
International Journal of Computer Applications and Technology

Volume 1- Issue 2, 2012, 57-63

57

An Improved Adaptive Space-Sharing Scheduling Policy

for Non-dedicated Heterogeneous Cluster Systems

Amit Chhabra

Department of Computer Science & Engineering

Guru Nanak Dev University,

Amritsar, INDIA

Gurvinder Singh

Department of Computer Science & Engineering

Guru Nanak Dev University,

Amritsar, INDIA

Abstract: Adaptive space-sharing scheduling algorithms tend to improve the performance of clusters by allocating processors to jobs

based on the current system load. The focus of existing adaptive algorithms is on dedicated homogeneous and heterogeneous clusters.

However commodity clusters are naturally non-dedicated and tend to be heterogeneous over the time as cluster hardware is usually

upgraded and new fast machines are also added to improve cluster performance. The existing adaptive policies for dedicated cluster

systems are not suitable for such conditions. Moreover existing adaptive policies use First-come-first-serve (FCFS) which is known to

be sensitive of variance in service demand, as a job-selection policy for processor allocation. FCFS allocation of processors to jobs

results in a situation where small jobs could be blocked by an earlier arrived large job. This paper fills these gaps by designing an

efficient adaptive space-sharing scheduling algorithm for non-dedicated heterogeneous cluster systems. Evaluation results show that

the proposed algorithm provide substantial improvement over existing algorithms at moderate to high system utilizations.

Keywords: First-come-first-serve, Adaptive space-sharing scheduling, Cluster computing systems, Non-dedicated heterogeneous

clusters, and Mean response time

1. INTRODUCTION
In recent times, paradigm of parallel processing has been

shifted from traditional expensive multiprocessors to

commodity-based high-performance cluster computing

systems due to their high-performance and cost-effectiveness.

Depending upon the ownership, cluster systems can be

classified into two categories; dedicated cluster systems and

non-dedicated cluster systems. Dedicated cluster uses a

network of dedicated PCs collectively to form an effective

high-performance parallel solution. On the other hand, non-

dedicated cluster aims to utilize the abundant computing

cycles “available” on the network of PCs to provide high-

computing power. Computers in the non-dedicated clusters

are privately owned and likely to be heterogeneous. The

heterogeneity and “availability” of processing power in non-

dedicated environment distinguishes itself from dedicated

cluster systems. Community-owned cluster computing (CCC)

systems [1][2] are an example of non-dedicated

heterogeneous clusters.

One of the most important challenges that must be

addressed in order to realize the fullest advantages of Cluster

computing systems is that of designing efficient job

scheduling algorithms. Space-sharing policies are commonly

used to schedule parallel jobs in distributed-memory cluster

systems. In space-sharing policy, parallel system of multiple

processors is divided into disjoint set of processors (known as

partitions) so that each partition can be assigned to a single

job. In this way, number of jobs can be executed side-by-side

by simultaneously providing processor partitions. The number

of processors in each partition to be assigned to a job is

known as partition size. The primary reason for preferring

space-sharing over time-sharing for cluster systems is to avoid

the cost of context switching due to frequent preemptions in

time-sharing systems.

Space-sharing policies can be broadly divided into fixed,

variable, adaptive and dynamic policies [3][4] based on the

decision that whether the partition size once assigned to the

jobs can be changed during execution time or not. In fixed

policies, partition sizes are fixed by the administrator before

the system actually starts operating and any modification to

these partition sizes require a system reboot. Variable policies

require partition sizes to be specified by the user at the time of

job arrival. In adaptive policies, partition sizes are determined

by the scheduler at the time of job scheduling on the basis of

current system load and any available job characteristics.

However partition size once assigned to a job can not be

changed during job execution. In dynamic policies, partition

size of a job can be changed during its execution.

High performance applications for cluster computing

systems are mostly presented as parallel jobs. A parallel job is

said to consist of a set of tasks/processes running concurrently

to achieve a certain common objective. Each task runs to

completion on its assigned processor. The number of tasks

(and hence processors required) a certain job has is referred to

as the job size.

