
International Journal of Computer Applications Technology and Research

Volume 2– Issue 4, 431 - 435, 2013, ISSN: 2319–8656

www.ijcat.com 431

Accountability in Distributed Environment
For Data Sharing in the Cloud

 K .Neeraja B.Savitha Reddy D. Rajani

 JNTU Hyderabad JNTU Hyderabad JNTU Hyderabad

 Hyderabad, India Hyderabad, India Hyderabad, India

Abstract—Cloud computing enables highly scalable services to be easily consumed over the Internet on an as-needed basis.
A major feature of the cloud services is that users‘ data are usually processed remotely in unknown machines that users do

not own or operate. While enjoying the convenience brought by this new emerging technology, users‘ fears of losing control
of their own data (particularly, financial and health data) can become a significant barrier to the wide adoption of cloud
services. To address this problem, in this paper, we propose a novel highly decentralized information accountability
framework to keep track of the actual usage of the users ‗data in the cloud. In particular, we propose an object-centred
approach that enables enclosing our logging mechanism together with users‘ data and policies. We leverage the JAR
programmable capabilities to both create a dynamic and travelling object, and to ensure that any access to users‘ data will
trigger authentication and automated logging local to the JARs. To strengthen user‘s control, we also provide distributed
auditing mechanisms.

Keywords—Cloud computing, accountability, data sharing.

1. INTRODUCTION

 CLOUD computing presents a new way to
supplement the current consumption and delivery model
for IT services based on the Internet, by providing for

dynamically scalable and often virtualized resources as a
service over the Internet. To date, there are a number of
notable commercial and individual cloud computing
services, including Amazon, Google, Microsoft, Yahoo,
and Sales force. Details of the services provided are
abstracted from the users who no longer need to be
experts of technology infrastructure. Moreover, users
may not know the machines which actually process and

host their data. While enjoying the convenience brought
by this new technology, users also start worrying about
losing control of their own data. The data processed on
clouds are often outsourced, leading to a number of
issues related to accountability, including the handling of
personally identifiable information. Such fears are
becoming a significant barrier to the wide adoption of
cloud services

2. EXISTING SYSTEM

To allay users‘ concerns, it is
essential to provide an effective mechanism for users to
monitor the usage of their data in the cloud. For example,

users need to be able to ensure that their data are handled
according to the service level agreements made at the
time they sign on for services in the cloud. Conventional
access control approaches developed for closed domains
such as databases and operating systems, or approaches
using a centralized server in distributed environments,
are not suitable, due to the following features
characterizing cloud environments.

Problems on existing system:

First, data handling can be outsourced by the
direct cloud service provider (CSP) to other entities in
the cloud and theses entities can also delegate the tasks to
others, and so on.

Second, entities are allowed to join
and leave the cloud in a flexible manner. As a result, data
handling in the cloud goes through a complex and
dynamic hierarchical service chain which does not exist
in conventional environments.

3. PROPOSED SYSTEM

We propose a novel approach, namely Cloud
Information Accountability (CIA) framework, based on
the notion of information accountability. Unlike privacy
protection technologies which are built on the hide-it-or-

lose-it perspective, information accountability focuses on
keeping the data usage transparent and track able. Our
proposed CIA framework provides end-to end
accountability in a highly distributed fashion. One of the
main innovative features of the CIA framework lies in its
ability of maintaining lightweight and powerful
accountability that combines aspects of access control,
usage control and authentication. By means of the CIA,

data owners can track not only whether or not the
service-level agreements are being honoured, but also
enforce access and usage control rules as needed.
Associated with the accountability feature, we also
develop two distinct modes for auditing: push mode and
pull mode. The push mode refers to logs being
periodically sent to the data owner or stakeholder while

International Journal of Computer Applications Technology and Research

Volume 2– Issue 4, 431 - 435, 2013, ISSN: 2319–8656

www.ijcat.com 432

the pull mode refers to an alternative approach whereby
the user (or another authorized party) can retrieve the
logs as needed.

Our main contributions are as

follows:

 We propose a novel automatic and enforceable logging

mechanism in the cloud.

