
International Journal of Computer Applications Technology and Research

Volume 2– Issue 5, 595 - 600, 2013, ISSN: 2319–8656

www.ijcat.com 595

QoS Driven Task Scheduling in Cloud Computing

Sonal Dubey

NITTTR,
Bhopal, India

Sanjay Agrawal

NITTTR,
Bhopal, India

Abstract: Cloud computing systems promise to offer pay per use, on demand computing services to users worldwide. Recently, there
has been a dramatic increase in the demand for delivering services to a large number of users, so they need to offer differentiated
services to users and meet their expected quality requirements. Most of scheduling schemes proceeding nowadays have no QoS

(Quality of Service) differentiation, which is necessary for Cloud Computing service operation. As a cloud must provide services to
many users at the same time and different users have different QoS requirements, the scheduling schemes should be developed having
different QoS requirements. So, this paper explores various methods of task scheduling done in cloud computing. Real-time
applications play a significant role in cloud environment. We have examine the particular scheduling algorithms for real-time tasks,
that is, priority-based strategies.The purpose of this paper is to discuss the fixed priority preemptive task scheduling algorithms in
cloud computing for improving the QoS parameters.

Keywords: Cloud Computing, QoS, RMS, DMS, UB Test.

1. INTRODUCTION
Cloud computing is the rising technology that delivers many

forms of resources as services, mainly over the internet. It
permits customers to use applications without deployment and
access the required files at any computer using internet [3].
Cloud Computing allows on-demand resource provisioning. It
is the convergence of several concepts such as grid,
distributed application design, virtualization and enterprise IT
management. It enables a more flexible approach for
deploying and scaling applications [2].

The Task management is the key role in cloud computing.
Task scheduling problems are primary which relate to the
efficiency of the whole cloud computing facilities. Because of
different QoS parameters such as CPU speed, CPU utilization,
turnaround time, throughput, waiting time etc., task
scheduling in cloud computing is different from conventional
distributed computing environment. The demand for resources
fluctuates dynamically so scheduling of resources is a difficult

task. Task scheduling based on QoS parameters is necessary
for efficient resource utilization and for satisfying user
requirement.

Scheduling in cloud computing can be categorized into three
stages namely–

 Resource discovering and filtering – Data centre
Broker discovers the resources present in the network
system and collects status information related to them.

 Resource selection – Target resource is selected based
on certain parameters of task and resource. This is key
stage.

 Task submission -Task is submitted to resource
selected.

The goal of scheduling algorithms in distributed systems is to
schedule jobs to the flexible resources in accordance with
flexible time, which includes finding out a proper sequence in

which jobs can be executed under transaction logic
constraints. The main advantage of task scheduling algorithm
is to achieve a high performance computing and the best
system throughput.

Here, we consider the following terms for our understanding:

 Task: ti

 Virtual machine: mj

 Time when task ti arrives: ci

 Time when machine mj is available: aj

 Execution time for ti on mj: eij

 Time when the execution of ti is finished on mj, cij=aj
+ eij: cij

 Maximum value of cij: makespan

Figure 1. Task Scheduling

Cloud computing has been defined by NIST “as a model for
supporting convenient, on-demand network access to a
shared pool of configurable computing resources that can be

rapidly provisioned and released with minimal management
effort or service provider interaction”. This cloud model is
composed of five essential characteristics, three service
models, and four deployment models. The five essential
characteristics are on-demand self-service, broad network
access, resource pooling, rapid elasticity, and measured
service. The three service models are Software as a Service
(SaaS), Platform as a Service (PaaS), and Infrastructure as a

Service (laaS). The four deployment models are Private
Cloud, Community Cloud, Public Cloud, and Hybrid Cloud
[1].

A scheduling is a set of rules that determine the jobs to be
executed at a particular time. This paper is concerned only
with fixed-priority pre-emptive scheduling, which works as

International Journal of Computer Applications Technology and Research

Volume 2– Issue 5, 595 - 600, 2013, ISSN: 2319–8656

www.ijcat.com 596

follows. A distinct and fixed priority is assigned to each task.

