
International Journal of Computer Applications and Technology (2278 – 8298)

Volume 1– Issue 1, 2012, 25-29

25

BLOOM FILTERS & THEIR APPLICATIONS

Saibal K. Pal

Defence R & D Organization

SAG, Metcalfe House

Delhi, India

Puneet Sardana

Department of Computer Science

University of Delhi

Delhi, India

Abstract: A Bloom Filter (BF) is a data structure suitable for performing set membership queries very efficiently. A Standard Bloom

Filter representing a set of n elements is generated by an array of m bits and uses k independent hash functions. Bloom Filters have

some attractive properties including low storage requirement, fast membership checking and no false negatives. False positives are

possible but their probability may be controlled and significantly lowered depending upon the application requirements. There are

many variants of the standard Bloom Filter – counting BF, variable increment BF, compressed BF, scalable BF, generalized BF, stable

BF and Bloomier Filter. Bloom Filters are increasingly finding applications in fast and approximate search, encrypted search in the

cloud, routing and controlling of network traffic, network intrusion detection and differential database and file updating. This paper

explores the typical properties of Bloom Filters, their variants and their suitability for use in present day applications.

Keywords: Bloom Filter, Variants, Set Membership, Hashing and Encrypted Search.

1. INTRODUCTION
A Bloom Filter is a space efficient probabilistic data structure

which is used to represent a set and perform membership

queries [1] i.e. to query whether an element is a member of

the set or not. The Bloom Filter data structure was introduced

by Burton H. Bloom [2] in 1970. A Bloom Filter occupies

negligible space compared to the entire set. Space saving

comes at the cost of false positives but this drawback does not

affect the processing of information if the probability of an

error is made sufficiently low. Bloom Filters typically find

applications in situations that involve determining

membership of an element for a sufficiently large set in small

amount of time. Today, Bloom Filters are used in wide variety

of applications including spell checking, network traffic

routing and monitoring, database search, differential file

updating, distributed network caches, and textual analysis. In

this paper we will describe bloom filter, its variants and its

applications in different areas of computer science.

 x

 h1(x) h2(x) …. hk(x)

 0 1 2 . . . m-3 m-2 m-1

Fig. 1 Set Operation in a Standard Bloom Filter

1.1 Standard Bloom Filter
A Bloom Filter for representing a set S = {s1, s2, …., sn} of n

elements is described by an array of m bits, initially all set to

0. A Bloom Filter uses k independent hash functions h1, h2,…,

hk with range {1, … , m}. Each hash function maps every

item to some random number over the range {1,…,m}. For

each element x ∈ S, the bits hi(x) are set to 1 for 1 ≤ i ≤ k.

To check if an item y is in S, we check whether all hi (y) are

set to 1. If any of hi (y) is 0 then clearly y does not belong to

S. If all hi (y) are set to 1 then y may belong to S.

Following are the properties of a Standard Bloom Filter:

• The amount of space needed to store the Bloom Filter [3] is

very small as compared to the entire set.

• The time needed to check whether an element is present or

not is independent of the number of elements present in the

set.

• False negatives are not possible. False positives are possible

but their probability can be significantly lowered.

• Bloom Filters can be easily halved in size allowing

applications to shrink a Bloom Filter.

• Bloom Filters can also be used to approximate the

intersection between two sets.

• If two Bloom Filters represent sets S1 and S2 with same

number of bits and same number of hash functions then a

Bloom Filter representing the union of these two sets can be

obtained by taking OR of the two bit-vectors of the original

Bloom filters [4].

The remaining part of the paper is organized as follows.

Section 2 describes different variants of the bloom filter.

Different applications of bloom filters in area of approximate /

encrypted search, network security and database updating are

1 0 1 . . . 0 1 . . . 0 1 0

International Journal of Computer Applications and Technology (2278 – 8298)

Volume 1– Issue 1, 2012, 25-29

26

explained in Section 3. Concluding remarks are mentioned in

Section 4.

2. VARIANTS OF BLOOM FILTER
In this section we explore and describe variants of Bloom

Filter [5] built on the Standard Bloom Filter data structure.

2.1 Counting Bloom Filter
The Standard Bloom Filter works fine when the members of

the set do not change over time. Addition of elements only

requires hashing the additional item and setting the

corresponding bit locations in the array. However, deletion is

not possible in the Standard Bloom Filter since it will require

setting 0’s in the array to already set 1’s that was result of

hashing another item which is still a member of the set. To

overcome this deficiency of Standard Bloom Filter, Fan et al.

[6] introduced the idea of Counting Bloom Filter. In Counting

Bloom Filter, bits of the array are replaced by a small counter.