 Our proposed architecture is platform independent and

highly decentralized, in that it does not require any
dedicated authentication or storage system in place.

 We go beyond traditional access control in that we

provide a certain degree of usage control for the
protected data after these are delivered to the receiver.

4. MODULES

 4.1 Cloud Information Accountability

(CIA) Framework:

CIA framework lies in its ability of
maintaining lightweight and powerful accountability
that combines aspects of access control, usage control
and authentication. By means of the CIA, data
owners can track not only whether or not the service-
level agreements are being honoured, but also
enforce access and usage control rules as needed.

4.2 Distinct mode for auditing:

Push mode:

The push mode refers to logs being periodically sent
to the data owner or stakeholder.

Pull mode:

 Pull mode refers to an alternative approach
whereby the user(Or another authorized party) can
retrieve the logs as needed.

4.3 Logging and auditing Techniques:

1. The logging should be decentralized in order to
adapt to the dynamic nature of the cloud. More

specifically, log files should be tightly bounded with
the corresponding data being controlled, and require
minimal infrastructural support from any server.

2. Every access to the user‘s data should be correctly
and automatically logged. This requires integrated
techniques to authenticate the entity that accesses the
data, verify, and record the actual operations on the
data as well as the time that the data have been
accessed.

 3. Log files should be reliable and tamper proof to
avoid illegal insertion, deletion, and modification by
malicious parties. Recovery mechanisms are also
desirable to restore damaged log files caused by
technical problems.

4. Log files should be sent back to their data owners
periodically to inform them of the current usage of
their data. More importantly, log files should be
retrievable anytime by their data owners when
needed regardless the location where the files are
stored.

5. The proposed technique should not intrusively

monitor data recipients‘ systems, nor it should
introduce heavy communication and computation
overhead, which otherwise will hinder its feasibility
and adoption in practice.

4.4 Major components of CIA:

There are two major components of the CIA,

the first being the logger, and the second being the
log harmonizer.

The logger is strongly coupled with user‘s data

(either single or multiple data items). Its main tasks
include automatically logging access to data items
that it contains, encrypting the log record using the
public key of the content owner, and periodically
sending them to the log harmonizer. It may also be
configured to ensure that access and usage control
policies associated with the data are honoured. For
example, a data owner can specify that user X is only

allowed to view but not to modify the data. The
logger will control the data access even after it is
downloaded by user X. The log harmonizer forms the
central component which allows the user access to
the log files. The log harmonizer is responsible for
auditing.

We conduct experiments on a real cloud
test bed. The results demonstrate the efficiency,
scalability, and granularity of our approach. We also
provide a detailed security analysis and discuss the
reliability and strength of our architecture.

4.4.1 Overview of CIA

Fig 1. Architecture of CIA

International Journal of Computer Applications Technology and Research

Volume 2– Issue 4, 431 - 435, 2013, ISSN: 2319–8656

www.ijcat.com 433

 The overall CIA framework, combining data, users,
logger and harmonizer is sketched in Fig. 1. At the
beginning, each user creates a pair of public and private
keys based on Identity-Based Encryption (step 1 inFig.1).
This IBE scheme is a Weil-pairing-based IBE scheme,

which protects us against one of the most prevalent
attacks to our architecture. Using the generated key, the
user will create a logger component which is a JAR file,
to store its data items. The JAR file includes a set of
simple access control rules specifying whether and how
the cloud servers, and possibly other data stakeholders
(users, companies) are authorized to access the content
itself. Then, he sends the JAR file to the cloud service

provider that he subscribes to. To authenticate the CSP to
the JAR (steps 3-5 in Fig. 1), we use Open SSL-based
certificates, wherein a trusted certificate authority
certifies the CSP. In the event that the access is requested
by a user, we employ SAML-based authentication, where
in a trusted identity provider issues certificates verifying
the user‘s identity based on his username.

