
International Journal of Computer Applications Technology and Research
Volume 2– Issue 2, 94 - 98, 2013, ISSN: 2319–8656

www.ijcat.com 94

A Trusted Integrity verification Architecture for
Commodity Computers

Angela Francis

Karunya University
Coimbatore,

India

Renu Mary Daniel
Karunya University

Coimbatore,
India

Vinodh Ewards S.E.
Karunya University

Coimbatore,
India

Abstract: Trust is an indispensable part of the computing environment, the validity of any transaction or information depends heavily
on the authenticity of the information source. In this context, many mechanisms for ensuring the authenticity of the information source
were developed, including password verification and biometrics. But as the attacks are directed towards the computing platform and
the applications running on the computer, all these initial security mechanisms are not sufficient. It is essential to ensure before making
a secure transaction that the system is in a good state (or say some authorized state) and maintains its integrity throughout the
execution time. The emergence of the Trusted Platform Module (TPM) has added to the security feature of a computer. Mechanisms
are in place which guarantee system integrity but very little is known about the state of the applications running on them. We propose
a system which notifies the user if the integrity of an application is violated and stops it. Our system also compares the current system
state with a known good value to ensure platform integrity.

Keywords: Trust; Trusted Platform Module (TPM); Integrity Measurement; Sealing; Application Security

1. INTRODUCTION
Ensuring trust in cyber space has been a prime concern since
the epidemic growth of online transactions and
communications. Commodity computers are increasingly used
to access banking transactions, sending sensitive e-mails,
accessing personal and confidential information from remote
systems, where it becomes the prime necessity to assure the
user that security sensitive operations executes always on
secure and trusted state of system. Authenticity of the
information source and non-repudiation can be achieved
through many mechanisms like passwords, biometrics, digital
signatures and cryptographic protocols. These mechanisms
ensure that the user is genuine and authorized to view the
information. They also guarantee that the integrity of the
information during transmission is maintained. But can we
know with absolute certainty that the system with which we
are communicating is not malicious? In order to establish trust
in computer and verify its existence, it is required to know
something more other than the authentication. And what is
that more requires understanding of the following: what is
meant by trusted system? What are the components involved
in it? How to boot the system in trusted state? Does booting
the system in trusted state guarantee that system will remain
in trusted state while execution? As attacks are directed
towards the BIOS, boot loader and kernel, maintaining the
system integrity is extremely difficult. To ensure that the
system is in a trusted state, the Trusted Computing Base
(TCB) of the system should be verifiable. But owing to the
enormous code comprising the TCB, is it possible to vouch
for the integrity of the system during each transaction?

Trusted Computing (Trusted Computing Group, 2007) aims at
establishing trust in commodity computers and the
transactions performed by them. TCG's Trusted Platform
Module (TPM) (Bajikar, 2002) is a cryptoprocessor chip, that
computes the current platform state during boot time. But,
TPM is a passive device, it does not notify the user if there is
any change in the system state. The values stored by it can be
used for later verification with a known good state. Many
mechanisms like Tboot (Trusted Boot, 2012) and OSLO
(Kauer, 2007) were developed to provide trusted boot, where
the platform state will be compared to a set of known good
measurements. These mechanisms require a system with Intel
TXT or AMD SKINIT instruction and virtualization
technology support. Our system makes use of the TPM chip's
boot time integrity measurement to check if the system is in a
trusted state without any additional requirements.

As TPM does not compute the hash of the applications or
services in the system it cannot stop a service or application if
it is compromised. So, if the applications and services are
running alongside untrusted applications, can we guarantee
the genuineness of these applications? They can be targeted
and compromised. Thus there is a need to provide isolation to
the execution of security sensitive code, so that attacks
directed towards it during execution can be thwarted. Flicker
(McCune et. al., 2008) is one such project which aimed at
providing isolated execution of a security sensitive code by
switching from untrusted environment to the minimal trusted
environment. It ensures run time integrity of security sensitive
code. We propose a system in which the application integrity
can be verified before launch and stopped if found to be
malicious, thus providing a way to extend trust to the
application and service level.

