
International Journal of Computer Applications Technology and Research 

Volume 2– Issue 4, 474 - 480, 2013, ISSN:  2319–8656 

www.ijcat.com  474 

Successive approximation of neutral stochastic 
functional differential equations with infinite delay and 

Poisson jumps 

Diem Dang Huan 

School of Mathematical 

Science, Nanjing Normal 

University, Nanjing 210023, 

China 

Faculty of Basic Sciences, 

Bacgiang Agriculture and 

Forestry University, Bacgiang, 

Vietnam. 

  

 

 

 

Abstract: We establish results concerning the existence and uniqueness of solutions to neutral stochastic functional differential 

equations with infinite delay and Poisson jumps in the phase space C((-∞,0];Rd) under non-Lipschitz condition with Lipschitz 
condition being considered as a special case and a weakened linear growth condition on the coefficients by means of the successive 
approximation. Compared with the previous results, the results obtained in this paper is based on a other proof and our results can 
complement the earlier publications in the existing literatures. 
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1. INTRODUCTION 
Stochastic differential equations are well known to model 

problems from many areas of science and engineering, 
wherein, quite often the future state of such systems depends 
not only on the present state but also on its past history (delay) 
leading to stochastic functional differential equations (SFDEs) 
and it has played an important role in many ways such as the 
model of the systems in physics, chemistry, biology, 

economics and finance from various points of the view (see, 
e.g. [1,2] and the references therein). 
Recently, SFDEs with infinite delay on the space BC((-

∞,0];Rd), which denotes the family of bounded continuous Rd 

-value functions  defined on (-∞,0] with norm 

 have been extensively 

studied by many authors, for instance, in [3], Wei and Wang 

studied the existence and uniqueness of the solution for 

SFDEs with infinite delay under uniform Lipschitz condition 

and a weakened linear growth condition, Zhou et al. [4] 

investigated the stability of the solutions for SFDEs with 

infinite delay, and in 2010, Xu and Hu [5] have proved the 

existence and uniqueness of the solution for neutral SFDEs 

with infinite delay in abstract space. Note that, the results on 

the existence and uniqueness of the solution for the above 

equations is obtained if the coefficient of the equation is 

assumed to satisfy the Lipschitz condition and the linear 

growth condition. Furthermore, on the neutral SFDEs with 

delay, once can see monograph [1] and the references therein 

for details. 

On the other hand, the study of neutral SFDEs with Poisson 

jumps processes also have begun to gain attention and strong 

growth in recent years. To be more precise, in 2009, Luo and 

Taniguchi [6] considered the existence and uniqueness of mild 

solutions to stochastic evolution equations with finite delay 

and Poisson jumps by the Banach fixed point theorem, in 

2010, Boufoussi and Hajji [7] proved the existence and 

uniqueness result for a class of neutral SFDEs driven both by 

the cylindrical Brownian motion and by the Poisson processes 

in a Hilbert space with non-Lipschitzian coefficients by using 

successive approximation, in 2012, Cui and Yan [8] studied 

the existence and uniqueness of mild solutions to stochastic 

evolution equations with infinite delay and Poisson jumps in 

the phase space BC((-∞,0];H), and also in 2012, Tan et al. [9] 

established the existence and uniqueness of solutions to  

neutral SFDEs with Poisson Jumps. However, until now, there 

is no work on the existence and uniqueness of the solution to 

neutral SFDEs with infinite delay and Poisson jumps in the 

phase space C((-∞,0];R
d
)  under non-Lipschitz condition 

and a weakened linear growth condition. Therefore, motivated 

by [5,8,9] in this paper, we will closes the gap and further 

perfects the theorem system of existence and uniqueness of 

the solution to the following d-dimensional neutral SFDEs 

with infinite delay and Poisson jumps: 
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with an initial data  

 

is an -measurable C((-∞,0];R
d
) -value random variable 

such that  , where 

 can be considered as a 

C((-∞,0];R
d
) - value stochastic process. Moreover, let the 

functions ;  

;  

 

all be Borel measurable. 

The aim of our paper is to establish an existence and 

uniqueness results for solution of Eq.(1.1) with initial data 

(1.2 ) in the phase C((-∞,0];R
d
) under non-Lipschitz 

condition and a weakened linear growth condition based on 

successive approximation method. Our main results rely 

essentially on techniques using a iterative scheme (see, [10]) 

which is partially different from the Picard iterative and 

Bihari's inequality.  We will see that the proof of claim in the 

theorem of this paper is partially different and even simpler 

than the work has been previously published. 