 Once the authentication succeeds, the service provider
(or the user) will be allowed to access the data enclosed
in the JAR. Depending on the configuration settings
defined at the time of creation, the JAR will provide
usage control associated with logging, or will provide
only logging functionality. As for the logging, each time
there is an access to the data, the JAR will automatically
generate a log record, encrypt it using the public key

distributed by the data owner, and store it along with the
data (step 6 in Fig. 1). The encryption of the log file
prevents unauthorized changes to the file by attackers.
The data owner could opt to reuse the same key pair for
all JARs or create different key pairs for separate JARs.
Using separate keys can enhance the security without
introducing any overhead except in the initialization
phase. In addition, some error correction information will
be sent to the log harmonizer to handle possible log file

corruption (step 7 in Fig. 1). To ensure trustworthiness of
the logs, each record is signed by the entity accessing the
content. Further, individual records are hashed together
to create a chain structure, able to quickly detect possible
errors or missing records. The encrypted log files can
later be decrypted and their integrity verified. They can
be accessed by the data owner or other authorized
stakeholders at any time for auditing purposes with the

aid of the log harmonizer (step 8 in Fig. 1).

5. EXPERIMENTAL RESULTS

In the experiments, we first examine the time taken to
create a log file and then measure the overhead in the
system. With respect to time, the overhead can occur at

three points: during the authentication, during encryption
of a log record, and during the merging of the logs. Also,
with respect to storage overhead, we notice that our
architecture is very lightweight, in that the only data to
be stored are given by the actual files and the associated
logs. Further, JAR act as a compressor of the files that it
handles. Multiple files can be handled by the same logger
component. To this extent, we investigate whether a

single logger component, used to handle more than one
file, results in storage overhead.

5.1 Log Creation Time
 In the first round of experiments, we are interested

in finding out the time taken to create a log file when
there are entities continuously accessing the data, causing
continuous logging. Results are shown in Fig. 2. It is not
surprising to see that the time to create a log file
increases linearly with the size of the log file.
Specifically, the time to create a 100 Kb file is about
114.5 ms while the time to create a 1 MB file averages at
731 ms. With this experiment as the baseline, one can

decide the amount of time to be specified between
dumps, keeping other variables like space constraints or
network traffic in mind.

 Fig 2. Time to create log files of

different sizes

5.2 Authentication Time
 The next point that the overhead can occur is during
the authentication of a CSP. If the time taken for this
authentication is too long, it may become a bottleneck for
accessing the enclosed data. To evaluate this, the head
node issued OpenSSL certificates for the computing
nodes and we measured the total time for the OpenSSL
authentication to be completed and the certificate
revocation to be checked.

 Considering one access at the time, we find that the
authentication time averages around 920 ms which
proves that not too much overhead is added during this
phase. As of present, the authentication takes place each
time the CSP needs to access the data. The performance
can be further improved by caching the certificates. The
time for authenticating an end user is about the same
when we consider only the actions required by the JAR,
viz. obtaining a SAML certificate and then evaluating it.

This is because both the OpenSSL and the SAML
certificates are handled in a similar fashion by the JAR.
When we consider the user actions (i.e., submitting his
username to the JAR), it averages at 1.2 minutes.

5.3 Time Taken to Perform Logging
 This set of experiments studies the effect of log file
size on the logging performance. We measure the
average time taken to grant an access plus the time to
write the corresponding log record. The time for granting

any access to the data items in a JAR file includes the
time to evaluate and enforce the applicable policies and
to locate the requested data items.

International Journal of Computer Applications Technology and Research

Volume 2– Issue 4, 431 - 435, 2013, ISSN: 2319–8656

www.ijcat.com 434

 In the experiment, we let multiple servers continuously
access the same data JAR file for a minute and recorded
the number of log records generated. Each access is just a
view request and hence the time for executing the action
is negligible. As a result, the average time to log an

action is about 10 seconds, which includes the time taken
by a user to double click the JAR or by a server to run the
script to open the JAR. We also measured the log
encryption time which is about 300 ms (per record) and
is seemingly unrelated from the log size.

