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Abstract: In this article, we intend to draw attention on the new Similarity measure for Fuzzy sets based on the extended definition of 

complementation. The old existing measures are based on traditional Zadehian Theory of Fuzzy sets where it is believed that there is 
no difference between Fuzzy membership function and Fuzzy membership value for the complement of a Fuzzy set which is already 
proved to be wrong. As a result, the previous Similarity measures have been proved illogical from the standpoints of new definition of 
complementation of Fuzzy set based on the fact that Fuzzy membership function and Fuzzy membership value for the complement of 
a Fuzzy set are two different things. Accordingly, we have already established a new Similarity measure with the help of extended 
definition of complementation using reference function. In this paper, an effort has been put forward to show the validity of the results 

obtained from our proposed measure with the help of traditional Hamming distance and Euclidean distance measures. 
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1. INTRODUCTION 
Zadeh [1] introduced Fuzzy set in 1965. Since Zadeh initiated 
Fuzzy sets, many approaches and theories treating imprecision 
and uncertainty have been proposed. Different researchers 
have proposed different Similarity measures for Fuzzy sets, 
all based on Zadehian concept. Zadeh defined Fuzzy set in the 

manner where it has been believed that the classical set 
theoretic axioms of exclusion and contradiction are not 
satisfied for Fuzzy sets. Regarding this, Baruah [2,3] proposed 
that two functions, namely Fuzzy membership function and 
Fuzzy reference function are necessary to represent a Fuzzy 
set. As a result, Baruah [2, 3] reintroduced the notion of 
complement of a Fuzzy set in a way that the set theoretic 
axioms of exclusion and contradiction can be seen valid for 

Fuzzy sets also. Neog and Sut [4] have generalized the 
concept of complement of a Fuzzy set introduced by 
Baruah[2,3] when the Fuzzy reference function is not zero and 
defined arbitrary Fuzzy union and intersection extending the 
definition of Fuzzy sets given by Baruah [2, 3]. As a 
consequence of which, the previously existing similarity 
measures of Fuzzy set, which are based on the traditional 
Zadehian definition of complementation, have  appeared 
illogical. Accordingly, we have proposed a new Similarity 

measure[10] for Fuzzy sets using the extended definition of 
complementation[2,3,4] based on reference function so that it 
becomes free from any further controversy. In this article, our 
purpose is to prove that the results obtained from the 
application of our proposed measure are absolutely valid with 
respect to traditional Hamming distance and Euclidean 
distance measures.   
 

The overall organization of this paper is as follows. In section 

2 we discuss the new Similarity measure for Fuzzy sets based 

on extended definition of complementation. In section 3 we 

apply the new Similarity measure to calculate similarity 

measures of some collected data. In section 4 we verify the 

results obtained in section 3 with the results obtained by using 

Hamming distance and Euclidean distance measures. Finally, 

some conclusions are given in section 5. 

 

2. THE NEW SIMILARITY MEASURE 

FOR FUZZY SETS 
The new Similarity Measure [10] for Fuzzy sets with the 

extended definition of complementation is as follows: 

Let A and B be two elements belonging to a Fuzzy set (or 
sets) .Now we can measure the similarity between A and B as 
below: 

Sim (A, B) = 
lFS(A,B)

lFS(A,BC)
    =   

a

b
                      (1)    

 where a is distance from A(𝜇m,𝜇r,𝜇v) to B(𝜇m,𝜇r,𝜇v) and b is a 

distance from A(𝜇m,𝜇r,𝜇v)  to BC(𝜇m,𝜇r,𝜇v)      where 𝜇m, 𝜇r, 𝜇v 

are membership function, reference function and membership 
value respectively. 

 

For this similarity measure, we have, 

             0  Sim (A, B)  

Similarly we can calculate the Similarity between two Fuzzy 

sets: 
Let A and B be two Fuzzy sets defined on the same set of 
universe of discourse. Now we can measure the similarity 
between A and B by assessing similarity of the corresponding 
elements belonging to A and B, as defined in the eqn (1). 

Now using Baruah’s definition of Fuzzy set, for the Similarity 
measure of A and B, we can obtain the following 4 
possibilities, 

A and B may be two exactly similar sets. 
or A and BC may be two exactly similar sets. 
or A may be more similar to B than to BC. 

or A may be more similar to BC  than to B. 
But A can never be similar to B and BC together i.e. 
A=B=BC is never possible according to the new 
definition of complementation of Fuzzy set [2, 3]. 
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Therefore from the above analysis, for the Similarity measure 
of A and B, we can conclude four possible cases as follows: 

 
Case 1: Sim(A,B)=0 when A=B i.e. AB=0. 