Characteristics of on-line job streams that act as input

workload to the job schedulers influence the performance of

the schedulers. Parallel jobs can be classified into four types

[3][4]; (i) Rigid, (ii) Moldable (iii) Evolving, and (iv)

Malleable, depending upon the number of processor to be

allocated at submission time or during execution. A rigid job

demands a fixed number of processors at the time of

International Journal of Computer Applications and Technology

Volume 1- Issue 2, 2012, 57-63

58

submission and executes on these processors exclusively until

completion. Moldable jobs can be made to execute on

different number of processors based on the current system

load. For example if system load is high, then few processors

can be assigned to the moldable job and if system load then

large number of processors can be allotted to the job.

However this flexibility is only available at job start time and

partition size cannot be reconfigured during execution. The

processor requirements of both evolving and malleable jobs

can be changed during execution. For evolving jobs,

requirement changes are initiated by the application itself

during the various phases of its execution. If the system

cannot satisfy the job's demand, the job has to wait for exact

processor allocation. For malleable jobs, the decision to

change the number of processors is made by an external job

scheduler.

 Adaptive policies perform better than fixed-partitioning

and variable-partitioning scheduling policies due to their

ability adapt to the current load on the system while

calculating partition-size for jobs. Adaptive space-sharing

scheduling policies to schedule moldable jobs are widely

studied in homogeneous parallel systems (i.e. multiprocessors

and clusters) [5-12] and to less extent in heterogeneous cluster

computing systems [2][13]. A common assumption in the

existing adaptive policies in both the systems has been that all

processors in the system are dedicated to only parallel

workload. It means that processors in the system are not

shared simultaneously with the local jobs executing at

individual processor. In this paper we focus on proposing a

scheduling algorithm to allocate processors to jobs in a non-

dedicated heterogeneous cluster computing environment.

The rest of the paper is organized as follows: Section 2

states the problem statement. Section 3 gives an overview of

previous literature work related to the problem. Section 4

describes the details of the proposed solution. Section 5

describes simulation model which discusses the workload and

system model used. Section 6 evaluates the performance of

new policies and compares them with existing solutions and

Section 7 concludes the paper.

2. PROBLEM STATEMENT
The research problem chosen in this paper seems

significant as the partition sizes obtained in non-dedicated

heterogeneous cluster systems will be different from those

obtained in dedicated homogeneous systems. When we

partition a dedicated homogeneous cluster, partition size is

obtained by dividing total number of physical processors by

the total number of jobs in the system. But in case of non-

dedicated heterogeneous systems, partition size is calculated

by dividing the total available computing power of all

processors by the number of jobs currently available in the

system. However total available computing power will be

different at different times due to variations in the computing

power of individual processors in the presence of varying

background workload. Hence corresponding calculated

partition size changes continuously. Moreover existing

adaptive policies focus on using FCFS as a job selection

algorithm to allocate processors to parallel jobs. FCFS is

known to be sensitive to the variance in the service times

which means that large number of smaller jobs can be blocked

by few larger jobs that have arrived earlier.

Therefore an efficient adaptive scheduling policy is

required which can take care of heterogeneity of processor

speeds as well as run-time load variations due to background

workloads executing at individual processors and which is

relatively less sensitive to the variance in the service times.

3. RELATED WORK
The focus of the current job scheduling research in

distributed-memory multiprocessors and cluster systems is

towards adaptive algorithms to schedule moldable jobs [5-12]

as they have shown to achieve better mean response time than

the scheduling algorithms for rigid jobs. This is due to the fact

that adaptive algorithms decide the partition sizes by adapting

to current system load at job scheduling time whereas rigid

jobs only require a fixed number of processors resulting into

increased processor fragmentation and mean response times.

Dynamic policies are shown to more suitable for shared-

memory parallel systems in which the associated overheads of

dynamic-partitioning are outweighed by the benefits.