5.4 Log Merging Time
 To check if the log harmonizer can be a bottleneck,
we measure the amount of time required to merge log
files. In this experiment, we ensured that each of the log

files had 10 to 25 percent of the records in common with
one other. The exact number of records in common was
random for each repetition of the experiment. The time
was averaged over 10 repetitions. We tested the time to
merge up to 70 log files of 100 KB, 300 KB, 500 KB,
700 KB, 900 KB, and 1 MB each. The results are shown
in Fig. 6. We can observe that the time increases almost
linearly to the number of files and size of files, with the

least time being taken for merging two 100 KB log files
at 59 ms, while the time to merge 70 1 MB files was 2.35
minutes.

 Fig 3. Time to merge log files

5.5 Size of the Data JAR Files
 Finally, we investigate whether a single logger, used
to handle more than one file, results in storage overhead.
We measure the size of the loggers (JARs) by varying the
number and size of data items held by them. We tested
the increase in size of the logger containing 10 content
files (i.e., images) of the same size as the file size

increases. Intuitively, in case of larger size of data items
held by a logger, the overall logger also increases in size.
The size of logger grows from 3,500 to 4,035 KB when
the size of content items changes from 200 KB to 1 MB.
Overall, due to the compression provided by JAR files,
the size of the logger is dictated by the size of the largest
files it contains.

 Fig 4. Size of the logger component

6. CONCLUSION AND RESEARCH

 We proposed innovative approaches for automatically
logging any access to the data in the cloud together with
an auditing mechanism. Our approach allows the data
owner to not only audit his content but also enforce
strong back-end protection if needed. Moreover, one of
the main features of our work is that it enables the data
owner to audit even those copies of its data that were
made without his knowledge.

 In the future, we plan to refine our approach to verify
the integrity of the JRE and the authentication of JARs.
For example, we will investigate whether it is possible to
leverage the notion of a secure JVM being developed by
IBM. This research is aimed at providing software
tamper resistance to Java applications. In the long term,
we plan to design a comprehensive and more generic
object-oriented approach to facilitate autonomous

protection of travelling content. We would like to support
a variety of security policies, like indexing policies for
text files, usage control for executables, and generic
accountability and provenance controls.

7. REFERENCES

[1] P. Ammann and S. Jajodia, ―Distributed Timestamp
Generation in Planar Lattice Networks,‖ ACM Trans.
Computer Systems, vol. 11, pp. 205-225, Aug. 1993.

[2] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L.
Kissner, Z. Peterson, and D. Song, ―Provable Data
Possession at Untrusted Stores,‖ Proc. ACM Conf.
Computer and Comm. Security, pp. 598- 609, 2007.

[3] E. Barka and A. Lakas, ―Integrating Usage Control
with SIP-Based Communications,‖ J. Computer Systems,
Networks, and Comm., vol. 2008, pp. 1-8, 2008.

[4] D. Boneh and M.K. Franklin, ―Identity-Based
Encryption from the Weil Pairing,‖ Proc. Int‘l
Cryptology Conf. Advances in Cryptology, pp. 213-229,
2001.

[5] R. Bose and J. Frew, ―Lineage Retrieval for Scientific
Data Processing: A Survey,‖ ACM Computing Surveys,

International Journal of Computer Applications Technology and Research

Volume 2– Issue 4, 431 - 435, 2013, ISSN: 2319–8656

www.ijcat.com 435

vol. 37, pp. 1- 28, Mar. 2005.

[6] P. Buneman, A. Chapman, and J. Cheney,
―Provenance Management in Curated Databases,‖ Proc.
ACM SIGMOD Int‘l Conf. Management of Data

(SIGMOD ‘06), pp. 539-550, 2006.

[7] B. Chun and A.C. Bavier, ―Decentralized Trust
Management and Accountability in Federated Systems,‖
Proc. Ann. Hawaii Int‘l Conf. System Sciences (HICSS),
2004.

[8] OASIS Security Services Technical Committee,

―Security Assertion Markup Language (saml) 2.0,‖
http://www.oasis-open.org/ committees/tc home.php?wg
abbrev=security, 2012.

[9] R. Corin, S. Etalle, J.I. den Hartog, G. Lenzini, and I.
Staicu, ―A Logic for Auditing Accountability in
Decentralized Systems,‖ Proc. IFIP TC1 WG1.7
Workshop Formal Aspects in Security and Trust,pp. 187-

201, 2005.

http://www.oasis-open.org/