When a job is initiated with a priority higher than the one
currently being executed, the current job is immediately
interrupted and the new job is started. The remaining paper is
ordered as follows. Section II describes RMS and DMS
algorithms. Section III presents the related work in this area.
Section IV concludes the paper.

2. FIXED PRIORITY SCHEDULING IN

CLOUD COMPUTING
In real time cloud applications the cloud users and providers
must have a strong service level agreement to ensure the

timing of applications, and deadlines of applications. A real-
time scheduler must ensure that processes meet deadlines,
regardless of system load or makespan. Priority is applied to
the scheduling of these periodic tasks with deadlines. Every
task in priority scheduling is given a priority through some
policy, so that scheduler assigns tasks to resources according
to priorities.

In fixed priority scheduling the dispatcher will make sure that
at any time the highest priority runnable task is essentially
running. So, if we have a task with a low priority running and
a high priority task arrives. The low priority task will be
suspended and the high priority task will start running. If
while the high priority task is running a medium priority task
arrives the dispatcher will leave it unprocessed and the high
priority task will carry on running and at some later time

finish its computation. So the task with medium priority starts
executing to finish at some later time. Only when both tasks
have completed can the low priority task resume its execution.
The low priority task can then carry on executing until either
higher priority tasks arrive or it has finished its work. The
fixed priority scheduling algorithms help in improving the
QoS parameters in cloud computing environment as they have
less runtime overhead, robust, optimal and easy to implement.

2.1 Related Terms
The deadline of a request for a task is defined to be the time of
the next request for the same task. For a set of tasks scheduled
as per some scheduling algorithm, an overflow occurs at time
„t‟ if „t‟ is the deadline of an unfulfilled request. For a set of
tasks, a scheduling algorithm is feasible if the tasks are
scheduled so that no overflow ever occurs. We define the
response time of a request for a certain task to be the time
span between the request and the end of the response for the

request. A critical instant is defined as an instant at which a
request for that task will have the largest response time. A
schedulability test is a mechanism that proofs that all
deadlines are met, when scheduling with a particular
algorithm. The schedulable utilization of a scheduling
algorithm is defined as follows: A scheduling algorithm can
feasibly schedule any set of periodic tasks on a processor if
the total utilization of the tasks is equal to or less than the

schedulable utilization of that algorithm.

2.1.1 Periodic Task Model
 A task = (C, T)

C: worst case execution time/computing time (C<=T!)

T: period (D=T)

 A task set: (Ci,Ti)

All tasks are independent

The periods of tasks start simultaneously at time 0

 C/T is the CPU utilization of a task

 U = Σ (Ci/Ti) is the CPU utilization of a task set

2.2 Rate Monotonic Scheduling algorithm

(RMS)

It is a dynamic pre-emptive algorithm for scheduling set of
independent hard real time tasks. This was published in 1973
by Liu and Layland [5]. The algorithm was based on static
task priorities. The assumptions made about the task set are
mentioned below [3, 4].

1. The request for all the task sets is periodic.

2. All tasks are independent of each other. No precedence
constraints or mutual exclusion constraints exist between any
pair of tasks.

3. The deadline interval of every task is equal to its period.

4. The required maximum computation time is known
beforehand and is constant.

5. Time required for context switching can be ignored.

6. Sum of utilization factors of n tasks with period p is given

by U=Σ (ci/pi) ≤ n (21/n - 1). As n approaches infinity, term n
(21/n - 1) reaches ln 2 (about 0.7).

The task priorities are assigned on the basis of their periods.
The task with shortest period gets the highest priority and the
task with longest period gets lowest priority. If all the
assumptions stated above are satisfied then this algorithms
guarantees that all the tasks will meet their deadlines. The
algorithm is optimal for single processor systems.