Adaptive scheduling algorithms for assigning partition

sizes to moldable jobs have been extensively studied in

homogeneous parallel systems and to less extent in

heterogeneous parallel systems [2][13]. Existing adaptive

algorithms in both homogeneous and heterogeneous cluster

systems share one common assumption that processors are

dedicated to execute only cluster applications (no other

applications can be executed locally). Available adaptive

policies also differ from each other by the amount of job

characteristics used in making processor allocation decisions.

In [5-6] , Rosti et al. introduced several adaptive

partitioning policies (known as Fixed Processors per Job

(FPPJ)), Equal Partitioning with a Maximum (EPM),

Insurance Policy and Adaptive Policies (known as AP1, AP2,

AP3, AP4 and AP5)) for distributed-memory multiprocessors

over a wide range of workload types and with different

possible arrival rates. These policies try to allocate equal-

sized partitions to the waiting applications since no a priori

job characteristics were assumed to be available. However

these policies differ from each other in how the target

partition-size is computed.

Out of these adaptive policies, AP2 (known as work-

conserving policy) seems to be an interesting policy that

reserves one additional partition for the future job arrivals.

The partition size in the AP2 policy is calculated as shown in

(1).

In [7], Dandamudi and Yu show that AP2 considers only

queued jobs to calculate partition size. This will lead to a

situation that contravenes the principal of allocating equal-

sized partitions to all jobs. Dandamudi and Yu, suggested a

modified version of AP2 known as Modified adaptive policy

(MAP) which considers waiting as well as running jobs to

calculate partition size as shown in (2).

Target partition size to be finally allocated to the waiting job

is calculated using equation (3). It is the minimum of the

partition size calculated using equation (2) and maximum

parallelism of the job.

International Journal of Computer Applications and Technology

Volume 1- Issue 2, 2012, 57-63

59

The parameter f (whose value lies between 0 and 1) is

used to control the contribution of the “running” jobs to the

partition size. It has been shown that the MAP policy provides

significant improvement in performance over policies like

AP2, ASP and ASP-max etc. that do not consider the

contribution of running jobs while calculating partition size.

The amount of improvement obtained is a function of

parameter f, system load, and workload.

The adaptive policy proposed in [8][10] is more

restrictive, in that users must specify a range of the number of

processors for each job. Availability of service demand

knowledge of an individual job is assumed in the paper.

Schedulers will select a number which gives the best

performance. Schedulers in [8][10] use a submit-time greedy

strategy to schedule moldable jobs.

In [11], Srinivasan et al. have some improvement to

[1][3]: (i) using schedule time-scheduler which defers the

choice of partition size until the actual job schedule time

instead of job submission time and, (ii) using aggressive

backfilling instead of conservative backfilling.

In [12], Srinivasan et al. argue that an equal-sized

partition strategy tends to benefit jobs with small computation

size (light jobs). On the other hand, allocating processors to

jobs proportional to the job computation size tends to benefit

heavy jobs significantly. A compromise policy is that each job

will have a partition size proportional to the square root of its

computation size (Weight) as in (4). This equation is used to

calculate partition size in an enhanced backfilling scheme

proposed in [12].

In [2], a variation of MAP, known as Heterogeneous

Adaptive Policy (HAP) was suggested by Dandamudi and

Zhou to work with heterogeneous parallel systems. The work

introduced the concept of Basic Processor Unit (BPU) to

differentiate the heterogeneous processors from each other.

Partition sizes are allocated to the jobs on the basis of their

computation power in terms of number of BPUs rather than

using a physical processor level as in homogeneous systems.

The research paper showed the supremacy of HAP over MAP

and AP2 policies. Partition size in HAP is calculated as in

equation (5) and target partition size is calculated using

equation (3).

In [13], Shim suggested various adaptive policies for

shared heterogeneous network of workstations (NOW)

considering the priority of sequential local jobs as well as the

parallel jobs. No in-depth details about the working of the

algorithms are provided in the paper and no comparisons are

made with the existing policies. The shortcoming of this paper

is that it considers only the contribution of waiting jobs to

calculate the partition size which usually lead to worse results.