International Journal of Computer Applications Technology and Research
Volume 2– Issue 2, 94 - 98, 2013, ISSN: 2319–8656

www.ijcat.com 95

2. BACKGROUND
2.1 Trusted System and Trusted
Computing Base
There are various definitions which have been proposed to
define “trusted system”. Schneider (Shirey, 2007) defines
trusted system as, “a system that operates as expected,
according to design and policy, doing what is required –
despite environmental disruption, human user and operator
errors, and attacks by hostile parties – and not doing other
things.”

According to Neumann’s definitions (Neumann, 1995), “an
object is trusted if and only if it operates as expected.”

An important factor in establishing trust in computer system
or any computing device is identifying the trusted computing
base (TCB). It is a totality of protection mechanisms within a
computer system, including hardware, firmware, and
software, the combination of which is responsible for
enforcing a security policy (U.S. Department of Defense,
1990) and critical to its security. Any vulnerability or
weakness inside the TCB components may potentially affect
the security of whole system and hence system may get
compromised, whereas the vulnerabilities or weakness
(software or hardware) outside the TCB must not affect the
security of system beyond the confined area.

Rushby, (1981) defines the trusted computing base as the
combination of kernel and trusted processes. The trusted
processes are special process that are allowed to violate the
system's access-control rules.

Whereas Lampson et al. (1992) define the TCB of a computer
system as simply “a small amount of software and hardware
that security depends on and that we distinguish from a much
larger amount that can misbehave without affecting security”.

The Orange Book (Department of Defense, 1985) further
explains that [t]he ability of a trusted computing base to
enforce correctly a unified security policy depends on the
correctness of the mechanisms within the trusted computing
base, the protection of those mechanisms to ensure their
correctness, and the correct input of parameters related to the
security policy.

2.2 Boot Time Integrity
The best time to measure the identity of software code is
before it starts execution. The identity of these components
can be computed by taking the cryptographic hash of its
binary as well as any inputs, libraries or configuration files
used, also known as measurements. This requires the identity
of all software components participate in the current state of
computer namely BIOS, boot loader, and operating system
(Gu et. al., 2009) (Parno et. al., 2011). The measurements
taken at the clean state of system is termed as golden
measurements (or golden images).

The software currently in control of the platform is measured
by the software which had control of the platform previously.
And the currently running software will measure the next
software before it start execution. The process of
measurement and execution continues till the system reaches
to intended state and a chain of trust (Parno et. al., 2011) is
thus established. The raises the fundamental question that,
who initiated the chain of trust? It must be an immutable piece
of code that initiates the chain of trust and forms the
foundational root of trust (Parno et. al., 2011). TPM provides
a programme code that serves as the Core Root of Trust for
Measurement (CRTM), to initiate the measurement chain.

Once these identities (golden measurements) are measured, it
can be used to boot the system in some authorized state
known as secure boot and trusted boot. Secure boot assumes
that measured software is trustworthy and only ensures a
secure initial state i.e. at time t0. An immutable piece of code
initiates the chain of trust by measuring the initial BIOS,
verify against the golden measurement and execute if found
correct else halt. Similarly, the boot chain continues till the
kernel.

Whereas in trusted boot (techniques first used by Gasser et.
al., 1989) chain of trust initiated by secure hardware (co-
processor), it measure the next software, accumulate (or
append) the measurement in memory and execute the
software. It communicates the current state of system to user
via attestation and can prove that system is booted in a known
configuration, which enables the user to verify the state and
establish trust that no malicious software is running.

2.3 Threat Model
The most vulnerable entry point for attacks are software
applications as opposed to operating systems and the
platform. Application layer hosts a major part of all
vulnerabilities that facilitate cyber crime. As these
applications are pervasive, they can be exploited to steal
sensitive information. For instance, an ordinary user or an
adversary may come across a bug in the application and gain
access to privileged information. The attacks are mostly
directed towards the information and resources being used by
the applications, its users and developers. Since processes
share information through shared memory regions, these
attacks might be used to compromise the operating system
through buffer overflows and invalidated input exploits.
Changes made to the kernel may not be easily detected and
can cause major damage. Thus before the launch of any
security sensitive application platform integrity must be
verified and the trust chain must be extended to include the
applications and services.