When an element is inserted, the corresponding counters are

incremented; when the element is deleted, the corresponding

counters are decremented. The value of the counter gives the

number of items hashed to it. Since each counter size is

limited, the n-bit counter will overflow if it reaches a value of

2n. The figure below shows the structure and set operation in a

Counting Bloom Filter. Analysis carried out by Fan et al

shows that a 4-bit counter is adequate for most applications.

 x1, x2, …, xn

 h1(xi) h2(xi) ...….. hk(xi)

3 0 1 2 1 0 2 0
 0 1 2 m-2 m-1 m

Fig. 2 Set Operation in a Counting Bloom Filter

2.2 Variable Increment Bloom Filter
The Variable Increment Counting Bloom Filter (VI – Bloom)

[7] is a generalization of the Counting Bloom Filter that uses

variable increments to update each entry. In this structure, a

set of possible variable increments are defined. For each

counter update by an element we hash the element into the

variable increment set and use it to increment the counter.

Similarly, to delete an element we decrement by its hashed

value in the variable increment set. To determine if an

element is part of the set, we check in each of its counters if

its hashed value in the variable increment set could be part of

the sum. If this be the case in at least one counter the element

definitely does not belong to the set. Otherwise, the element

may belong to the set with some probability of false positive.

VI – Bloom can be used in Approximate Concurrent State

Machine [8], Counter Braids [9] and Fingerprint-based

schemes.

2.3 Compressed Bloom Filter
Using a larger but sparser Bloom Filter can yield the same

false positive rate with a smaller number of transmitted bits.

The resulting bloom filter is called a Compressed Bloom

Filter [10]. By using Compressed Bloom Filters networking

protocols reduce the number of bits broadcast, the false

positive rate and the amount of computation per look up.

Costs involved are larger computation time for compression

and decompression.

2.4 Scalable Bloom Filter
A Scalable Bloom Filters consist of two or more Standard

Bloom Filters, allowing arbitrary growth of the set being

represented. When one Bloom Filter gets filled due to the

limit on the fill ratio, a new filter is added. Querying an

element involves testing the presence in each filter. Each

successive bloom filter is created with a tighter maximum

error probability on a geometric progression [11].

2.5 Generalized Bloom Filter
Generalized Bloom Filter [12] uses hash functions that can set

as well as reset bits. In Generalized Bloom Filter, the initial

value of the bits of the array is not restricted to zero anymore.

For each element xi ∈ S bits corresponding to the positions h1

(xi), h2 (xi) , … , hk (xi) are set and the bits corresponding to

the positions g1(xi), g2(xi),…, gk(xi) are reset. In case of

collision between function hi and gi the resulting bit is always

reset. To check if element belongs to the set we check whether

bits corresponding to hi are all set and bits corresponding to gi

are all reset. If at least one bit is inverted then the element

does not belong to the set with high probability. If no bit is

inverted, then the element belong to set with high probability.

2.6 Bloomier Filters
Bloomier Filters [13] associate a value with each element that

had been inserted thereby implementing an associative array.

These structures achieve a small space overhead by accepting

a small probability of false positives. In this type of Bloom

Filter, a false positive is defined as returning a result when the

key is not in the map. The map will never return the wrong

value for a key that is in the map.

2.7 Stable Bloom Filter
This variant of Bloom Filter is particularly useful in data

streaming applications. In these applications when more and

more elements arrive, the number of 1’s in the array of bloom

filter will increase significantly, finally reaching the limit

where every distinct element is reported as duplicate

indicating that bloom filter can no longer be used. In Stable

Bloom Filters [14], this state is avoided by eviction of some

information. In this approach a random deletion operation is

incorporated in the Bloom Filter so that it does not exceed its

capacity.

3. APPLICATIONS OF BLOOM FILTER

3.1 General Applications

3.1.1 Spell Checkers
Bloom Filters are particularly useful in spell checking

software. They are used to determine if the word is a valid

word in its language. This is done by creating Bloom Filter of

all possible words of that language and checking a candidate

word against that Bloom Filter. Suggested corrections are

generated by making all single substitutions in rejected words

and then checking if these results are members of the set [15].

3.1.2 Longest Prefix Matching
Bloom Filters are used for longest prefix matching algorithms

[16] as these are typically used for efficient exact match

searches. The basic idea is to create a hash table consisting of

prefixes of various lengths that have to be potentially matched

against a given string with the goal of finding the longest

possible match. By using Bloom Filter one can avoid

International Journal of Computer Applications and Technology (2278 – 8298)

Volume 1– Issue 1, 2012, 25-29

27

unnecessary look up into a hash table when the corresponding

prefix does not exist in the table.

