
International Journal of Computer Applications Technology and Research

Volume 2– Issue 6, 738 - 742, 2013

www.ijcat.com 738

Fault Injection Test Bed for Clock Violation

E. Kavitha

Dept. of ECE

MRE College

Secunderabad, AP, India

P.S. Indrani

Dept. of ECE

MRE College

Secunderabad, AP, India

M. J. C. Prasad

Dept. of ECE

MRE College

Secunderabad, AP, India

Abstract: In this paper, the International Data Encryption (IDEA) algorithm synthesis models will be used as test encryption

algorithm. The Xilinx Digital clock manager component will be used for generation of clocks for different frequencies and phase

shifts. The encryption output with faults introduced and without faults introduced is compared as a function of ratio of used clock

frequency and maximum frequency of operation reported by synthesis tool. The clock generation, clock switching, interface adopter to

IDEA core and UART interface will be realized and tested in FPGA hardware in integrated form. FPGA based test bed is realized for

injecting faults through clock glitches, to result in setup and hold violations. The UART interface is realized on FPGA to provide PC

based controlling for this fault injection. Xilinx chip scope tools will be used for verifying the output at various levels in FPGA

hardware.

Keywords: International Data Encryption algorithm (IDEA), UART, FPGA, Digital clock Manager (DCM), PLL.

1. INTRODUCTION

To increase performance, a lot of cryptographic algorithms

are implemented in hardware for that purpose FPGAs are

frequently used for this purpose. Such implementations are

however prone to various types of attacks intended to

compromise their security. One possible way to perform such

an attack is to inject transient faults affecting the normal

circuit operation. One of the cryptographic algorithms most

commonly used is the International Data Encryption

algorithm (IDEA) is a block cipher [2]. The mentioned

algorithm works on 64-bit plain text and cipher text block (at

one time). For encryption, the 64-bit plain text is divided into

four 16-bits sub-blocks. I denote these four blocks as X1 (16

bits), X2 (16 bits), X3 (16 bits) and X4 (16 bits). Each of

these blocks will perform of operation 8 ROUNDS and one

OUTPUT TRANSFORMATION phase.

A long term objective of our research is to develop an

efficient method for protecting FPGA-based implementations

of cryptographic algorithms through effective concurrent

testing of various types of faults, including faults injected by

the attackers [3]. An essential part of this research is to

develop a method and tool for the evaluation of susceptibility

of FPGA based circuits to fault injection attacks. In this paper,

I present such a method and tool. It allows us to examine an

FPGA-based circuit, in particular an implementation of a

cryptographic algorithm, subjected to a fault injection attack

based on clock glitching [7].

2. EXPERIMENTAL SETUP

The circuit under test (CUT) and the tester are both

implemented on a low cost FPGA Spartan 3E development

board. I used VHDL for defining custom components and

Xilinx chip scope which is the system on-chip building tool,

for creating standard library components and connections.

Figure 1: Experimental setup

A simplified diagram of experimental setup implemented in

the device is shown in above Fig 1.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 2– Issue 6, 738 - 742, 2013

www.ijcat.com 739

2.1 Analysis of IDEA

In IDEA algorithm, I taken input text of size 64 bits at a time

and divide it in evenly; i.e., 64 bit plain text is divided into 4

sub-blocks, each of 16 bits in size [1]. The basic operations

needed in the entire process for 8 rounds are

1. Multiplication modulo 2^16 +1.

2. Addition modulo 2^16.

3. Bitwise XOR.

And, operations needed in the OUTPUT

TRANSFORMATION phase –

1. Multiplication module 2^16 +1.

2. Addition modulo 2^16.

All the above mentioned operations are performed on 16 bit

sub-blocks. For simplicity of expressing the operations. Now,

let us take a look on the key generation for the encryption

process while using the 25-bit circular left shift operation on

the original key, it produce other subsequent sub-keys, used in

different rounds [2]. For instance, among the total no. of 52

keys- Sub-key Z1 is having first 16bits of the original key,

sub-key Z2 is having the next 16 bits, and so on till sub-key

Z6; i.e., for ROUND1, sub-keys Z1 to Z6 use first 16x6= 96

bits of the original cipher key. In the ROUND2, sub-key Z7

&Z8 take the rest of the bits (bits 97 to 128) of the original

cipher key. Then we perform circular left shift (by 25bits)

operation on the original key.

