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Abstract: Adaptive space-sharing scheduling algorithms tend to improve the performance of clusters by allocating processors to jobs 

based on the current system load. The focus of existing adaptive algorithms is on dedicated homogeneous and heterogeneous clusters. 

However commodity clusters are naturally non-dedicated and tend to be heterogeneous over the time as cluster hardware is usually 

upgraded and new fast machines are also added to improve cluster performance. The existing adaptive policies for dedicated cluster 

systems are not suitable for such conditions. Moreover existing adaptive policies use First-come-first-serve (FCFS) which is known to 

be sensitive of variance in service demand, as a job-selection policy for processor allocation. FCFS allocation of processors to jobs 

results in a situation where small jobs could be blocked by an earlier arrived large job. This paper fills these gaps by designing an 

efficient adaptive space-sharing scheduling algorithm for non-dedicated heterogeneous cluster systems. Evaluation results show that 

the proposed algorithm provide substantial improvement over existing algorithms at moderate to high system utilizations. 
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1. INTRODUCTION 
In recent times, paradigm of parallel processing has been 

shifted from traditional expensive multiprocessors to 

commodity-based high-performance cluster computing 

systems due to their high-performance and cost-effectiveness. 

Depending upon the ownership, cluster systems can be 

classified into two categories; dedicated cluster systems and 

non-dedicated cluster systems. Dedicated cluster uses a 

network of dedicated PCs collectively to form an effective 

high-performance parallel solution. On the other hand, non-

dedicated cluster aims to utilize the abundant computing 

cycles “available” on the network of PCs to provide high-

computing power. Computers in the non-dedicated clusters 

are privately owned and likely to be heterogeneous. The 

heterogeneity and “availability” of processing power in non-

dedicated environment distinguishes itself from dedicated 

cluster systems. Community-owned cluster computing (CCC) 

systems [1][2] are an example of non-dedicated 

heterogeneous clusters. 

One of the most important challenges that must be 

addressed in order to realize the fullest advantages of Cluster 

computing systems is that of designing efficient job 

scheduling algorithms. Space-sharing policies are commonly 

used to schedule parallel jobs in distributed-memory cluster 

systems. In space-sharing policy, parallel system of multiple 

processors is divided into disjoint set of processors (known as 

partitions) so that each partition can be assigned to a single 

job. In this way, number of jobs can be executed side-by-side 

by simultaneously providing processor partitions. The number 

of processors in each partition to be assigned to a job is 

known as partition size. The primary reason for preferring 

space-sharing over time-sharing for cluster systems is to avoid 

the cost of context switching due to frequent preemptions in 

time-sharing systems.  

Space-sharing policies can be broadly divided into fixed, 

variable, adaptive and dynamic policies [3][4] based on the 

decision that whether the partition size once assigned to the 

jobs can be changed during execution time or not. In fixed 

policies, partition sizes are fixed by the administrator before 

the system actually starts operating and any modification to 

these partition sizes require a system reboot. Variable policies 

require partition sizes to be specified by the user at the time of 

job arrival. In adaptive policies, partition sizes are determined 

by the scheduler at the time of job scheduling on the basis of 

current system load and any available job characteristics. 

However partition size once assigned to a job can not be 

changed during job execution. In dynamic policies, partition 

size of a job can be changed during its execution.   

High performance applications for cluster computing 

systems are mostly presented as parallel jobs. A parallel job is 

said to consist of a set of tasks/processes running concurrently 

to achieve a certain common objective. Each task runs to 

completion on its assigned processor. The number of tasks 

(and hence processors required) a certain job has is referred to 

as the job size.  

Characteristics of on-line job streams that act as input 

workload to the job schedulers influence the performance of 

the schedulers. Parallel jobs can be classified into four types 

[3][4]; (i) Rigid, (ii) Moldable (iii) Evolving, and (iv) 

Malleable, depending upon the number of processor to be 

allocated at submission time or during execution. A rigid job 

demands a fixed number of processors at the time of 
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submission and executes on these processors exclusively until 

completion. Moldable jobs can be made to execute on 

different number of processors based on the current system 

load. For example if system load is high, then few processors 

can be assigned to the moldable job and if system load then 

large number of processors can be allotted to the job. 