The rest of this paper is organized as follows: In Section 2, we 

will give some necessary notations, concepts and 

assumptions. Section 3 is devoted to prove the existence and 

uniqueness of Eq.(1.1) with initial data (1.2 ) under non-

Lipschitz condition and a weakened linear growth condition. 

In the last section, concluding remarks are given. 

2.  PRELIMINARIES  RESULTS 
This section is concerned with some basic concepts, notations, 
definitions, lemmas and preliminary facts which are used 
through this article. 

Let ( , , )F P be a complete probability space equipped 

with some filtration { , 0}tF t  satisfying the usual 

conditions (i.e., it is right continuous and { , 0}tF t   

contains all P-null sets). Let  be the Euclidean norm in Rd 

i.e.,  ,  x . If  A  is a vector or a matrix, 

its transpose is denoted by AT. If A is a matrix, its trace norm 

is represented by , while its operator norm is 

denoted  ,  (without any 

confusion with ).  Without loss of generality, let t be a 

positive constant. Assume that B(t) is a m-dimensional 

Brownian motion defined on complete probability space, that 

is B(t) = (B1(t), B2(t),…, Bm(t))T, and N(t) is a scalar Poisson 

process with intensity . Assume that B(t) and N(t) are 

independent of  { , 0}tF t  . Let C((-∞,0];R
d
)   denotes 

the family of all right-continuous functions with left-hand 

limits (cadlag) (-∞,0] to Rd. The space C((-∞,0];R
d
)  is 

assumed to be equipped with the norm 

. We denote by 

 the family of all { , 0}tF t  -

measurable, Rd -valued process (t)= (t,), t(-∞,0] such 

that  . And let Lp ([a,b];Rd), p≥2 be 

the family of Rd -valued Ft-adapted processess 

  such that .  

Further, we consider the Banach space BT of all Rd -valued Ft 

-adapted cadlag process x(t) defined on (-∞,T], T>0 such that 

 

For simplicity, we also have to denote by ab := min{a,b} and 

a b := max{a,b}. 

Let us give the definition of solution for Eq.(1.1) with initial 

data (1.2). 

Definition 2.1 An Rd -valued stochastic process x(t) defined 

on -∞<t ≤T is called the solution of Eq.(1.1) with initial data 

(1.2), if it has the following properties: 

(i) x(t) is continuous and  is Ft -

adapted; 

(ii) {f(t,xt) } L1([t0,T]; Rd ), {(t,xt) } L2 ([t0,T]; Rd×m ), and 

{h(t,xt) } L2 ([t0,T]; Rd×m ); 

(iii)  and for , 

 

 
A solution x(t) is said to be unique if any other solution x*(t) 

is indistinguishable with x(t), that is 

P{x(t) = x*(t), for any -∞<t ≤T }=1. 

In order to guarantee the existence and uniqueness of the 

solutions to Eq.(1.1) with initial data (1.2), we propose the 

following assumptions: 
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(H1) For all C((-∞,0];R
d
) and , it 

follows that 

 

 

where ()  is a concave, nondecreasing, and continuous 

function from R
 to R

 such that (0) 0, ( ) 0u    

for 0u   and 
0

.
( )

du

u


   

(H2) For all , it follows that f(t,0), (t,0), 

h(t,0)L2 such that 

 

where C0>0 is a constant. 

(H3) There exists a positive number K(0,1) such that, for all 

C((-∞,0];R
d
)  and ,  

 

Remark 2.1 To demonstrate the generality of our results, let 

us illustrate it using concrete function (). 

Let (0,1). Set 
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where   is sufficiently small and 
' , 2,3i i   is the left 

derivative of , 2,3i i   at the point  . Then 

, 1,2,3i i   are concave nondecreasing functions 

definition on  R
 satisfying 

0
.

( )i

du

u


    

Remark 2.2 If  there exist a positive constant , such that 

(u)= u,  uC((-∞,0];R
d
)  then assumption (H1) implies 

the Lipschitz condition.  