2.2.1 Basic properties of rate monotonic scheduling
For each task that is to be scheduled we must know the value
of its period T and the worst case performance time C, so that
the value of the processor load coefficient could be calculated
as C/T.
If the set of the tasks being scheduled is given and the
characteristics of the tasks are known, a significant question is
whether the time constraints of all the tasks will always be
met. This is answered by the Liu and Layland theorem which

is given by the following formula:-

∑ (Ci /Ti) ≤ n (2
1/n – 1) (1)

 i=1

In the inequality (1), n is the number of the tasks scheduled.
The inequality (1) delivers only a sufficient condition for the
set of schedulable tasks. However, the condition (1) is not a
necessary condition for the set of schedulable tasks.
Furthermore, if the condition (1) is not fulfilled, it does not

automatically follow that the set of tasks is not schedulable. In
this case, one must check whether the necessary condition is
fulfilled. The necessary condition is given by the following
formula

 n

∑ (Ci /Ti) ≤ (2)

 i=1

or

 n

International Journal of Computer Applications Technology and Research

Volume 2– Issue 5, 595 - 600, 2013, ISSN: 2319–8656

www.ijcat.com 597

i min ∑ (Ci / lTk) ⌈ lTk / Ti ⌉ ≤ 1 (i= 1,2…..,n) (2)

 i=1

where, min is calculated over (k,l) ∈ Wi

and Wi = { (k,l) , 1≤ k ≤ i, l = 1,….., ˪Ti / Tk

Moreover, for each task of the scheduled set of tasks it needs
to be checked, whether their time constraints are met in the
worst case situation, i.e. under the conditions when all the
tasks enter into the ready state at the same moment. If under
the worst-case conditions the performance of all the scheduled
tasks is ended before the elapse of their time constraints, it
means that the given set of tasks is schedulable under any

circumstances. In order to prove this, one has to calculate for
each task the time when its execution end. If the execution
end time of each task is shorter than its time deadline, it
means that the set of tasks is schedulable [5].

To calculate the time of the execution end of a periodic task
the recurrent formula can be used. If we consider the lowest
priority task, then the first approximation of its time of the
execution end is assumed as the sum of its execution time and
the times of execution of all the other tasks. This results from

the fact that before the execution of the lowest priority task
can be started, all the other tasks must be performed at least
once. Thus, the first estimation of the time of the execution
end of a task is given by the following formula

 n

t0= ∑ Ci (3)

 i=1

Then, we must systematically repeat the recurrent procedure,
which is given by the following formula

 n

tm+1 = ∑ Ci . ⌈ tm / Ti ⌉ (4)

 i=1

The recurrent procedure is repeated until the following
condition is fulfilled

tm+1 = tm (5)

In such a case we consider time tm as the time of the

execution end of the lowest priority task. If this time is shorter
than the deadline of the lowest priority task, we can consider
this task schedulable under any circumstances, because it
proved to be schedulable in the worst-case scenario.

The recurrent procedure, which is discussed above, must be
repeated for all the tasks and all the tasks in the worst-case
scenario must be proved to be able to end their executions
before the elapse of their deadlines. Only if this condition is
met, the given set of periodic tasks may be considered

schedulable.

2.2.2 Sufficient Schedulability Test: Utilization Bound Test
(UB Test)

 Assume a set of n independent tasks: S= {(C1,T1)
(C2,T2)...(Cn,Tn)}and Let U= Σ Ci/Ti and B(n) =n*(21/n-1)

Three possible outcomes:

 0<= U<= B(n): schedulable

 B(n)<U<=1: no conclusion

 1< U : overload

2.2.3 Sufficient and Necessary Schedulability Test

1. Calculate the worst case response time R for each task with
deadline D. If R<=D, the task is schedulable/feasible. Repeat
the same check for all tasks