However this flexibility is only available at job start time and 

partition size cannot be reconfigured during execution. The 

processor requirements of both evolving and malleable jobs 

can be changed during execution. For evolving jobs, 

requirement changes are initiated by the application itself 

during the various phases of its execution. If the system 

cannot satisfy the job's demand, the job has to wait for exact 

processor allocation. For malleable jobs, the decision to 

change the number of processors is made by an external job 

scheduler.  

 Adaptive policies perform better than fixed-partitioning 

and variable-partitioning scheduling policies due to their 

ability adapt to the current load on the system while 

calculating partition-size for jobs. Adaptive space-sharing 

scheduling policies to schedule moldable jobs are widely 

studied in homogeneous parallel systems (i.e. multiprocessors 

and clusters) [5-12] and to less extent in heterogeneous cluster 

computing systems [2][13]. A common assumption in the 

existing adaptive policies in both the systems has been that all 

processors in the system are dedicated to only parallel 

workload. It means that processors in the system are not 

shared simultaneously with the local jobs executing at 

individual processor. In this paper we focus on proposing a 

scheduling algorithm to allocate processors to jobs in a non-

dedicated heterogeneous cluster computing environment.  

The rest of the paper is organized as follows: Section 2 

states the problem statement. Section 3 gives an overview of 

previous literature work related to the problem. Section 4 

describes the details of the proposed solution. Section 5 

describes simulation model which discusses the workload and 

system model used. Section 6 evaluates the performance of 

new policies and compares them with existing solutions and 

Section 7 concludes the paper.  

 

2. PROBLEM STATEMENT 
The research problem chosen in this paper seems 

significant as the partition sizes obtained in non-dedicated 

heterogeneous cluster systems will be different from those 

obtained in dedicated homogeneous systems. When we 

partition a dedicated homogeneous cluster, partition size is 

obtained by dividing total number of physical processors by 

the total number of jobs in the system. But in case of non-

dedicated heterogeneous systems, partition size is calculated 

by dividing the total available computing power of all 

processors by the number of jobs currently available in the 

system. However total available computing power will be 

different at different times due to variations in the computing 

power of individual processors in the presence of varying 

background workload. Hence corresponding calculated 

partition size changes continuously. Moreover existing 

adaptive policies focus on using FCFS as a job selection 

algorithm to allocate processors to parallel jobs. FCFS is 

known to be sensitive to the variance in the service times 

which means that large number of smaller jobs can be blocked 

by few larger jobs that have arrived earlier.  

Therefore an efficient adaptive scheduling policy is 

required which can take care of heterogeneity of processor 

speeds as well as run-time load variations due to background 

workloads executing at individual processors and which is 

relatively less sensitive to the variance in the service times. 

3. RELATED WORK 
The focus of the current job scheduling research in 

distributed-memory multiprocessors and cluster systems is 

towards adaptive algorithms to schedule moldable jobs [5-12] 

as they have shown to achieve better mean response time than 

the scheduling algorithms for rigid jobs. This is due to the fact 

that adaptive algorithms decide the partition sizes by adapting 

to current system load at job scheduling time whereas rigid 

jobs only require a fixed number of processors resulting into 

increased processor fragmentation and mean response times. 

Dynamic policies are shown to more suitable for shared-

memory parallel systems in which the associated overheads of 

dynamic-partitioning are outweighed by the benefits. 

Adaptive scheduling algorithms for assigning partition 

sizes to moldable jobs have been extensively studied in 

homogeneous parallel systems and to less extent in 

heterogeneous parallel systems [2][13]. Existing adaptive 

algorithms in both homogeneous and heterogeneous cluster 

systems share one common assumption that processors are 

dedicated to execute only cluster applications (no other 

applications can be executed locally). Available adaptive 

policies also differ from each other by the amount of job 

characteristics used in making processor allocation decisions.  