Figure 2: IDEA Encryption/Decryption sub key

generation Architecture

As a result the 26th bit of the original key shifted to the first

position and becomes the first bit (of the new shifted key) and

the 25th bit of the original key is moves to the last position

and becomes the 128th bit (after first shift). This process

continues till ROUND8, and also in the OUTPUTPUT

TRANSFORMATION phase; i.e., after the ROUND8, the key

is again shifted left by 25 bits and the first 64 bits of the

shifted key is taken for use, and used as sub-keys Z49 to Z52

in the OUTPUT TRANSFORMATIONMATION phase [2].

2.1.1 Output transformation stage

The final round of IDEA algorithm is also called output

transformation stage. It only uses 4 sub-keys. The block

diagram of final round is given below. The VHDL code for

IDEA final round module is given.

Figure 3: Block diagram of output transformation stage

The general IDEA architecture uses eight rounds with total 48

keys and final output transformation round with 4 sub-keys is

implemented in VHDL using structural modeling style. The

IDEA Decryption module also uses the same hardware, but

the Decryption sub-keys are different. The encryption

followed by decryption module is used for testing the

complete IDEA algorithm with the following input.

Main Key: Z = (5a14 fb3e 021c 79e0 6081 46a0 117b ff03)

64-bit plaintext: X = (X1, X2, X3, X4) = (7fa9, 1c3, ffb3,

df05)

The same text is used in simulating the other IDEA

architectures.

2.2. Fault injection

The basic idea of our implementation of the fault injection

based on clock glitching is to switch from a normal operation

clock to a faster clock; so that one clock cycle is slightly

shorter than CUT can handle [6].This idea is depicted in

Figure 4. In order to generate single faults, the frequency of

the faster clock has to be adjusted very precisely, more

accurately than can be achieved using an on-chip PLL

circuitry for clock generation or phase shifting. An external

clock signal generated by Tektronix AWG 5002B Arbitrary

Waveform Generator is used instead. The external clock is

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 2– Issue 6, 738 - 742, 2013

www.ijcat.com 740

going to feeds an internal PLL circuitry where it is divided by

4 to produce the slower clock. It also passes through

unchanged to produce the faster (high speed) clock.

 To switch clocks, I using a Clock Control Block, the

dedicated clock management built-in component available in

the device. The result of the operations on clock signals is

shown in Figure 4, as “output clock”. The last trace in Figure

4 is the real output clock registered by the 1 GHz Tektronix

oscilloscope. The faster clock frequency is 150 MHz and it

can be noticed that the signal is not distorted too much [7].

Moreover, additional measurements, made by the MXG-

9810AVolcraft frequency counter show that the faster clock

has the same frequency (with accuracy of 1 Hz) as the clock

supplied to the FPGA by the waveform generator.

Figure 4: Clock glitch generation

3. TESTING PROCEDURE

Steps involved in project work

To minimize the test application time, the IDEA circuit is

performed using the FPGA Spartan 3E, by running a

dedicated application. Only the final results are sent through

the host computer for display. Implementation of IDEA

algorithm in VHDL coding. Implementation of sub key

generation module from 128 bit key in VHDL and the basic

Arithmetic and logic blocks in VHDL. The VHDL structural

modeling of 9 rounds for IDEA encryption module is

programmed.

VHDL structural modeling of 9 rounds for IDEA decryption

module. Writing test bindles for individual components and

also for top level modules and Simulation using modelsim.

Verifying the modelsim outputs with expected results.

Synthesizing the developed IDEA modules on Xilinx Spartan

3E FPGA using Xilinx ISE tool. Downloading the IDEA

encryption and Decryption modules on Spartan 3E

development board using the IMPACT tool. The Faults will

be introduced and corresponding output results are observed

and the Clock generator is going generate the clock and

oscilloscope is going to generate the different clock

frequencies [6-7]. The FPGA Spartan 3E kit is connected to

host computer as shown in below figure.

