy servers [26] on the 

World Wide Web (WWW). Bloom filters are used in Web 

caches to efficiently determine the existence of an object in 

cache. Use of web caches help to reduce the network traffic.  

Bloom filter are also used as cache digest. A cache digest 

contains information of all cache keys with lookup capability. 

By checking a neighbor cache, a cache can determine with 

certainty if a neighboring cache does not hold a given object 

[27]. This allows in reduction of the cache directory size 

while keeping the number of collisions low. 

Bloom Filters find applications in network traffic 

measurement and detection of heavy flows inside a router  

[28]. The basic idea is to hash each packet entering into the 

Bloom Filter. A counter is associated with each location in the 

Bloom Filter that records the number of packet bytes that have 

traversed the router associated with that location. The counter 

is incremented by the number of bytes in the packet. If a 

minimum count associated with a packet is above some 

threshold, the corresponding flow is marked as heavy flow. 

3.3 Applications in Security & Database    

       Management 

3.3.1 Intrusion Detection 
Network Intrusion Detection and Prevention Systems 

(IDS/IPS) use string matching to scan Internet packets for 

malicious content. Bloom Filters are particularly useful for 

searching large number of strings efficiently. The basic idea is 

to find substrings (or commonly known as signatures) at high 

speed [29, 30].  A common approach is to separate signatures 

by length and use Bloom Filter for each length allowing 

parallel processing. If the Bloom Filter detects a match, a hash 

table is queried to determine if exact match has occurred. If 

the queried signature is exact match, the malicious content can 

be blocked and the network administrator is informed. Google 

Chrome uses Bloom Filters to make preliminary decision 

whether a particular web site is malicious or safe. Bloom 

filters are also used in virus scanning [31], worm detection 

[32], Denial of Service (DoS) prevention [33] and network 

forensics [34]. 

3.3.2 Encrypted Search 
Bloom filters are extremely useful for searching in encrypted 

text. At the client end, user first creates the Bloom Filter of 

the document, encrypts the document using an encryption 

algorithm and then sends both the encrypted document as well 

as its corresponding Bloom Filter to the server. When the 

client needs to search the document, it sends keyword to the 

server and the server checks the document Bloom Filter for 

presence of the keyword. If presence of the keyword is 

established, the encrypted document is returned to the client 

which is decrypted with the key (used earlier to encrypt the 

document). 

3.3.3 Database Applications 
Bloom Filters have been frequently used for management of 

databases. Bloom Filters were used to estimate the size of 

joins in databases [35, 36] and to speed up semi-join 

operations. This is particularly useful in distributed databases. 

In these applications, one host sends the other host 

information in the form of Bloom Filter to reduce the overall 

communication load between two hosts. 

Bloom filters can also be used to maintain differential files 

[37]. A differential file keeps track of all changes to a 

database that occurred during the day or within a specific time 

period. Instead of keeping a list of all records that are being 

changed, one can replace this list with Bloom Filters of the 

records that have been changed. 
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4. CONCLUSION 
The significance of Bloom Filters has been highlighted in this 

paper.  Variants of Standard Bloom Filter were explored, 

which have been modified according to the requirement of 

different applications. We have also explained various 

applications of Bloom Filters. This simple data structure is 

gaining significance particularly for applications related to 

searching of documents, databases and encrypted content on 

the cloud. Applications related to network traffic 

management, database management and cloud security are 

also being addressed using Bloom Filters. The Standard 

Bloom Filter may be modified according to the needs of the 

application so that more power can be derived from this data 

structure. In the future, we are interested in applications 

related to cloud security and encrypted search and would like 

to modify this data structure to make it more suitable for these 

applications. 
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