In [5-6] , Rosti et al. introduced several adaptive 

partitioning policies (known as Fixed Processors per Job 

(FPPJ)), Equal Partitioning with a Maximum (EPM), 

Insurance Policy and Adaptive Policies (known as AP1, AP2, 

AP3, AP4 and AP5)) for distributed-memory multiprocessors 

over a wide range of workload types and with different 

possible arrival rates. These policies try to allocate equal-

sized partitions to the waiting applications since no a priori 

job characteristics were assumed to be available. However 

these policies differ from each other in how the target 

partition-size is computed.  

Out of these adaptive policies, AP2 (known as work-

conserving policy) seems to be an interesting policy that 

reserves one additional partition for the future job arrivals. 

The partition size in the AP2 policy is calculated as shown in 

(1).  

 

In [7], Dandamudi and Yu show that AP2 considers only 

queued jobs to calculate partition size. This will lead to a 

situation that contravenes the principal of allocating equal-

sized partitions to all jobs. Dandamudi and Yu, suggested a 

modified version of AP2 known as Modified adaptive policy 

(MAP) which considers waiting as well as running jobs to 

calculate partition size as shown in (2).   

 

Target partition size to be finally allocated to the waiting job 

is calculated using equation (3). It is the minimum of the 

partition size calculated using equation (2) and maximum 

parallelism of the job. 
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The parameter f  (whose value lies between 0 and 1) is 

used to control the contribution of the “running” jobs to the 

partition size. It has been shown that the MAP policy provides 

significant improvement in performance over policies like 

AP2, ASP and ASP-max etc. that do not consider the 

contribution of running jobs while calculating partition size. 

The amount of improvement obtained is a function of 

parameter f, system load, and workload. 

The adaptive policy proposed in [8][10] is more 

restrictive, in that users must specify a range of the number of 

processors for each job. Availability of service demand 

knowledge of an individual job is assumed in the paper. 

Schedulers will select a number which gives the best 

performance. Schedulers in [8][10] use a submit-time greedy 

strategy to schedule moldable jobs. 

In [11], Srinivasan et al. have some improvement to 

[1][3]: (i) using schedule time-scheduler which defers the 

choice of partition size until the actual job schedule time 

instead of job submission time and, (ii) using aggressive 

backfilling instead of conservative backfilling. 

In [12], Srinivasan et al. argue that an equal-sized 

partition strategy tends to benefit jobs with small computation 

size (light jobs). On the other hand, allocating processors to 

jobs proportional to the job computation size tends to benefit 

heavy jobs significantly. A compromise policy is that each job 

will have a partition size proportional to the square root of its 

computation size (Weight) as in (4). This equation is used to 

calculate partition size in an enhanced backfilling scheme 

proposed in [12]. 

 
In [2], a variation of MAP, known as Heterogeneous 

Adaptive Policy (HAP) was suggested by Dandamudi and 

Zhou to work with heterogeneous parallel systems. The work 

introduced the concept of Basic Processor Unit (BPU) to 

differentiate the heterogeneous processors from each other. 

Partition sizes are allocated to the jobs on the basis of their 

computation power in terms of number of BPUs rather than 

using a physical processor level as in homogeneous systems. 

The research paper showed the supremacy of HAP over MAP 

and AP2 policies. Partition size in HAP is calculated as in 

equation (5) and target partition size is calculated using 

equation (3). 

 
In [13], Shim suggested various adaptive policies for 

shared heterogeneous network of workstations (NOW) 

considering the priority of sequential local jobs as well as the 

parallel jobs. No in-depth details about the working of the 

algorithms are provided in the paper and no comparisons are 

made with the existing policies. The shortcoming of this paper 

is that it considers only the contribution of waiting jobs to 

calculate the partition size which usually lead to worse results. 

In [14], Doan et al. suggested priority-based adaptive 

policy for homogeneous PC-based cluster systems for both 

rigid and moldable jobs. The user can assign priority to both 

types of jobs. The jobs with higher priority are given 

preference in execution. Since rigid jobs require the fixed 

number of processors (e.g. partition size), so partition-

function for only moldable parallel jobs is derived from 

equation (2) given in [7].  