3.  EXISTENCE AND UNIQUENESS OF 

SOLUTION 
In this section, we shall investigate the existence and 
uniqueness of the solution to Eq.(1.1) with initial data (1.2). 

The main result of the paper is the following theorem. 

Theorem 3.1 Assume the assumptions of (H1)-(H3) hold. 
Then, there exist a unique solution to Eq.(1.1) with initial data 

(1.2). Moreover, the solution belongs to BT. 

To prove the uniqueness of the solution for Eq.(1.1) with 
initial data (1.2), we shall establish the following lemma. 

Lemma 3.1 Let the assumptions of Theorem 3.1 hold. If x(t) 
is a solution of Eq.(1.1) with initial data (1.2), then there 
exists a positive constant C* such that 

 
Proof  For every integer n ≥ 1, define the stopping time 

=Tinf . 

Obviously, as n  ∞, n  T a.s. Let xn(t) = x(tn), for  -∞<t 

≤T. Then, for t[t0,T], xn(t) satisfy the following equation: 

 

 

 
where 1A is the indicator function of a set A. Set  

 

 

 
By Lemma 2.3 (p. 204) in [1] and assumption (H3), we have 

 

 
Hence 

 

 



International Journal of Computer Applications Technology and Research 

Volume 2– Issue 4, 474 - 480, 2013, ISSN:  2319–8656 

www.ijcat.com  477 

Noting the fact that 

 

we can get 

 

 
Using the basic inequality |a+b+c+d|2 ≤ 4|a|2+4|b|2+4|c|2+4|d|2, 

Hölder's inequality, and for the jump integral, we convert to 

the compensated Poisson process , 

which is a martingale, we have 

 

 

 

 

 

 

 
By Theorem 7.2 (p. 40) in [1], the Doob martingale inequality 

(apply for the jump integral, see, for example [1]), 

assumptions (H1) and (H2), one can show that 

 

 

 

 

 
Given that () is concave and (0)=0, we can find a pair of 

positive constants a and b such that (u)≤ a+bu, for all u ≥ 0. 

So, we obtain that 

 

 

 

 
where  

 

 
and 

 

Thus, we can get 

 

 
By the Gronwall inequality yields that 

≤  

where 

 
and  

 
Letting t = T, it then follows that 

≤  

Consequently, 



International Journal of Computer Applications Technology and Research 

Volume 2– Issue 4, 474 - 480, 2013, ISSN:  2319–8656 

www.ijcat.com  478 

≤  

Letting n  ∞, it then implies the following inequality 

≤  

Thus, the desired result holds with C*:= C3e
C

4. This 

completes the proof of Lemma 3.1. 

Now, motivated by [10], we shall introduce the sequence of 

successive approximations to Eq.(2.1) as follows: 

Define x0(t)=(0) for all  . Let  , -∞<t 

≤0, n=0,1,2, … and for all , n=1,2, …, we define 

the following iterative scheme: 

 

 
Next, we prove the main result of our paper. 

Proof of Theorem 3.1. The proof is split into the following 

three steps. 

Step 1. We claim that the sequence  is bounded. 

Obviously, x0(t)BT. Moreover, by the same way as in the 

proof of Lemma 3.1 and note that 

 

 

we can easily show that xn(t)BT, for , -∞<t ≤T and n=1,2,.... 

This proves the boundedness of . 

 Step 2. We claim that the sequence  is a Cauchy 

sequence in BT. For m, n ≥ 0 and t [t0,T], from (3.1) and by 

Lemma 2.3 in [1], we can get   

 

 

 

 

By Hölder's inequality, Theorem 7.2 in [1], the Doob 

martingale inequality for the jump integral, and assumptions 

(H1), (H3), we obtain that 

 

 

 
where C5:=3[4+8+(22+1)(T-t0)], which further implies that 

 

 
Let 

 
From (3.2), for any  > 0, we have 

y  

By the Bihari inequality [11], which implies that, for all 

sufficiently small  > 0, 

 

where  on r > 0 and G-1() is the inverse 

function of G(). By assumption,  and the 

definition of  (), one sees that  

and then  

 
Therefore, letting 0 in (3.3), we infer that for all s[t0,T],  

y(t)=0. 

This shows that sequence  is a Cauchy sequence in 

L2. Hence, , that is 

0. Furthermore, by the 

boundedness of  in Step 1, letting n∞ we can 

easily derive that   where C* is a positive 

constant. This shows that x(t)BT. 