In [14], Doan et al. suggested priority-based adaptive

policy for homogeneous PC-based cluster systems for both

rigid and moldable jobs. The user can assign priority to both

types of jobs. The jobs with higher priority are given

preference in execution. Since rigid jobs require the fixed

number of processors (e.g. partition size), so partition-

function for only moldable parallel jobs is derived from

equation (2) given in [7].

In [15], Abawajy proposed another adaptive policy

known as SOUL for heterogeneous multi-cluster systems

which calculates partition size on the basis of mean service

rate of heterogeneous processors, local load at processors and

maximum parallelism information of waiting jobs. It has been

shown that SOUL policy tends to produce shorter mean job

response times as compared to both AEP and MAP at various

workloads. But no comparison between HAP and SOUL

policy is available in literature.

4. PROPOSED ADAPTIVE POLICY
From the literature survey, following lessons have been

learnt which will help us to design a robust adaptive policy for

non-dedicated heterogeneous parallel systems.

1) Adaptive policies which consider both current waiting and

running jobs in the parallel system perform better than those

policies which consider only current waiting jobs.

2) In heterogeneous systems, BPU mechanism is used

frequently to differentiate the computing power of different

physical processors.

3) When no job knowledge or only maximum parallelism

information is available, equal-sized (or equivalent)

partitioning mechanism is preferred over weighted square-root

fair-share strategy which requires the service demand

knowledge of jobs.

4.1 An Improved Heterogeneous Adaptive

Policy (IHAP)
Using these observations and lessons, we have suggested

few modifications to HAP policy which have shown good

results over various policies in dedicated heterogeneous

systems. The new policy is named as an Improved

Heterogeneous Adaptive Policy (IHAP) to schedule jobs in

non-dedicated heterogeneous cluster environment and

requires only maximum parallelism (Pmax) information of

jobs to calculate final target partition size for the current

waiting jobs.

Partitioning-function of IHAP:

Since cluster processors can be shared between local and

parallel jobs, therefore at any point of time, current available

computing power for execution of parallel workload at each

processor in the presence of local workload is given as in

equation (6).

In a cluster system with P processors, BPUk represents the

computing power of kth processor and Local_loadk denotes

the load at individual processor due to the execution of local

jobs.

Ideal partition size in IHAP is then calculated on the basis of

current available computing as shown in (7).

It should be noted that job scheduler is invoked only at arrival

and departure time of jobs. Information about local load and

computing power of each processor is also collected by the

job scheduler at these times. The number of BPUs finally

allocated is calculated as follows in (8).

International Journal of Computer Applications and Technology

Volume 1- Issue 2, 2012, 57-63

60

Job-selection rule of IHAP:

It should be noted that jobs are selected for processor-

allocation from the waiting queue using Fit-Processors-First-

Served (FPFS) as opposed to FCFS used in many adaptive

policies [2][7][13]. Partition-size for the waiting jobs is

calculated using equation (7) and (8). If the idle BPUs are less

than the target partition-size for the current job, then next job

from the waiting queue is searched who‟s target partition-size

fits into the idle BPUs.

5. SIMULATION MODEL

We have implemented a discrete event simulator in

VB.Net language to evaluate the performance of proposed

adaptive scheduling algorithms under various workload

conditions. Simulation modeling is preferred over the actual

experimentation as it gave us the greater flexibility of

covering a wide range of application characteristics and

controlled parameters like arrival rates, system utilization etc.

and allowed us to abstract away trivial details of the

environment under study, which otherwise would complicate

the performance evaluation procedure.

The developed simulator takes the on-line job stream as

input parallel workload, executes parallel workload with the

specified adaptive policy and generates the output in the form

of mean response time. Response time of a job is defined as

the sum of its execution time and waiting time. Waiting time

of job is the difference between job arrival time and job

scheduling time. Execution time is the actual time spent to

execute the job.