In [15], Abawajy proposed another adaptive policy 

known as SOUL for heterogeneous multi-cluster systems 

which calculates partition size on the basis of mean service 

rate of heterogeneous processors, local load at processors and 

maximum parallelism information of waiting jobs. It has been 

shown that SOUL policy tends to produce shorter mean job 

response times as compared to both AEP and MAP at various 

workloads. But no comparison between HAP and SOUL 

policy is available in literature. 

4. PROPOSED ADAPTIVE POLICY 
From the literature survey, following lessons have been 

learnt which will help us to design a robust adaptive policy for 

non-dedicated heterogeneous parallel systems.  

1) Adaptive policies which consider both current waiting and 

running jobs in the parallel system perform better than those 

policies which consider only current waiting jobs. 

2) In heterogeneous systems, BPU mechanism is used 

frequently to differentiate the computing power of different 

physical processors.  

3) When no job knowledge or only maximum parallelism 

information is available, equal-sized (or equivalent) 

partitioning mechanism is preferred over weighted square-root 

fair-share strategy which requires the service demand 

knowledge of jobs. 

4.1 An Improved Heterogeneous Adaptive 

Policy (IHAP) 
Using these observations and lessons, we have suggested 

few modifications to HAP policy which have shown good 

results over various policies in dedicated heterogeneous 

systems. The new policy is named as an Improved 

Heterogeneous Adaptive Policy (IHAP) to schedule jobs in 

non-dedicated heterogeneous cluster environment and 

requires only maximum parallelism (Pmax) information of 

jobs to calculate final target partition size for the current 

waiting jobs.  

Partitioning-function of IHAP: 

Since cluster processors can be shared between local and 

parallel jobs, therefore at any point of time, current available 

computing power for execution of parallel workload at each 

processor in the presence of local workload is given as in 

equation (6). 

 

In a cluster system with P processors, BPUk represents the 

computing power of kth processor and Local_loadk denotes 

the load at individual processor due to the execution of local 

jobs.  

Ideal partition size in IHAP is then calculated on the basis of 

current available computing as shown in (7). 

 
It should be noted that job scheduler is invoked only at arrival 

and departure time of jobs. Information about local load and 

computing power of each processor is also collected by the 

job scheduler at these times. The number of BPUs finally 

allocated is calculated as follows in (8). 
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Job-selection rule of IHAP: 

 

It should be noted that jobs are selected for processor-

allocation from the waiting queue using Fit-Processors-First-

Served (FPFS) as opposed to FCFS used in many adaptive 

policies [2][7][13]. Partition-size for the waiting jobs is 

calculated using equation (7) and (8). If the idle BPUs are less 

than the target partition-size for the current job, then next job 

from the waiting queue is searched who‟s target partition-size 

fits into the idle BPUs. 

5. SIMULATION MODEL  

We have implemented a discrete event simulator in 

VB.Net language to evaluate the performance of proposed 

adaptive scheduling algorithms under various workload 

conditions. Simulation modeling is preferred over the actual 

experimentation as it gave us the greater flexibility of 

covering a wide range of application characteristics and 

controlled parameters like arrival rates, system utilization etc. 

and allowed us to abstract away trivial details of the 

environment under study, which otherwise would complicate 

the performance evaluation procedure.  

The developed simulator takes the on-line job stream as 

input parallel workload, executes parallel workload with the 

specified adaptive policy and generates the output in the form 

of mean response time. Response time of a job is defined as 

the sum of its execution time and waiting time. Waiting time 

of job is the difference between job arrival time and job 

scheduling time. Execution time is the actual time spent to 

execute the job. 