 Ri= Ci + ∑j ∈ HP(i) ⌈ Ri/Tj ⌉*Cj

⌈ Ri/Tj ⌉ is the number of instances of task j during Rj

⌈Ri/Tj ⌉ *Cj is the time needed to execute all instances of task

j released within Rj

∑j ∈ HP(i) ⌈ Ri/Tj ⌉*Cj is the time needed to execute

instances of tasks with higher priorities than ith task, released
during Rj

Rj is the summation of the time required for executing task

instances with higher priorities than task j and its own
computing time

 We need to solve the equation:

 Ri= Ci + ∑j ∈ HP(i) ⌈ Ri/Tj ⌉*Cj

 This can be performed by numerical methods to
calculate the fixed point of the equation by iteration:

let

 Ri0 = Ci + ∑j ∈ HP(i) Cj = C1 + C2 +…..+ Ci (the first

guess)

 Ri k + 1 = Ci + ∑j ∈ HP(i) ⌈ Ri/Tj ⌉*Cj (the (k+1)th guess)

 The iteration stops when either

 Rim + 1 > Ti or non-schedulable

 Rim + 1 < Ti and Rim + 1 = Rim schedulable

2. If all tasks pass the test, the task set is schedulable.

3. If some tasks pass the test, they will meet their deadlines
even the other don‟t (stable and predictable).

The following rule of thumb can be given to simplify the
schedulability check by RMS:

Step1. Apply Equation (1) and stop if all individual
conditions are met. If not, apply Equation (2) for all doubtful

cases, as in the next Steps (Steps 2a – 2c).

Step2a. Determine all schedulability Points by marking on a
time axis all successive periods for all tasks in question, from
time 0 up to the end of the first period of the lowest-
frequency task.

Step2b. For each time instant marked in Step 2a - that is, for

all schedulability Points - construct an inequality that has, on
its left-hand side, a sum of all possible execution times of all
tasks that can be activated (possibly multiple times) before
this schedulability Point and, on its right-hand side, only the
value of time corresponding to this schedulability Point.

Step2c. Check if values on the left-hand sides are smaller than
or equal to their corresponding right-hand-side values. If at

International Journal of Computer Applications Technology and Research

Volume 2– Issue 5, 595 - 600, 2013, ISSN: 2319–8656

www.ijcat.com 598

least one of these inequalities holds, then the set of tasks is

schedulable according to RMS Equation (2). If not, then the
set of tasks is not schedulable according to RMS.

2.3 Deadline Monotonic Scheduling

algorithm (DMS)
This technique is an extension of Rate Monotonic scheduling

algorithm. This is first proposed in 1982 by Leung and

Whiteland. This is also fully pre-emptive technique used for

scheduling tasks with static priorities [3]. The third

assumption mentioned in rate monotonic technique that says

the deadline interval of every task is same and equal to its

period has been relaxed. The tasks have deadlines that relative

deadlines (Di) can be less than or equal to its period. Each

task is allotted a fixed priority inversely proportional to its

relative deadline. So, at any time task with the shortest

deadline is executed. Deadline monotonic is a static priority

scheduling method, as relative deadlines are constant.

Figure2. Deadline Monotonic Scheduling

There are four parameters for each periodic task:

 A phase ɸi;

 A worst- case computation time Ci (constant for

each instance);

 A relative deadline Di (constant for each instance);

 A period Ti;

which have the following relationships:

 Ci ≤ Di ≤ Ti

 ri,k = ɸi + (k-1)Ti

 di,k = ri,k + Di

2.3.1 Sufficient schedulability test: Utilization Bound test

(UB test)

Σ (Ci/Di) <= n*(21/n-1) implies schedulable

by DMS

2.3.2 Precise test

• Calculate the worst case response time R as
described above, for each task with deadline D. If

R<=D, the task is schedulable/feasible. Repeat the same

check for all tasks.

• If the test is passed by all the tasks, the task set

is schedulable.

• If the test is passed by some tasks only, they

will meet their deadlines even the other doesn‟t (stable

and predictable).