Case 2: Sim(A,B)=  when A=BC i.e. ABC=0. 

Case 3: Sim(A,B) >1 when AB>ABC. 
Case 4: Sim(A,B) <1 when AB<ABC. 

Hence to measure the similarity between the two Fuzzy sets A 

and B, one should be interested in the values 0  Sim(A,B) 

1. 

Let us explain the above idea for the new Similarity measure 
into details: 
 
Let A and B be two Fuzzy sets defined on the same set of 
universe of discourse U= {e1, e2, e3, e4, e5}. Now we can 

calculate the similarity measure for A and B assessing the 
similarity measure for the every corresponding elements of  A 
and B i.e. for the every element e1,e2,e3,e4,e5 of the set of 
universe of discourse U, considered for A and B. This means 
similarity measure for A and B has to be calculated with 

respect to every e1, e2, e3, e4, e5  U. 

Now, based on the new definition of Fuzzy set, the similarity 
measure for the Fuzzy set A( ek, k=1,2,3,4,5) and the Fuzzy 

set B( ek , k=1,2,3,4,5) can be obtained under the 3 possible 
cases in the following manner: 

  We can visualize the Fuzzy set A (ek) and the Fuzzy set B 
(ek) in the number line in Figure 1 and Figure 2 respectively. 

 

Figure 1. Representation of Fuzzy set A(ek) in number line 

 

Figure 2. Representation of Fuzzy set B(ek) in number line 

Where r1, m1, v1  ;  r2, m2, v2  ;  0, r2, v3 ;  m2,1, v4  

are reference function, membership function and membership 
value of the Fuzzy set A , the Fuzzy set B and the two 

complement sets of B  respectively for every ek  U. 

Now the 3 possible cases are: 

Case 1: when r2 0, m2 1. 

Case 1 can be visualized in Figure 1 and Figure 2 and 

Similarity Measure can be defined as, 

 

Case 2: when r2 0, m2 1. 

Case 2 can be visualized in Figure 3 and Figure 4. 

 

Figure 3. Representation of Fuzzy set A(ek) in number line 

 
Figure 4. Representation of Fuzzy set B(ek) in number line 

 

and Similarity Measure can be defined as, 

 
Case 3: when r2 0 , m2=1. 

Case 3 can be visualized in  Figure 5 and Figure 6. 
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Figure 5. Representation of Fuzzy set A(ek) in number line                                                                       

Figure 6. Representation of Fuzzy set B(ek) in number  line 

and Similarity Measure can be defined as, 

 

3. APPLICATION OF THE NEW 

SIMILARITY MEASURE 
We apply our proposed measure on some collected data[5]. 

Taking larger value (membership or non-membership function 

value) [5]  as membership function value, 𝜇v and the smaller 

value[5] as reference function value, 𝜇r (since, always 

0 r(x) v(x) 1), we can represent the collected data[5] 

as dataset1={A1,A2, A3, A4, A5} and dataset2={B1,B2,B3,B4} 

defined on the same set of universe of discourse U={a, b, c, d, 

e} as given in Table 1 and Table 2. 

 

 

Table 1: dataset 1 = {A1, A2, A3, A4, A5}. 

 

Table 2: dataset 2 = {B1, B2, B3, B4}. 

 

Each element (a, b, c, d or e) ∊ U in Table1 and Table2 is 

described by: a reference function and a membership 
function value. 

Now to calculate a similar set from the dataset 1 for a 
particular set in dataset 2, we proceed in the following way: 

Step 1:  At first we calculate the similarity measure  
BjAi

BjAi
C  

for each set Bj ∊ dataset 2,(where j=1,2,3,4)     with every set 

Ai ∊ dataset 1 ,where ( i=1,2,3,4,5) separately ,assessing the 

similarity measure for the every corresponding elements of 
the two sets i.e. a,b,c,d,e ∊ U, the set of universe of discourse 
considered for the two datasets. 

Step 2: Then we find out the smallest value from the 
obtained similarity measures between a set Bj and every set 
Ai, we considered in Step 1.From that value we can decide 
which Ai ∊ dataset 1 is similar to a particular set Bj ∊ dataset 
2 . 

Now we calculate the similarity measure values between the 
dataset 1 and the dataset 2 and represent the calculated 
values in table 3. 