5.1 System Model  

We have used an open system model of community-

owned cluster of 64 independent commodity single-processor 

personal computers and each computer is used in a shared 

mode i.e. it is able to service local sequential tasks as well as 

the tasks of parallel job submitted by the central job 

scheduler. The computers differ from each other in terms of 

heterogeneity in processor speeds i.e. computing power they 

possess. Computer and processor terms are used 

interchangeably in context of this paper. We assume that 

computers in the cluster are connected using 100Mbps 

Ethernet switch. Relative computing power of different 

physical processors is represented in terms of Basis 

Processing Unit (BPU) [2] which can either be derived with 

the help of SPECfp2000 ratings based on the processor speeds 

or by executing independent benchmarking programs on 

heterogeneous processors. We have used two types of 

processors in the computers of cluster system; First 32 

computers contain Type I processors; Next 32 computers 

contain Type II processors that are twice faster than Type I 

processors. Hence each processor in Type I has 1 BPU and 

Type II processor has 2 BPUs.  

5.2 Parallel Workload Model 
Parallel workload model containing online stream of 

parallel jobs for scheduling contains three components; 1) job 

arrival process 2) Maximum parallelism and 3) job service 

demand. The job arrival process is characterized by job arrival 

rate (λ) and coefficient of variation of inter-arrival times 

(CVa). High arrival rate represents that inter-arrival time 

between successive jobs is small. We have modeled the job 

arrival process using exponential distribution with CVa equal 

to one.  

Maximum parallelism of jobs (Pmax) indicates the 

maximum number of processors that can be effectively 

utilized by the parallel jobs. Pmax is varied from 1 to 32 using 

uniform distribution. Mean service demand (D) parameter is 

the uncorrelated cumulative mean service demand which 

represents the total time required to execute the job in a 

dedicated environment, independent of how many processors 

are used. Service demand of jobs is generated using 2-stage 

hyper-exponential distribution with coefficient of variation of 

service demand (CVs) greater than one. Since moldable jobs 

can be made to run on the varying number of processors, 

therefore time (tj) taken by the parallel job varies based on the 

number of processors (pj) assigned to it when the job starts 

executing. It should be noted that dj= (tj)*(pj) as we have 

ignored the communication and synchronization overheads, 

when overall mean service demand of a parallel job (dj) is 

distributed equally among tasks (which are always equal to 

“pj” processors assigned to the job) of the job.  

5.3 Background Workload Model 

We assume abstract model for representing load due to 

background jobs at each processor by hiding the internal 

details of arrival and execution times of sequential local jobs. 

Each cluster processor is assumed to service a stream of 

background jobs that arrive at individual computers 

independently. Local load at each processor indicates the load 

due to the execution of sequential local jobs. As the local load 

increases, computing power available to service parallel 

workload decreases. We model the local load using uniform 

distribution ranging from 0% to 30% and this information is 

assumed to be available to job scheduler at job arrival and 

departure times. 

6. Performance Evaluation and Results  

In this section we will evaluate the performance of 

proposed algorithms in terms of mean response time and also 

compare the simulation results with the existing approaches. 

In all the simulation experiments performed in this paper, 31 

batches of 7000 jobs per each batch were used and results of 

first batch were discarded to ignore start-up effects. The 

number of batches is such that the mean response times 

obtained have relative errors not exceeding 5% under the 90% 

confidence interval. The default parameters and values used in 

simulation experiments are for various simulation parameters 

shown in table 1. 

Table 1: Default parameters and values used in 

experiments 

Parameters of Parallel Jobs Values 

Mean service demand (D) 16 

Coefficient of variation (CVa)  

of Job arrival 

1 

Coefficient of variation (CVs)  

of Service demand 

4 

Number of processors  

in the cluster 

64 

Pmax 32 

Average load or utilization of the cluster system due to 

parallel jobs is derived using equation (9) as follows: 
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6.1   Relative performance of the scheduling 

policies  

In this section we compare the performance of the 

proposed adaptive scheduling policy i.e. IHAP with the HAP 

and MAP policy. The default value of „f‟ in the partitioning-

function for IHAP, HAP and MAP policies is set to 0.5 which 

is suggested as a reasonable value in existing similar research 

works [2][7].  

 

IHAP policy tends to produce shorter MRT values at 

system loads of interest (i.e. at medium to high loads) as 

shown in figure 1. This is due to two reasons; 1) IHAP policy 

produce smaller partition sizes as compared to both HAP and 

MAP as it considers the background workload into account. 2) 

FPFS job-selection policy reduces processor fragmentation 

which exists in HAP and MAP policies due to use of FCFS as 

a job-selection policy.  

