
International Journal of Computer Applications Technology and Research
Volume 3– Issue 10, 604 - 609, 2014, ISSN: 2319–8656

www.ijcat.com 604

Study of Cross-Site Scripting Attacks and Their
Countermeasures

Gurvinder Kaur

University Institute of Engineering and Technology
 Kurukshetra University

India

Abstract: - In present-day time, most of the associations are making use of web services for improved services to their
clients. With the upturn in count of web users, there is a considerable hike in the web attacks. Thus, security becomes
the dominant matter in web applications. The disparate kind of vulnerabilities resulted in the disparate types of attacks.
The attackers may take benefit of these vulnerabilities and can misuse the data in the database. Study indicates that
more than 80% of the web applications are vulnerable to cross-site scripting (XSS) attacks. XSS is one of the fatal
attacks & it has been practiced over the maximum number of well-known search engines and social sites. In this paper,
we have considered XSS attacks, its types and different methods employed to resist these attacks with their
corresponding limitations. Additionally, we have discussed the proposed approach for countering XSS attack and how
this approach is superior to others.
Keywords: - Cross-Site Scripting (XSS), Malicious Injection, Web Security, and Web Application Attacks.

1. INTRODUCTION
With the everywhere-ness of information

superhighway, i.e. Internet, organizations are
serving people with their business on web.
However, as the owners of the business
emphasize greater on their business logic they do
not get concerned about the vulnerabilities and
security hazards inclined to their websites. Web
Security describes the guidelines used to block
threats to diminish the web attacks. An attack
may be feasible due to the existence of vary
types of flaws and bugs in the coding. As per
Ponemon Institute Life Threat Intelligence
Impact Report 2013 if the actionable intelligence
about cyber attacks is available only 60 seconds
before then the average cost of exploit could be
reduced to 40 percent [1]. That is if we have an
appropriate method to handle an attack at the
very first step then the cost of the damage caused
due to that attack can be diminished largely.

The inaccurate authorization and sanitization
of data given by web server has brought in the
accountability for XSS attacks. It is the attack on
the secrecy of customer of a specific website by
approving injection of inputs containing HTML
tags and JavaScript code. As per OWASP (Open
Web Application Security Project) 2013 release
cross-site scripting is one of the major attacks
performed [2]. Cenzic Application Vulnerability
Trends Report 2013 confers that among the top
10 attacks 26% comprises of XSS attacks only
[3].

The rest of the paper is organized as follows:

Section II discusses the web application

architecture. Section III discusses the XSS
attacks and its types in detail. Section IV
provides the survey explored with their relative
weaknesses .Section V discusses the proposed
approach and how it would be better. Finally,
section VI concludes the paper.

Fig1: Web Application Security Vulnerability Population [3]

International Journal of Computer Applications Technology and Research
Volume 3– Issue 10, 604 - 609, 2014, ISSN: 2319–8656

www.ijcat.com 605

2. WEB APPLICATION
ARCHITECTURE

As XSS, attacks occur over the application
layer so it is important to know how the web
application works over the internet. Web
Application has three-layered architecture as
shown in Fig 2.

Fig 2: Web Application Architecture [4]

1.) Presentation Layer: This tier accepts input
from end user and display output to user. It
functions as a graphical user interface (GUI). It
literally attach with the client.
2.) Server Programming Layer: This layer is
located between presentation layer and database
layer. Data processing is handled in this layer
and it can be programmed in any of server
scripting languages like JSP, PHP and ASP etc.
3.) Database Layer: This tier stores and manages
all the delicate data of web application. This
layer is responsible for access of authenticated
users and rejection of malicious users.

3. CROSS-SITE SCRIPTING
ATTACKS

In this section, XSS attacks & its types are

discussed in detail. An XSS attack is one of the
most common web application attacks that are
used by hackers to sneak into web applications.
In XSS, attacker embeds malicious script into a
website. Whenever a user browser run this code
the attacker can shape the browser to do
whatever it wants .XSS attacks occur whenever
an application takes un-trusted data and sends it
to web browser without proper validation and
sanitization[5]. So in XSS attacks three parties

are involved- the attacker, the client and the
website. In XSS attacks, the attacker insert
malicious scripts to target websites for session
hijacking, cookie stealing, and malicious
redirection. This attack arises, as the web server
does not appropriately assure that generated
pages are properly encoded to avert the
inadvertent execution of scripts and when input
is not justified to prevent malicious HTML from
being displayed to the users.