3.1.3 Refining Web Search Results
Bloom Filters are extremely useful in refining search results

[17] returned by search engines. Most of the top search

results returned by search engines contain similar contents.

This technique involves removing or grouping all near-

duplicate documents in the results presented to the user.

Bloom Filter is also used for similarity detection of text

documents. For finding similar documents, Bloom Filters are

compared by using bit wise AND operation. In case the two

documents share large number of 1’s after applying bit-wise

AND to their bloom filter, the documents are assumed to be

similar.

3.2 Networking Applications

3.2.1 Routing
If the network is in the form of a rooted tree with nodes

holding resources and a node receives a request for resource,

it checks its unified list to ascertain if it has a way of routing

that request to the resource [18]. False positives in this cause

may forward the routing request to an incorrect path. In such a

case backtracking of the tree is necessary. Another similar

application needs to verify if the requested file has a replica

nearby and in such cases the request may be routed efficiently

along the shortest path [19, 20]. Each node in the network

keeps an array of Bloom Filter for each adjacent edge i.e. The

kth Bloom Filter in the array keeps track of the files reachable

via k hops from the node in the network.

Bloom Filters are also used for geographic routing system for

mobile computers [21]. In this scheme each node contains a

Bloom Filter representing the list of mobile hosts reachable

through itself or through its three siblings at each level.

3.2.2 Loop Prevention
Normally, packets trapped in the network loop are detected

using the IP Time-To-Live field but these are not of much

help if the loops are small. A small Bloom Filter can be used

which can be carried in the packet header and which keeps

track of the set of nodes visited [22]. Each node has a mask

that can be ORed into the Bloom Filter as its passes; if the

filter does not change there is a loop.

3.2.3 IP Traceback and IP Multicast
Bloom filter is also used to trace the route that a packet

traversed in a network [23]. Bloom Filters reduce the amount

of information [24] that needs to be stored in order to

summarize the set of packets seen. A router mistakenly

identifying a packet as having been seen would be treated as a

false positive.

Bloom filters are also used as alternative of interface lists that

the router associates with multicast addresses to send packets

through a multicast tree [25]. There can be Bloom Filter of

addresses associated with each interface. When a packet with

multicast addresses arrives on one interface, the Bloom Filters

of all other interfaces are queried to check if packets with that

address should be forwarded along that interface. This helps

in significant space savings.

3.2.4 Network Traffic
Bloom filters are widely used to reduce network traffic.

Bloom filters are used in caching proxy servers [26] on the

World Wide Web (WWW). Bloom filters are used in Web

caches to efficiently determine the existence of an object in

cache. Use of web caches help to reduce the network traffic.

Bloom filter are also used as cache digest. A cache digest

contains information of all cache keys with lookup capability.

By checking a neighbor cache, a cache can determine with

certainty if a neighboring cache does not hold a given object

[27]. This allows in reduction of the cache directory size

while keeping the number of collisions low.

Bloom Filters find applications in network traffic

measurement and detection of heavy flows inside a router

[28]. The basic idea is to hash each packet entering into the

Bloom Filter. A counter is associated with each location in the

Bloom Filter that records the number of packet bytes that have

traversed the router associated with that location. The counter

is incremented by the number of bytes in the packet. If a

minimum count associated with a packet is above some

threshold, the corresponding flow is marked as heavy flow.

3.3 Applications in Security & Database

 Management

3.3.1 Intrusion Detection
Network Intrusion Detection and Prevention Systems

(IDS/IPS) use string matching to scan Internet packets for

malicious content. Bloom Filters are particularly useful for

searching large number of strings efficiently. The basic idea is

to find substrings (or commonly known as signatures) at high

speed [29, 30]. A common approach is to separate signatures

by length and use Bloom Filter for each length allowing

parallel processing. If the Bloom Filter detects a match, a hash

table is queried to determine if exact match has occurred. If

the queried signature is exact match, the malicious content can

be blocked and the network administrator is informed. Google

Chrome uses Bloom Filters to make preliminary decision

whether a particular web site is malicious or safe. Bloom

filters are also used in virus scanning [31], worm detection

[32], Denial of Service (DoS) prevention [33] and network

forensics [34].

3.3.2 Encrypted Search
Bloom filters are extremely useful for searching in encrypted

text. At the client end, user first creates the Bloom Filter of

the document, encrypts the document using an encryption

algorithm and then sends both the encrypted document as well

as its corresponding Bloom Filter to the server. When the

client needs to search the document, it sends keyword to the

server and the server checks the document Bloom Filter for

presence of the keyword. If presence of the keyword is

established, the encrypted document is returned to the client

which is decrypted with the key (used earlier to encrypt the

document).