Figure 1: Performance of the scheduling policies 

 

 

On the other hand, both HAP and MAP try to allocate 

larger partition sizes since they are not aware of any 

background workload. But in reality the total available 

computing power of all processors is much less than that of 

assumed by MAP and HAP. Therefore jobs have to wait for a 

long time to receive calculated partition sizes. HAP and MAP 

policies also tend to produce bigger partition sizes at low to 

medium system utilization since they impose no upper limit 

on the number of processors to be allocated to jobs. This will 

apparently result into allocation of large partition sizes to even 

smaller jobs. 

6.2 Sensitivity Analysis 

In this section, we study the sensitivity of the three policies to 

variances in inter-¬arrival and service times. When the arrival 

CV is varied, the service CV is held at 4. Similarly arrival CV 

is fixed at 1 when the performance sensitivity to service time 

CV is studied. The system utilization for parallel load is fixed 

at 80%.  

6.2.1 Sensitivity to Arrival Time Variations    
The performance sensitivity of the three policies to inter-

arrival CV is shown in figure 2. The mean response time 

increases with increasing inter-arrival CV for the three  

 

 

policies. The IHAP policy maintains its performance 

superiority over HAP and MAP policy at 80% system 

utilization.  

 

Figure 2: Sensitivity of the policies to arrival time variance 

 

The increase in arrival time variance means the clustered 

arrival of jobs into the system. This also led to longer gaps in 

the job arrivals. The impact of variance in arrival time is more 

on HAP and MAP policies as shown in figure. These two 

policies suffer from processor fragmentation induced by the 

background workload and the way the partition-size is 

computed for the jobs. Since the partition sizes are computed 

on the basis of total number of BPUs (in case of HAP) and 

total number of processors (in case of MAP), the actual 

number of available BPUs (in case of HAP) and available 

processors (in case of MAP) can be lower than the partition-

size computed. This is due to the fact that there is possibility 

of background tasks running on some of processors at the time 

and both HAP and MAP doe not consider background 

workload when computing partition size. But IHAP policy 

tend to produce smaller partition sizes due to consideration of 

background workload, therefore the impact of arrival time 

variance is reduced as compared to other two policies. 

6.2.2 Sensitivity to Service Demand Variations  

The figure shows that MRT of the three policies increases 

with the increase in the variance in the service demand. With 

the increase in service demand variance, there will few large 

service demand jobs and large number of small service 

demand jobs. As the service time CV increases, the service 

demand of the larger jobs will increase even though their 

number goes down as a fraction of the total jobs.  
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Figure 3: Sensitivity of the policies to service time variance 

The impact of service time variance on HAP and MAP 

policies is more than the impact on IHAP policy. This is due 

to the fact that both HAP and MAP use FCFS as a job 

selection policy which is known to be sensitive of variance in 

service demand, to allocate processors to jobs. FCFS 

allocation of processors to jobs results in a situation where 

small jobs could be blocked by an earlier arrived large job. 

This problem gets more serious as the variance in service 

demand increases. 

7. Conclusion 

Space-sharing algorithms are preferred in distributed-memory 

cluster systems to avoid the overhead due to frequent 

preemptions involved in time-sharing systems. Adaptive 

space-sharing algorithms are used in cluster computing 

systems and dynamic space-sharing algorithms are more 

suited to shared-memory multiprocessors. Most of popular 

adaptive algorithms are only designed for dedicated 

homogeneous as well as dedicated heterogeneous cluster 

systems. Moreover existing adaptive policies use FCFS as a 

job-selection policy which is known to be sensitive to service 

demand variance. Hence these algorithms produce increased 

mean response times for workloads having high service 

demand variance. This paper proposes an improved adaptive 

policy for non-dedicated heterogeneous cluster systems. 

Comparative results have shown the dominance of the 

proposed policy over the existing similar policies at medium 

to high system loads of interest. Also the policy has shown to 

be relatively less sensitive to service demand variance as 

compared to existing policies.    
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