3. RELATED WORK
Web browsers and operating systems do not provide any
mechanism by which a user can be sure that the sensitive
information is reaching the intended destination unaltered.
Software-only protection schemes cannot ascertain the
integrity of software since it can be corrupted in many ways
like improper installation, upgradation and malware attacks.

International Journal of Computer Applications Technology and Research
Volume 2– Issue 2, 94 - 98, 2013, ISSN: 2319–8656

www.ijcat.com 96

Flicker is a secure infrastructure that allows the security-
sensitive code to run in complete isolation by utilizing the
concept of late launch provided by Intel and AMD processors
and Dynamic Root of Trust for Measurement (DRTM)
provided by TPM v1.2 chips. Flicker (McCune et. al., 2008)
allows application developers to focus on the security of their
code without blindly trusting an unverifiable quantity of code
executing below. Flicker guarantees that the security sensitive
code will execute in isolation without requiring a reboot, a
change of OS, or a VMM. It can operate at any time and does
not require a new OS or even a VMM.

Adding only a few hundred lines to the TCB, Flicker protects
fine granules of security-sensitive code. Due to the frequent
use of hardware support for a dynamic root of trust for
measurement, Flicker incurs significant performance
overhead. In situations with demanding performance, several
characteristics of Flicker renders it impractical for use. When
Flicker session executes, the user thinks that the system has
momentarily hanged. TrustVisor (McCune et. al., 2010) aims
to achieve high performance for legacy applications and also
to protect small security-sensitive code blocks within a
potential malicious environment. A special purpose
hypervisor called TrustVisor is developed that invokes the
security-sensitive code module without trusting the OS or the
applications for isolated execution.

4. PROBLEM STATEMENT
Based on the survey of trusted systems and TPM it is found
that they mainly guarantee system integrity and very little is
known about the state of the applications running on them. As
stated earlier most of the work done for protecting the
applications focuses on providing isolation for their execution
but do not alert the user if any modification to the application
is made. If these modifications or alteration are not known at
an early stage and corrected then they may serve as
vulnerabilities which can be easily attacked. Further, it should
be possible to stop the malicious service or application. TPM
being a passive device provides measurement and protected
storage, but will not interfere with the execution of
applications in the system. It only measures and does not
provide a mechanism to verify the system integrity.

5. SYSTEM DESIGN
5.1 Work-flow of the System
When the system boots, TPM measures the integrity of the
BIOS, bootloader, operating system, etc. which is stored in
the Platform Configuration Registers (PCR) from 0-7
(Bajikar, 2002). These PCRs provide a secure storage and can
be used for verifying the integrity of the system with the help
of the sealing and unsealing mechanism provided by TPM.

Start

Compute SHA-1 sum
of server.conf file

Extend hash to PCR

Seal server.conf file
with PCR 10 content

Reboot/Restart

Recomputed Hash of
server.conf and extend to PCR

Unseal sealed.blob with
current PCR 10 contents

Unseal
sealed2.blo

b

Do not start
server and

notify

Start server and
notify success

to administrator

Stop

Seal grub.conf with known-
good PCR 0-7 measurements

Sealed
1.blob

Sealed
2.blob

Unseal
sealed1.blob

Notify security
breach

Notify trusted
state and
continue

No Yes

No Yes

Figure. 1 Work-flow of the System

International Journal of Computer Applications Technology and Research
Volume 2– Issue 2, 94 - 98, 2013, ISSN: 2319–8656

www.ijcat.com 97

The same mechanism can be used to verify an application's
integrity. We propose a design which notifies a user if any
changes are made to the system at every boot and also checks
for the integrity of a service or application before it starts.