5.1 System Model

We have used an open system model of community-

owned cluster of 64 independent commodity single-processor

personal computers and each computer is used in a shared

mode i.e. it is able to service local sequential tasks as well as

the tasks of parallel job submitted by the central job

scheduler. The computers differ from each other in terms of

heterogeneity in processor speeds i.e. computing power they

possess. Computer and processor terms are used

interchangeably in context of this paper. We assume that

computers in the cluster are connected using 100Mbps

Ethernet switch. Relative computing power of different

physical processors is represented in terms of Basis

Processing Unit (BPU) [2] which can either be derived with

the help of SPECfp2000 ratings based on the processor speeds

or by executing independent benchmarking programs on

heterogeneous processors. We have used two types of

processors in the computers of cluster system; First 32

computers contain Type I processors; Next 32 computers

contain Type II processors that are twice faster than Type I

processors. Hence each processor in Type I has 1 BPU and

Type II processor has 2 BPUs.

5.2 Parallel Workload Model
Parallel workload model containing online stream of

parallel jobs for scheduling contains three components; 1) job

arrival process 2) Maximum parallelism and 3) job service

demand. The job arrival process is characterized by job arrival

rate (λ) and coefficient of variation of inter-arrival times

(CVa). High arrival rate represents that inter-arrival time

between successive jobs is small. We have modeled the job

arrival process using exponential distribution with CVa equal

to one.

Maximum parallelism of jobs (Pmax) indicates the

maximum number of processors that can be effectively

utilized by the parallel jobs. Pmax is varied from 1 to 32 using

uniform distribution. Mean service demand (D) parameter is

the uncorrelated cumulative mean service demand which

represents the total time required to execute the job in a

dedicated environment, independent of how many processors

are used. Service demand of jobs is generated using 2-stage

hyper-exponential distribution with coefficient of variation of

service demand (CVs) greater than one. Since moldable jobs

can be made to run on the varying number of processors,

therefore time (tj) taken by the parallel job varies based on the

number of processors (pj) assigned to it when the job starts

executing. It should be noted that dj= (tj)*(pj) as we have

ignored the communication and synchronization overheads,

when overall mean service demand of a parallel job (dj) is

distributed equally among tasks (which are always equal to

“pj” processors assigned to the job) of the job.

5.3 Background Workload Model

We assume abstract model for representing load due to

background jobs at each processor by hiding the internal

details of arrival and execution times of sequential local jobs.

Each cluster processor is assumed to service a stream of

background jobs that arrive at individual computers

independently. Local load at each processor indicates the load

due to the execution of sequential local jobs. As the local load

increases, computing power available to service parallel

workload decreases. We model the local load using uniform

distribution ranging from 0% to 30% and this information is

assumed to be available to job scheduler at job arrival and

departure times.

6. Performance Evaluation and Results

In this section we will evaluate the performance of

proposed algorithms in terms of mean response time and also

compare the simulation results with the existing approaches.

In all the simulation experiments performed in this paper, 31

batches of 7000 jobs per each batch were used and results of

first batch were discarded to ignore start-up effects. The

number of batches is such that the mean response times

obtained have relative errors not exceeding 5% under the 90%

confidence interval. The default parameters and values used in

simulation experiments are for various simulation parameters

shown in table 1.

Table 1: Default parameters and values used in

experiments

Parameters of Parallel Jobs Values

Mean service demand (D) 16

Coefficient of variation (CVa)

of Job arrival

1

Coefficient of variation (CVs)

of Service demand

4

Number of processors

in the cluster

64

Pmax 32

Average load or utilization of the cluster system due to

parallel jobs is derived using equation (9) as follows:

International Journal of Computer Applications and Technology

Volume 1- Issue 2, 2012, 57-63

61

6.1 Relative performance of the scheduling

policies

In this section we compare the performance of the

proposed adaptive scheduling policy i.e. IHAP with the HAP

and MAP policy. The default value of „f‟ in the partitioning-

function for IHAP, HAP and MAP policies is set to 0.5 which

is suggested as a reasonable value in existing similar research

works [2][7].