3. RELATED WORK
Tradition ways of task scheduling is not fit to Cloud
Computing [1][7][8]. At present, there are lots of task
scheduling schemes implemented in different cloud
framework. Hadoop [9] implements the FIFO (First In First
Out) [10] scheme by default. The benefit of FIFO is simple

and low overhead. All the jobs from different users are
submitted to a queue. After that they will be examined
according to the order of submission time and priority. The
first job with highest priority will be selected for processing.
The disadvantage of FIFO is poor fairness. The jobs with
lower priority have little chance to process with lots of higher
priority jobs.

In order to improve the fairness, Facebook presented Fair

Scheduling Algorithm [6]. The goal of fair scheduling is that
all tasks can achieve their resource as the time passes. This
algorithm allows short tasks finish in reasonable time while
not starving long tasks. Task occupies the whole resource with
no other tasks in the system. And the system will allocate the
idle time slot to those new tasks and make each of them could
get equal CUP time. Fair Scheduling defines insufficiency of
tasks. Tasks with more shortfalls mean they got more unfair

treatments, so they have more probability to obtain resource.
Apart this, fair scheduling algorithm assured the minimized
shared resource. It means task with lowest priority might have
its turn even if there are many tasks with higher priority.

Yahoo! presents Capacity Scheduling for Hadoop as well
[11]. It allows for multiple-tenants to securely share a large
cluster such that their applications are allocated resources in a
timely manner under constraints of allocated capacities. This

scheme allows sharing a large cluster while giving each
organization a minimum capacity guarantee. Clusters will be
partitioned among multiple organizations and each
organization can access any excess capacity no being used by
others.

All the algorithms introduced above focus on tasks of
computing oriented, and not fit for service oriented tasks. In
addition, Lee et al. presented a dynamic priority-scheduling
algorithm on service request scheduling [12]. It adjusts the

priority of task units on scheduling to increase the
performance of scheduling. Yoshitomo et al. presented a
history-based job scheduling mechanism for a queue system
[13]. This mechanism estimates the time to start the job
execution according the history of job-execution and the jobs
scheduling mechanism automatically allocates the job to a
suitable resource. Luqun Li offered an optimistic
differentiated service task scheduling system. This paper

developed a non-pre-emptive priority M/G/1 queuing model
for the tasks and the system cost function for this model.
Subsequent to that, the author gave the corresponding strategy
and algorithm to get the approximate optimistic value of
service [14]. QuXilong and Hao Zhongxiao et al. researched
the distributed software resource sharing in Cloud
Manufacturing system and implemented the sharing scheme
in a cloud platform [15].

However, the scheduling schemes introduced above are
centralized algorithms and will become bottleneck in large
scale Cloud Computing environment. Moreover, they are
designed for a precise computing concept, which is
performance oriented and not suitable for other Cloud
Computing Services, which are service oriented. The earlier
one executed with short period and high utility and the later
one executed with long term and lower utility [16].

International Journal of Computer Applications Technology and Research

Volume 2– Issue 5, 595 - 600, 2013, ISSN: 2319–8656

www.ijcat.com 599

 RSDC (Reliable Scheduling Distributed in Cloud

computing)

Arash Ghorbannia Delavar,Mahdi Javanmard , Mehrdad

Barzegar Shabestari and Marjan Khosravi Talebi [1] proposed
a reliable scheduling algorithm in cloud computing
environment. In this algorithm main job is divided into sub
jobs. To balance the jobs, the request and acknowledge time
are calculated independently. Scheduling of each job is done
by calculating the request and acknowledges time in the form
of a shared job, so that the efficiency of the system is
increased.