Figure 5: Measurement setup

4. OBSERVATIONS AND RESULTS

4.1. Chip scope resullts

IDEA algorithm has a maximum freqency of approximately

19MHZ frequency. So the clock freqency applied should be

less than this freqency or approximately around this

frequency. If we apply the freqency more than this freqency

then the metastability condition takes place and the output

will be corrupted depending on the applied input clock

freqencies. The chipscope results of idea encryption algorithm

with the corresponding different clock freqencies as shown in

figure.

Figure 6: clock frequency of 12.5 MHZ frequency

The below chipscope results show how the idea encryption

algorithm is behaving with the corresponding 100 MHZ clock

frq.The chipscope results show how the idea encryption

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 2– Issue 6, 738 - 742, 2013

www.ijcat.com 741

algorithm is behaving with the corresponding 50 HZ clock

freqency.

Figure 7: clock frequency of 50 MHZ frequency

4.2. Observed output results

The analyzer outputs are observed for different clock

frequencies (12.5 MHZ, 25 MHZ, 50 MHZ, and 100 MHZ).

The input is FFCC, 8BBD, E1D6, 849B which is generated by

input generator.

Table 1: output comparison table

5. CONCLUSION

The presented method and tool for injecting faults in an FPGA

Spartan 3E circuit, based on Clock glitching and it has some

unique features that allow us to thoroughly examine and

analyze the impact of such faults on the operation of the

circuit. The IDEA (International Data Encryption Algorithm)

is a strong block-cipher text.

Though there are many arithmetic operations involved in the

entire algorithm, only three different of operations are

involved (as mentioned above). As the cipher key size is

128bits, in that respect IDEA is too strong (having taken care

for weak keys).In particular, through recise adjustment of the

frequency of an external clock Generator; we can control the

number of faults occurring at the output of the circuit under

Test.

6. FUTURE SCOPE

The presented solution is intended for injecting a single fault

(single clock glitch) during an encryption operation. For more

complex circuits the more complex experimental setup can be

implemented, to allow dynamic configuration of fault

injection conditions .In particular, the trigger unit could be

redesigned and interfaced with the Avalon bus, so that it could

be reconfigured by the software processor, depending on the

testing scenario.

In order to decrease the testing time, the NIOS II processor

can be clocked by an independent clock freq as faster than the

external clock freq is divided by 4 and the solution requires

some changes to the interface adaptor unit to account for a

difference in clock frequencies for the NIOS II processor and

the circuit under test. The proposed approach can be used not

only in the case when the CUT is implemented in the same

FPGA; Although it appears that only small changes need to be

done to our experimental setup, no attempt has been made to

verify this idea. It makes the algorithm more secure and less

susceptible to cryptanalysis.

7. Acknowledgment

I E. Kavitha would like to thank P. S. Indrani Associate

professor, who guided me through out to complete my work

successfully. I would like to thank my HOD (ECE Dept.) Dr.

M. J. C. Prasad for providing us constant support and

providing us the resources needed.

8. REFERENCE

[1]. Blum M. and Gold wasser S., “An efficient probabilistic

public-key encryption scheme which hides all partial

information,” Advances in Cryptology-CRYPTO’84, Lecture

notes in computer science (Springer-Verlag), pp.289-299,

(1995).

[2]. Biryukov, Alex; Nakahara, Jorge Jr.; Preneel, Bart;

Vandewalle, Joos, "New Weak-Key Classes of IDEA",

Information and Communications Security, 4th International

Conference, ICICS 2002.

[3]. William Stalling “Cryptography and Network Security”.

[4]. Bruce Schiener “Applied Cryptography “.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 2– Issue 6, 738 - 742, 2013

www.ijcat.com 742

[5] Chang H.S., “International Data Encryption Algorithm”

CS-627-1 Fall, 2004.

[6] K. Bousselam, G. Di Natale, M-L.Flottes, B. Rouzeyre,

"Evaluation of concurrent error detection techniques on the

Advanced EncryptionStandard", Proc. 16th IEEE On-Line

Testing Symposium, 2010.

[7] J. Balasch, B. Gierlichs and I. Verbauwhede, "An In-depth

and Black-box Characterization of the Effects of Clock

Glitches on 8-bit MCUs",Proc. Workshop on Fault Diagnosis

and Tolerance in Cryptography,2011.

http://www.ijcat.com/