IHAP policy tends to produce shorter MRT values at

system loads of interest (i.e. at medium to high loads) as

shown in figure 1. This is due to two reasons; 1) IHAP policy

produce smaller partition sizes as compared to both HAP and

MAP as it considers the background workload into account. 2)

FPFS job-selection policy reduces processor fragmentation

which exists in HAP and MAP policies due to use of FCFS as

a job-selection policy.

Figure 1: Performance of the scheduling policies

On the other hand, both HAP and MAP try to allocate

larger partition sizes since they are not aware of any

background workload. But in reality the total available

computing power of all processors is much less than that of

assumed by MAP and HAP. Therefore jobs have to wait for a

long time to receive calculated partition sizes. HAP and MAP

policies also tend to produce bigger partition sizes at low to

medium system utilization since they impose no upper limit

on the number of processors to be allocated to jobs. This will

apparently result into allocation of large partition sizes to even

smaller jobs.

6.2 Sensitivity Analysis

In this section, we study the sensitivity of the three policies to

variances in inter-¬arrival and service times. When the arrival

CV is varied, the service CV is held at 4. Similarly arrival CV

is fixed at 1 when the performance sensitivity to service time

CV is studied. The system utilization for parallel load is fixed

at 80%.

6.2.1 Sensitivity to Arrival Time Variations
The performance sensitivity of the three policies to inter-

arrival CV is shown in figure 2. The mean response time

increases with increasing inter-arrival CV for the three

policies. The IHAP policy maintains its performance

superiority over HAP and MAP policy at 80% system

utilization.

Figure 2: Sensitivity of the policies to arrival time variance

The increase in arrival time variance means the clustered

arrival of jobs into the system. This also led to longer gaps in

the job arrivals. The impact of variance in arrival time is more

on HAP and MAP policies as shown in figure. These two

policies suffer from processor fragmentation induced by the

background workload and the way the partition-size is

computed for the jobs. Since the partition sizes are computed

on the basis of total number of BPUs (in case of HAP) and

total number of processors (in case of MAP), the actual

number of available BPUs (in case of HAP) and available

processors (in case of MAP) can be lower than the partition-

size computed. This is due to the fact that there is possibility

of background tasks running on some of processors at the time

and both HAP and MAP doe not consider background

workload when computing partition size. But IHAP policy

tend to produce smaller partition sizes due to consideration of

background workload, therefore the impact of arrival time

variance is reduced as compared to other two policies.

6.2.2 Sensitivity to Service Demand Variations

The figure shows that MRT of the three policies increases

with the increase in the variance in the service demand. With

the increase in service demand variance, there will few large

service demand jobs and large number of small service

demand jobs. As the service time CV increases, the service

demand of the larger jobs will increase even though their

number goes down as a fraction of the total jobs.

International Journal of Computer Applications and Technology

Volume 1- Issue 2, 2012, 57-63

62

Figure 3: Sensitivity of the policies to service time variance

The impact of service time variance on HAP and MAP

policies is more than the impact on IHAP policy. This is due

to the fact that both HAP and MAP use FCFS as a job

selection policy which is known to be sensitive of variance in

service demand, to allocate processors to jobs. FCFS

allocation of processors to jobs results in a situation where

small jobs could be blocked by an earlier arrived large job.

This problem gets more serious as the variance in service

demand increases.

7. Conclusion

Space-sharing algorithms are preferred in distributed-memory

cluster systems to avoid the overhead due to frequent

preemptions involved in time-sharing systems. Adaptive

space-sharing algorithms are used in cluster computing

systems and dynamic space-sharing algorithms are more

suited to shared-memory multiprocessors. Most of popular

adaptive algorithms are only designed for dedicated

homogeneous as well as dedicated heterogeneous cluster

systems. Moreover existing adaptive policies use FCFS as a

job-selection policy which is known to be sensitive to service

demand variance. Hence these algorithms produce increased

mean response times for workloads having high service

demand variance. This paper proposes an improved adaptive

policy for non-dedicated heterogeneous cluster systems.