 An Optimal Model for Priority based Service Scheduling
Policy for Cloud Computing Environment

Dr. M. Dakshayini, Dr. H. S. Guruprasad [3] proposed a new

scheduling algorithm based on admission and priority control
method. In this algorithm, priority is assigned to each
admitted queue. Entrance of each queue is decided by
calculating tolerable delay and service cost. The advantage of
this algorithm is that with the proposed cloud architecture this
scheme has achieved very high (99%) service completion rate
with definite QoS. As this scheduling provides the highest
preference for highly paid user requests for service, total

servicing cost for the cloud also increases.

 A Priority based Job Scheduling Algorithm in Cloud
Computing

Shamsollah Ghanbari, Mohamed Othman [17] proposed a
new scheduling algorithm based on multi – criteria and multi -
decision priority driven scheduling algorithm. This scheduling
algorithm have three levels of scheduling: object level,
attribute level and alternate level. This algorithm set the
priority by job resource ratio. Next priority vector can be
compared with each queue. This algorithm has high
throughput and less finish time.

 Extended Max-Min Scheduling Using Petri Net and Load

Balancing

El-Sayed T. El-kenawy, Ali Ibraheem El-Desoky, Mohamed
F. Al-rahamawy [5] has proposed a new algorithm based on
impact of RASA algorithm. Extended Max-min algorithm is
based on the expected execution time rather on complete time
as a selection basis. To model the concurrent behavior of
distributed systems Petri nets are used. Max-min algorithm
shows achieving schedules with comparable lower makespan
rather than RASA and original Max-min.

 An Optimistic Differentiated Job Scheduling System for

Cloud Computing

Shalmali Ambike, Dipti Bhansali, Jaee Kshirsagar, Juhi
Bansiwal [6] has proposed a differentiated scheduling
algorithm with non-preemptive priority queuing model for
activities performed by cloud user. In this method, a web
application is created to do some activity like one of the file
uploading and downloading then there is need of efficient job
scheduling algorithm. This algorithm helps in achieving the

QoS requirements of the cloud computing user and the
maximum profits of the cloud computing service provider.

 Improved Cost-Based Algorithm for Task Scheduling

G.Mrs.S.Selvarani, Dr.G.Sudha Sadhasivam [7] proposed an
improved cost-based scheduling algorithm for making

efficient mapping of tasks to available computing resources in
cloud environment. The managing of traditional activity based
costing is proposed by new task scheduling strategy for cloud
environment where there may be no relation between the
overhead application base and the way that different tasks
cause overhead cost of resources in cloud. The proposed
algorithm divides all user tasks depending on priority of each
task into three different lists. The proposed algorithm

calculates both resource cost and computation performance. It
also improves the computation/communication ratio.

 Performance and Cost evaluation of Gang Scheduling .in

a Cloud Computing System with Job Migrations and
Starvation Handling

Ioannis A. Moschakis and Helen D. Karatza proposed a gang
scheduling algorithm with job migration and starvation
handling. The number of Virtual Machines (VMs) available at
any moment is dynamic and scales according to the demands
of the jobs being serviced. The above mentioned model is

studied through simulation in order to analyze the
performance and overall cost of Gang Scheduling with
migrations and starvation handling. Results show up that this
scheduling strategy can be effectively deployed on cloud
environment, and that cloud platforms can be feasible for
HPC or high performance enterprise applications.

4. CONCLUSION
Scheduling is one of the most important accept in cloud
computing environment. So, in this paper, we focused on task
scheduling in cloud computing environment with certain QoS
constraint. Rate Monotonic algorithm is simpler to implement
and exhibits a predictable behaviour resulted from its
associated analysis. In this paper, fixed priority scheduling

algorithms i.e. Rate Monotonic and Deadline Monotonic
scheduling algorithms are explained, when using them in
cloud computing environment for improving the QoS
parameters

REFERENCES
[1] Peter Mell, Timothy Grance, “The NIST Definition of

Cloud Computing”, NIST (National Institute of
Standards and Technlogy) Special Publication 800-145.