When the system is in a good state PCR 0-7 have known good
measurements. To check for system integrity a system
configuration file is sealed with the known good
measurements i.e. PCR 0-7. Sealing is a security mechanism
provided by the Trusted Platform Module. It allows the data
being sealed to be tied to a particular platform state as
represented by one or more PCR contents. The Storage Root

Key will be used to encrypt the sealed data and for each
sealing and unsealing, SRK password will be prompted by the
system. This provides additional security as the private part of
the SRK never leaves the TPM chip and is stored in the TPM
NV-RAM. Unsealing is possible only if the platform state
during unsealing matches the platform state during sealing.

This sealed file is then stored in a secure location. Sealed file
in the secure location is attempted to be unsealed using the
current PCR 0-7 contents at each system boot. If the unseal
operation is successful the output file is written and the
administrator is notified that the integrity of the system is
maintained. Otherwise, unseal operation fails, output file
cannot be written and administrator is notified about the
security breach.

Application integrity checking begins by hashing the
configuration file of the application or service using the SHA-
1 algorithm. The result is then extended to PCR 10 i.e. PCR
10 is updated with the output of the hash and its current value.
The following expression denotes the extend operation:

PCR←Hash (PCR ║ Hash(config file))

The configuration file is then sealed with the PCR 10
contents, i.e. the clean state measurement of the file.

After sealing the sealed blob will be generated and stored in a
secure storage. During system start up, PCRs 0-16 comprising
of the static PCRs will be reset to zero. The hash of the
configuration file is again computed and extended into PCR
10 and using the current PCR 10 value, unseal operation is
attempted. If the configuration file has not been altered, its
measurement remains the same. Then, value of PCR 10
during sealing and unsealing remains the same and the sealed
file can be successfully unsealed and the service or
application is launched. If any modification is made to the
configuration file the unseal operation fails, the service is not
started and the administrator is notified.

5.2 Experimental Setup
A version 1.2 TPM is required and it must be enabled and
activated in the BIOS. The system used for this
implementation is HP-Compaq 8100 with Intel Core i5-650
vPro processor. The system is embedded with a TPM. TPM
tools and TrouSerS were installed to communicate with the

TPM. Our implementation is written in shell script and is
assumed to be a part of the Trusted Computing Base (TCB)
cause it measures and verifies the application's configuration
files before execution. The grub.conf file is sealed with the
contents of PCR 0-7 using the following command:

tpm_sealdata -i grub.conf -o sealed1.blob -p 0 -p 1 -p 2 -p 3 -p
4 -p 5 -p 6 -p 7

The output of the command which is the sealed1.blob file is
stored in a secure location viz. a flash drive. Each time a
system is booted and before any application or services start
the sealed file in the flash drive i.e. sealed1.blob is unsealed
using the tpm_unsealdata command.

tpm_unsealdata -i sealed1.blob -o unseal1.blob

If PCR 0-7 state is not same as it was while sealing then
unseal operation fails. The administrator or user is notified
about the state of the system.

For measuring and extending the application configuration to
a PCR we use TrouSerS Programming (Challener, 2011). The
command line arguments provided to the PCR extend
program are shown in the following expression:

./pcr_extend.exe -p 10 -v `sha1sum app.conf`

where, third argument tells which PCR will be extended and
the fifth argument is the hash of the configuration file which
will be extended. For experimental purpose we use Apache
Web Server to verify its integrity before it starts. After
extending, the apache.conf file is then sealed with the contents
of PCR 10 using the tpm_sealdata command. The command is
as follows:

tpm_sealdata -i apache.conf -o sealed2.blob -p 10

The output of the command which is the sealed file is stored
in a secure location viz. a flash drive. Each time a system is
booted and before Apache starts the hash of the configuration
file is taken and extended to PCR 10, then the sealed file in
the flash drive i.e. sealed.blob is unsealed using the
tpm_unsealdata command.

tpm_unsealdata -i sealed.blob -o unseal.blob

If PCR 10 state is not same as it was while sealing then unseal
operation fails. The Web server is then stopped and the
alteration is notified to the user.