Comparative results have shown the dominance of the

proposed policy over the existing similar policies at medium

to high system loads of interest. Also the policy has shown to

be relatively less sensitive to service demand variance as

compared to existing policies.

8. REFERENCES
[1] J.H. Abawajy. Parallel Job Scheduling Policies on Cluster

Computing Systems. Ph.D. Thesis. Ottawa-Carleton Institute

for Computer Science, Carleton University, Ottawa, Canada,

November, 2003.

[2] S.P. Dandamudi and Z. Zhou, “Performance of Adaptive

Space-Sharing Policies in Dedicated Heterogeneous Cluster

Systems”, Future Generation Computer Systems, 20(5), 895-

906 (2004).

[3] D.G. Feitelson, L. Rudolph, U. Schwiegelshohn, K.C.

Sevcik, P. Wong, Theory and practice in parallel job

scheduling, in: Job Scheduling Strategies for Parallel

Processing, Lecture Notes in Computer Science, vol. 1291,

Springer-Verlag, Berlin, 1997, pp. 1–34.

[4] D. G. Feitelson and L. Rudolph. Parallel Job Scheduling -

A Status Report. Lecture Notes in Computer Science,

Springer, Vol. 3277 (2005).

[5] E. Rosti, E. Smirni, L. W. Dowdy, G. Serazzi, and B. M.

Carlson. Robust Partitioning Policies for Multiprocessor

Systems. Performance Evaluation, Vol.19, 141-265 (1994).

[6] E. Rosti, E. Smirni, L.W. Dowdy, G. Serrazi, K.C. Sevcik,

Processor saving scheduling policies for multiprocessor

systems, IEEE Transactions on Computers 47 (2) (1998).

[7] S.P. Dandamudi and H. Yu, “Performance of Adaptive

Space Sharing Processor Allocation Policies for Distributed-

Memory Multicomputers”, Journal of Parallel and Distributed

Computing, vol. 58, pp. 109-125 (1999).

[8] W. Cirne and F. Berman. Adaptive Selection of Partition

Size for Supercomputer Requests. Lecture Notes in Computer

Science, Springer, Vol. 1911, 187-208 (2000).

[9] W. Cirne and F. Berman. Using Moldability to Improve

the Performance of Supercomputer Jobs. Journal of Parallel

and Distributed Computing, Vol. 62, 1571-1601 (2002).

[10] W. Cirne and F. Berman. A Comprehensive Model of the

Supercomputer Workload. Proc. of IEEE 4th Annual

Workshop on Job Scheduling Strategies for Parallel

Processing (2005).

[11] S. Srinivasan, V. Subramani, R. Kettimuthu, P.

Holenarsipur, and P. Sadayappan. Effective Selection of

Partition Sizes for Moldable Scheduling of Parallel Jobs.

Lecture Notes In Computer Science, Springer, Vol. 2552,

174- 183 (2002).

[12] S. Srinivasan, S. Krishnamoorthy, and P. Sadayappan. A

Robust Scheduling Strategy for Moldable Scheduling of

Parallel Jobs. Proc. of 2003 IEEE International Conference

On Cluster Computing (2003).

[13] Young-Chul Shim, “Performance evaluation of

scheduling schemes for NOW with heterogeneous computing

power”, Future Generation Computer Systems. 20(2): 229-

236 (2004).

[14] V.H. Doan. An Adaptive Space-Sharing Scheduling

Algorithm for PC-Based Clusters, Modeling, Simulation and

Optimization of Complex Processes, pp 225-234, 2008.

International Journal of Computer Applications and Technology

Volume 1- Issue 2, 2012, 57-63

63

[15] J.H. Abawajy, “An Efficient Adaptive Policy for High-

Performance Computing”, Future Generation Computer

systems, Vol. 25, 364-370, (2009).