3.3.3 Database Applications
Bloom Filters have been frequently used for management of

databases. Bloom Filters were used to estimate the size of

joins in databases [35, 36] and to speed up semi-join

operations. This is particularly useful in distributed databases.

In these applications, one host sends the other host

information in the form of Bloom Filter to reduce the overall

communication load between two hosts.

Bloom filters can also be used to maintain differential files

[37]. A differential file keeps track of all changes to a

database that occurred during the day or within a specific time

period. Instead of keeping a list of all records that are being

changed, one can replace this list with Bloom Filters of the

records that have been changed.

International Journal of Computer Applications and Technology (2278 – 8298)

Volume 1– Issue 1, 2012, 25-29

28

4. CONCLUSION
The significance of Bloom Filters has been highlighted in this

paper. Variants of Standard Bloom Filter were explored,

which have been modified according to the requirement of

different applications. We have also explained various

applications of Bloom Filters. This simple data structure is

gaining significance particularly for applications related to

searching of documents, databases and encrypted content on

the cloud. Applications related to network traffic

management, database management and cloud security are

also being addressed using Bloom Filters. The Standard

Bloom Filter may be modified according to the needs of the

application so that more power can be derived from this data

structure. In the future, we are interested in applications

related to cloud security and encrypted search and would like

to modify this data structure to make it more suitable for these

applications.

5. REFERENCES
[1] Peter Brass, Advanced Data Structures, Cambridge

University Press, 2008, pp. 402-405.

[2] Burton H. Bloom, Space/time trade-offs in Hash Coding

with Allowable Errors, Communications of the ACM,

Volume 13, Issue 7, 1970,

http://portal.acm.org/citation.cfm?doid=362686.362692.

[3] Jing Chi, Research and Application on Bloom Filter,

Applied Computing, Computer Science and Advanced

Communication, First International Conference on

Future Computer and Communication, FCC 2009, China,

June 2009, pp. 30-33.

[4] Andrei Broder and Michael Mitzenmacher, Network

Applications of Bloom Filters, Internet Mathematics Vol.

I, pp. 492-505.

[5] Graham Cormode and Marina Thottan, Algorithms for

Next Generation Networks, Springer, 2010, pp. 185-189.

[6] L. Fan, P. Cao, J. Almeida and A. Z. Broder, Summary

Cache: A Scalable Wide-Area Web Cache Sharing

Protocol. IEEE/ACM Transactions on Networking, 2000.

[7] Ori Rottenstreich and Issac Keslassy, The Variable-

Increment Counting Bloom Filter, Technion, Israel.

[8] F. Bonomi, M. Mitzenmacher, R. Panigraphy, S. Singh

and G. Varghese, Beyond Bloom Filters: from

Approximate Membership Checks to Approximate State

Machines. SIGCOMM, 2006.

[9] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar,

and A. Kabbani, Counter Braids: a Novel Counter

Architecture for Per-slow measurement, SISMETRICS,

2008.

[10] Michael Mitzenmacher, Compressed Bloom Filters,

IEEE/ACM, Transactions on Networking, 2002, pp. 604-

612.

[11] Almeida, Paulo; Baquero, Carlos; Preguica, Nuno;

Hutchison, David (2007), Scalable Bloom Filters,

Information Processing Letters, pp.255–261.

[12] Rafael Laufer, Pedro B. Velloso, and Otto Carlos M. B.

Duarte, A Generalized Bloom Filter to Secure

Distributed Network Applications, Computer Networks,

vol. 55, no. 8, pp. 1804-1819, June 2011.

[13] Chazelle, Bernard; Kilian, Joe; Rubinfeld, Ronitt; Tal,

Ayellet, The Bloomier Filter: an Efficient Data Structure

for Static Support Lookup Tables, Proceedings of the

Fifteenth Annual ACM-SIAM Symposium on Discrete

Algorithms, pp. 30–39, 2004.

[14] Deng, Fan; Rafiei, Davood , Approximately Detecting

Duplicates for Streaming Data using Stable Bloom

Filters, Proceedings of the ACM SIGMOD Conference,

pp. 25–36, 2006.

[15] James K. Mullin and Daniel J. Margoliash, A tale of

three spelling checkers, Software, Practice and

Experience, pp. 625- 630, June 1990.

[16] S. Dharmapurikar, P. Krishnamurthy and D.E. Taylor.

Longest prefix matching using Bloom Filters,

IEEE/ACM Transactions on Networks, pp. 397-409,

2006.