[2] Jun Huang, Yanbing Liu, Qiang Duan, “Service
Provisioning in Virtualization-based Cloud Computing:
Modeling and Optimization”, Globecom, 2012.

[3] Q. Duan, “Modeling and Performance Analysis on
Network Virtualization for Composite Network-Cloud
Service Provisioning,” in Proc. of SERVICES, 2011, pp.

548–555, July 2011.

[4] Z. Wang and J. Crowcroft, “Quality-of-service routing
for supporting multimedia applications,” IEEE J. Sel.
Areas. Commun., vol. 14, no. 7, pp. 1228–1234, Sept.
1996.

[5] G. Xue, A. Sen, W. Zhang, J. Tang and K. Thulasiraman,
“Finding a path subject to many additive QoS
constraints,” IEEE/ACM Trans. Netw., vol. 15 , no. 1,

pp. 201-211, Feb. 2007.

International Journal of Computer Applications Technology and Research

Volume 2– Issue 5, 595 - 600, 2013, ISSN: 2319–8656

www.ijcat.com 600

[6] G. Xue, W. Zhang, J. Tang and K. Thulasiraman,

“Polynomial time approximation algorithms for multi-
constrained QoS routing,” IEEE/ACM Trans. Netw., vol.
16, no. 3, pp. 656-669, Jun. 2008.

[7] J. Huang, X. Huang, and Y. Ma, “An Effective
Approximation Scheme for Multi constrained Quality-of-
Service Routing,” in Proc. IEEE GLOBECOM 2010,
Miami, Florida, pp. 1–6, Dec. 2010.

[8] F. A. Kuipers, P.V. Mieghem, T. Korkmaz and M.

Krunz, “An Overview of Constraint-Based Path
Selection Algorithms for QoS Routing,” IEEE Com.
Mag., vol. 40, no. 12, pp. 50–55, Dec. 2002.

[9] Z. Tarapata, “Selected multi criteria shortest path
problems: an analysis of complexity, models and
adaptation of standard algorithms,” Int. J. Applied Math.
and Comp. Sci., vol. 17, no. 2, pp. 269–287, July 2007.

[10] R. G. Garroppo, S. Giordano and L. Tavanti, “A survey

on multi constrained optimal path computation: Exact
and approximate algorithms,” Compt. Netw., vol. 54, no.
17, pp. 3081–3107, Dec. 2010.

[11] X. Yuan, “Heuristic Algorithms for Multi constrained
Quality-of-Service Routing,” IEEE/ACM Trans. Netw.,
vol. 10, no. 2, pp. 244–256, Apr. 2002.

[12] P. V. Mieghem and F.A. Kuipers, “Concepts of Exact
QoS Routing Algorithms,” IEEE/ACM Trans. Netw.,

vol. 12, no. 5, pp. 851–864, Oct. 2004.

[13] Jun Huang, et al., “Novel End-to-End Quality of Service
Provisioning Algorithms for Multimedia Services in
Virtualization-based Future Internet”, IEEE Transactions
On Broadcasting.

[14] Yee Ming Chen，Yi Jen Peng, “A QoS aware services
mashup model for cloud computing applications” Journal
of Industrial Engineering and Management, JIEM, 2012

– 5(2): 457-47.

[15] Pinal Salot Purnima Gandhi , “Job Resource Ratio Based
Priority Driven Scheduling in Cloud Computing”,
International Journal for Scientific Research &
Development, Vol. 1, Issue 2, 2013 , ISSN (online):
2321-0613.

[16] Bing Li, A Meina Song, Junde Song, “A Distributed
QoS-Constraint Task Scheduling Scheme in Cloud
Computing Environment: Model and Algorithm”,

Advances in information Sciences and Service
Sciences(AISS), Volume4, Number5, March 2012.

[17] Ghanbari Shamsollah, and Othman Mohamed, “ A
Priority based Job Scheduling Algorithm in Cloud
Computing”, Procedia Engineering, Vol. 50, pp. 778-
785, 2012.