6. RESULTS AND DISCUSSION
One of our design goals for the system was to notify the user
if any change is made to the platform and configuration file of
the application. The changes made, if notified at an early stage
can be corrected and the system will be protected from
prospective danger or invasion from attacks. We achieved this
by executing a startup script assumed to be a part of the TCB
using sealing and unsealing to check for integrity. This
increases the size of the TCB by few lines. Currently some

International Journal of Computer Applications Technology and Research
Volume 2– Issue 2, 94 - 98, 2013, ISSN: 2319–8656

www.ijcat.com 98

features are still unimplemented such as non-bypassability i.e.
the startup script should not be changed by any user.

7. FUTURE WORK AND CONCLUSION
The system was designed to ensure the launch-time integrity
of an application or service using the security features
provided by the TPM. As the script is assumed to be part of
the TCB, we have implemented a simple mechanism for
verifying boot-time integrity of the system. Also, we are
working towards ensuring the non-bypassability aspect of the
system. The script is security critical and can be invoked as
the Piece of Application Logic in Flicker (McCune et. al.,
2008), to provide isolation during execution.

We have worked towards extending the trust aspect provided
by the TPM to the application and services in the system. We
have explored the extent to which the chain of trust is
currently being made and have designed a system to ensure
the integrity of applications before being started.

8. ACKNOWLEDGMENTS
The authors gratefully acknowledge the support of the faculty
in Karunya University towards this research.

9. REFERENCES
[1] Trusted Computing Group, Incorporated, 2007. TCG

specification architecture overview.
[2] Bajikar, S. 2002. Trusted Platform Module (TPM) based

Security on Notebook PCs White Paper. Intel
Corporation.

[3] Trusted Boot, sourceforge.net, Sept. 12, 2007. [Online].
Available: http://sourceforge.net/projects/tboot
[Accessed: Aug. 10, 2012].

[4] Kauer, B. 2007. OSLO: Improving the Security of
Trusted Computing. In Proceedings of 16th USENIX
Security Symposium.

[5] McCune, J. M., Parno, B. J., Perrig, A., Reiter, M. K.,
and Isozaki, H. 2008. Flicker: An Execution

Infrastructure for TCB Minimization. In Proceedings of
3rd ACM EuroSys European Conference on Computer
Systems, pp. 315-328.

[6] Shirey, R. 2007. RFC 4949 – Internet Security Glossary,
Version 2 (IETF).

[7] Neumann, P. G. 1995. Architectures and formal
representations for secure systems, SRI Project 6401,
Deliverable A002 (Computer Science Laboratory, SRI
International).

[8] U.S. Department of Defense. 1990. Glossary of
Computer Security Terms (Aqua Book) (National
Computer Security Center, Fort Meade).

[9] Rushby, J. 1981. Design and Verification of Secure
Systems. In 8th ACM Symposium on Operating System
Principles. Pacific Grove, California, US. pp.12–21.

[10] Lampson, B., Abadi, M., Burrows, M., and Wobber E.
1992. Authentication in Distributed Systems: Theory and
Practice. ACM Transactions on Computer Systems, on
page 6.

[11] Department of Defense trusted computer system
evaluation criteria. 1985. DoD 5200.28-STD, In the
glossary under entry Trusted Computing Base (TCB).

[12] Gu, J., and Ji, W. 2009. A secure bootstrap based on
trusted computing. In International Conference on New
Trends in Information and Service Science, IEEE.

[13] Parno, B., McCune, J. M., and Perrig, A. 2011.
Bootstrapping Trust in Modern Computers, ISBN 978-1-
4614-1459-9, Springer.

[14] Gasser, M., Goldstein, A., Kaufman, C., and Lampson B.
1989. The digital distributed system security architecture.
In Proceedings of the National Computer Security
Conference.

[15] McCune, J. M., Li, Y., Qu, N., Zhou, Z., Datta, A.,
Gligor, V., and Perrig, A. 2010. TrustVisor: Efficient
TCB Reduction and Attestation. In IEEE Symposium on
Security and Privacy, pp. 143-158.

[16] Challener, D. 2011. Programming with TrouSerS. John
Hopkins University.