[17] Navendu Jain, Mike Dahlin and Renu Tewari, Using

Bloom Filters to Refine Web Search Results, Eighth

International Workshop on the Web and Databases,

2005.

[18] S. Czerwinski, B. Y. Zhao, T. Hodes, A. D. Joseph and

R. Katz. An Architecture for a Secure Service Discovery

Service. In Proceedings of the Fifth Annual ACM/IEEE

International Conference on Mobile Computing and

Networking, pp. 24-35, ACM Press, 1999.

[19] S. C. Rhea and J. Kubiatowicz. Probabilistic Location

and Routing. In Proceedings of the 21st Annual Joint

Conference of the IEEE Computer and Communications

Societies (INFOCOM), Volume 3, pp. 1248-1257, IEEE

Computer Society, 2002.

[20] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S.

Shenker. A Scalable Content-Addressable Network.

ACM SIGCOMM Computer Communication Review,

Proceedings of the 2001 SIGCOMM Conference, 2001.

[21] P. Hsiao, Geographical Region Summary Service for

Geographical Routing. Mobile Computing and

Communications Review, 2001, pp. 25-39.

[22] A. Whitaker and D. Wetherall. Forwarding without

Loops in Icarus. In Proceedings of the Fifth IEEE

Conference on Open Architectures and Network

Programming (OPENARCH), pp. 63-75, Los Alamitos,

CA, IEEE Computer Society, 2002.

[23] R. P. Laufer, P. B. Velloso, D. d. O. Cunha, I. M.

Moraes, M. D. D. Bicudo, M. D. D. Moreira, O. C. M. B.

Duarte, Towards stateless single-packet IP traceback,

Proceedings of the 32nd IEEE Conference on Local

Computer Networks, IEEE Computer Society,

Washington, DC, USA, 2007, pp. 548–555.

[24] A. C. Snoeren, C. Partridge, L. A. Sanchez, C. E. Jones,

F. Tchakountio, S. T. Kent, and W. T. Strayer. Hash-

Based IP Traceback. ACM SIGCOMM Computer

Communication Review, Proceedings of the 2001

SIGCOMM Conference, (2001).

[25] B. Gronvall, Scalable Multicast Forwarding, Computer

Communication Review 32, 2002.

[26] Jia Wang. A survey of web caching schemes for the

internet. ACM SIG-COMM Computer Communication

Review, 1999.

[27] James Blustein and Amal El- Maazawi, Bloom Filters –

A Tutorial, Analysis, and Survey, 2002.

[28] C. Estan and G. Varghese. New Directions in Traffic

Measurement and Accounting. ACM SIGCOMM

Computer Communication Review, Proceedings of the

2002 SIGCOMM Conference, 2002, pp. 323-336.

International Journal of Computer Applications and Technology (2278 – 8298)

Volume 1– Issue 1, 2012, 25-29

29

[29] S. Dharmapurikar, P. Krishnamurthy, T.S. Sproull and

J.W. Lockwood. Deep packet inspection using Parallel

Bloom Filters, IEEE Micro, pp. 52-61, 2004.

[30] S. Dharmapurikar and J.W. Lockwood, Fast and Scalable

Pattern Matching for Network Intrusion Detection

Systems, IEEE Journal on Selected Areas in

Communications, 2006.

[31] O. Erdogan and P. Cao, Hash-AV: Fast Virus Signature

Scanning by Cache-resident Filters, in IEEE Globecom

2005, St Louis, MO, 2005.

[32] G. Gu, D. Dagon, X. Qin, M. I. Sharif, W. Lee, and G. F.

Riley, Worm detection, early warning, and response

based on local victim information, in In Proceedings of

the 20th Annual Computer Security Applications

Conference (ACSAC 2004), Tucson, Arizona, 2004.

[33] Y. Kim, W. Lau, M. C. Chuah, and H. J. Chao,

Packetscore: statistical based overload control against

distributed Denial-of-Service, in 23rd Annual IEEE

Conference on Computer Communications (INFOCOM),

Hong Kong, 2004.

[34] K. Shanmugasundaram, H. Bronnimann, and N. Memon,

Payload attribution via hierarchical Bloom Filters, in

11th ACM Conference on Computer and

Communications Security, Washington, DC, 2004.

[35] James K. Mullin. Optimal semijoins for distributed

database systems. IEEE Transactions on Software

Engineering, May 1990.

[36] James K. Mullin. Estimating the size of a relational join.

Information Systems, 1993.

[37] L. L. Gremilion. Designing a Bloom Filter for

Differential File Access. Communications of the ACM

25, 1982, pp. 600-604.