Table 3: Similarity measure values between dataset 1 

and dataset 2. 

 

Hence from table 3 we can conclude that, 

Set B1 is similar to set A5, set B2 is similar to set A4, set B3 

is similar to set A5 and set B4 is similar to set A4. 

4. VERIFICATION 
We can verify the results obtained in section 3 by using 

normalized Hamming Distance and Euclidean Distance 

measures. 

For that purpose, we apply Hamming Distance measure and 

Euclidean Distance measure on the same collected data[5] , 

used in section 3. 

4.1 Hamming Distance measure: 
To measure similarity between dataset 1 and dataset 2 

using Hamming Distance measure, we proceed in the 

following way: 

Step 1: At first we calculate the Hamming Distance  measure 

for each set Bj ∊ dataset 2, (where j=1,2,3,4) with every set Ai 

∊ dataset1  ,(where i=1,2,3,4,5) separately ,assessing the 
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distance measure for the every corresponding elements of the 

two sets i.e. a,b,c,d,e ∊ U, the set of universe of discourse 

considered for the two datasets. 

Step 2: Then we find out the smallest value from the obtained 

measures between a set Bj and every set Ai , we considered in 
Step 1. From that value we can decide which Ai ∊ dataset 1 is 

similar to a particular set Bj ∊ dataset 2 . 

The normalized Hamming distance of the set Ai from the set 

Bj, for all a, b, c, d, e ∊ U is 

 

 

Table 4: Hamming Distance measures between dataset 1 

and dataset 2. 

 
From table 4 we conclude that 

Set B1 is similar to set A5, set B2 is similar to set A2 and A4, 

set B3 is similar to set A5 and set B4 is similar to set A4. 

4.2 Euclidean Distance measure: 
To measure similarity between dataset 1 and dataset 2, we 

proceed in the following way: 

 

Step 1: At first we calculate the Euclidean Distance  measure 

for each set Bj ∊ dataset 2, (where j=1,2,3,4) with every set Ai 

∊ dataset1  ,(where i=1,2,3,4,5) separately ,assessing the 

distance measure for the every corresponding elements of the 

two sets i.e. a,b,c,d,e ∊ U, the set of universe of discourse 

considered for the two datasets. 

Step 2: Then we find out the smallest value from the obtained 
measures between a set Bj and every set Ai , we considered in 
Step 1. From that value we can decide which Ai ∊ dataset 1 is 

similar to a particular set Bj ∊ dataset 2 . 

The Euclidean distance of the set Ai from the set Bj, for all a, 

b, c, d, e ∊ U is 

 

Table 5: Euclidean Distance measures between dataset 1 

and dataset 2. 

 

 

From table 5 we conclude that 

Set B1 is similar to set A5, set B2 is similar to set A2 and A4, 

set B3 is similar to set A5 and set B4 is similar to set A4. 

Therefore from table 4 and table 5, we have found that the 

set B2 is similar to both the set A2 and the set A4. This is due 

to the limitation that both Hamming distance and Euclidean 

distance measures can calculate upto two decimal places 

only. Hence even if there is a fractional difference between 

two values after two decimal places, these two measures can 

not represent it. It has been observed that the results obtained 

from Hamming distance and Euclidean distance are exactly 

similar. Thus, we have seen that though there is no error in 

the results, the results obtained from these two traditional 

measures , sometimes, may not be clear which is not a  

problem at all in case of our proposed measure. From table 

3, we can clearly find that set B2 is actually similar to set A4. 

Also, it has been observed that the results obtained from 

table 3, table 4 and table 5 are absolutely similar with just a 

little exception in the result for the set B2 in case of the two 

traditional distance measures which determines that our 

proposed measure gives clearer result than the traditional 

measures. Therefore, it can be concluded that the results 

obtained by the application of the new Similarity measure 

are clear and valid with respect to the traditional Hamming 

distance and Euclidean distance measures and hence legally 

acceptable. 

5. CONCLUSION 
In this work, we have first gone through the new Similarity 

measure for Fuzzy sets based on the extended definition of 

complementation based on reference function. Again, the 

Similarity measure has been applied to evaluate some 

collected dataset. Also, the results obtained from the 

application are compared with the results found by Hamming 

distance and Euclidean distance measures. Finally it has been 

proved that the results obtained   from the application of the 

new Similarity measure for Fuzzy sets are much clear and 

absolutely valid with respect to the traditional distance 

measures. 
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