 Step 3. We claim the existence and uniqueness of the 

solution to Eq.(1.1). 
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Existence: By the same way as in Step 2, and the sequence 

xn(t) is uniformly converge on (-∞,T], letting n∞ in (3.1), 

we can derive the solution of Eq.(1.1) with the initial data 

(1.2). Thus the existence of the Theorem 3.1 is complete. 

Uniqueness: Let both x(t) and z(t) be two solutions of 

Eq.(1.1). By Lemma 3.1, x(t), z(t)BT. On the other hand, by 

the same way as in Step 2, we can show that there exist a 

positive constant C6 such that 

 

 
Consequently, for any  > 0 

 

 
By Bihari's inequality, for all sufficiently small  > 0, we can 

show that 

 
where  on r > 0 and G-1() is the inverse 

function of G(). By assumption, we get 

 
which further implies x(s) ≡ z(s) almost surely for any 

s[t0,T]. Therefore, for all -∞<s≤ T, x(s) ≡ z(s) almost surely. 

The proof for Theorem 3.1 is thus complete. 

Remark 3.1. By using methods similar to many articles about 

the theorems of the existence and uniqueness of the solution 

for SFDEs (see [1] or [9], Theorem 3.6), if non-Lipschitz 

condition is replaced by the local non-Lipschitz condition, 

then the existence and uniqueness theorem for neutral SFDEs 

with infinite delay and Poisson jumps in the phase space  

C((-∞,0];R
d
)  under local non-Lipschitz condition and the 

conditions (H2), (H3) is also derived. 

Remark 3.2. If the phase space C((-∞,0];R
d
)  is replaced 

by the phase space B((-∞,0];R
d
)  (see [5]) which has origin 

was introduced by Hale and Kato [12] then by using method 

in our paper, conclusions of Theorem 3.1 also easily obtained. 

Remark 3.3. If Eq.(1.1) with initial data (1.2 ) in the phase 

space C((-∞,0];R
d
)  under the non-Lipschitz condition and 

the weakened linear growth condition is replaced by the phase  

C((-r,0];R
d
)  (i.e. with finite delay) under the uniform 

Lipschitz condition and the linear growth condition then 

Theorem 3.2 in Tan el at. [9] can be obtained by Theorem 3.1. 

Remark 3.4. We have known that in paper [8], the proofs of 

the assertions are based on some function inequalities. If using 

our proof then the conclusions in paper [8] can be also 

obtained and we have saw that the procedures in our paper 

have become simpler than the procedures used in [8]. 

Remark 3.5. In real world problems, impulsive effects also 

exist in addition to stochastic effects. The theory of impulsive 

differential equations is much richer than the corresponding 

theory of differential equations without impulse effects. 

Differential equation with impulsive conditions constitute an  

important field of research due to their numerous applications 

in ecology, medicine biology, electrical engineering, and other 

areas of science. There has been a significant development in 

impulsive theory especially in the area of impulsive 

differential equation with fixed moments, see for instance the 

monograph by Lakshmikantham et al. [13]. Recently, the 

existence and uniqueness of the solution for impulsive SFDEs 

without infinite delay and Poisson jumps have been discussed 

in [14]. Therefore, it is necessary and important to consider 

the existence and uniqueness of the solution for SFDEs with 

infinite delay, Poisson jumps and impulsive effects. The 

results in this paper can be extended to study the existence 

and uniqueness of the solution for SFDEs with infinite delay, 

Poisson jumps and impulsive effects by employing the idea 

and technique as in Theorem 3.1. 

4. CONCLUSION 
In this paper, we have discussed for a class of neutral SFDEs 

with infinite delay and Poisson jumps in the phase space C((-
∞,0];Rd) under non-Lipschitz condition with Lipschitz 
condition being considered as a special case and a weakened 
linear growth condition on the coefficients by means of the 
successive approximation. By using a iterative scheme,  
Bihari's inequality combined with theories of stochastic 
analytic, then the existence and uniqueness theorem for 
neutral SFDEs with infinite delay and Poisson jumps is 

obtained. The results in our paper extend and improve the 
corresponding ones announced by Xu and Hu [5], Cui and 
Yan [8], Tan el al. [9], Chen [10], and some other results. 
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