Example:
<% out.println(“ welcome “ +
request.getParameter(“name”)); %> (Example
of poorly –written code on Web server- saving
it as test.jsp)

Case 1: Normal User

<HTML>
<BODY>
Welcome Stefan
</BODY>
</HTML>

Output:

Fig 3: Response of a normal HTML code

Case2: Attacker
<HTML>
<BODY>
Welcome <script>alert ("Attacked") </script>
</BODY>
</HTML>

Fig 4: Output after code inserted by attacker

WEB
SERVER

International Journal of Computer Applications Technology and Research
Volume 3– Issue 10, 604 - 609, 2014, ISSN: 2319–8656

www.ijcat.com 606

The example above shows a web site having
XSS vulnerability. In Fig 3 a normal user when
enters his name it is displayed. In Fig 4, an
attacker misleads the application server by
entering the JavaScript in place of name. This is
quite a simple example.

 There are primarily three types of cross-site
scripting attacks as follows:
1. Stored or Persistent attacks- This attack
appears when the malevolent code is sent to a
web application where they are stored
permanently on the mark server. When a user
requests for the stored information this script is
executed in its context. Examples for raider
favorite targets include web mail messages,
forum, comment field, visitor log etc. this attack
occurs in the following manner:
-Malicious script is inserted into a web form by
the attacker, which is then stored by the server in
the database.
-When a request is send to the infected page by
the user, the script is executed in the user’s
browser and the user’s cookies are passed to the
attacker.

 2. Reflected or Non – persistent attacks- In this
the malicious code is breed into a URL as a
value of parameter, as a HTTP query in such a
way that the rebounded content consists of
unprocessed script. This attack occurs in a
following way:
-Attacker examines a website and finds
vulnerability on a web page.
-Attacker may embed a URL to exploit the
weakness and may send an email to the user
captivating the user to click on a link for the
URL under false charade
-The URL will point to the normal website, but it
will contain attacker’s malicious code that the
site will reflect
-User will visit the URL provided by the attacker
while log into the given website
-The malicious script is executed on the user’s
browser as if it came directly from the web
server.
-By this way, an attacker can steal sensitive
information through user’s cookies [6].
3. DOM (Document Object Model)-based XSS
attacks- This exists within a site and can be used
in a reflected manner. In this case, the malicious
data exists solely in the browser and is not sent
to the server. A brief example of a DOM-based
XSS attacks would be a modifying the web
history of a user.

4. RELATED WORK

Johns et al. has proposed a passive detection
system to identify successful XSS attacks [5]. It
uses two different approaches based on generic
observations of XSS attacks and web
applications. In this reflected attack is detected
by a request/response matching which is based
on the direct relationship between the input data
and the injected scripts. In this the input
parameters and the scripts found in final HTML
is converted into a non-ambiguous representation
by removing all encodings and the appropriate
matching is done by constructing a DFA for each
of the input parameter. For stored attacks, it
adopts a generic XSS detection using a list of
known scripts in which they used a training
based XSS detector in which list of all outgoing
script is matched up with the detector’s known
list. The weakness of this system is that it uses
different implementation schemes for the two
types of XSS that increases the overhead. It just
detects the already existing attacks and false
positives are there.

A static analysis for finding XSS
vulnerabilities is demonstrated by Wassermann
& Su [7] that straightforwardly addresses weak
or absent input validation. The approach
integrates work on tainted information flow with
string analysis. The proposal has two parts: (1)
an adapted string analysis to track untrusted
substring values, and (2) a check for untrusted
scripts based on formal language techniques.
.String-taint analysis not only represents the set
of string values a program may create, it also
defines the formal language representation with
labels that indicate which substrings come from
untrusted sources. The second phase of the
method enforces the policy that generated web
pages include no untrusted scripts. It has many
disadvantages like the tool produces false
positives and it failed to resolve certain alias
relationships between variables whose values are
used for dynamic features. It failed to detect the
DOM-based XSS. The string analysis-based tool
could not handle arbitrarily complex and
dynamic code.

Wurzinger et al. [8] introduced a tool known
as SWAP (Secure Web Application Proxy), a
server-side solution for discovering and
preventing cross-site scripting attacks. SWAP
contain a reverse proxy that intercepts all HTML
responses, as well as a make use of modified
Web browser to detect script content. SWAP
contains a JavaScript detection component,

International Journal of Computer Applications Technology and Research
Volume 3– Issue 10, 604 - 609, 2014, ISSN: 2319–8656

www.ijcat.com 607

which is able to determine whether script content
is present or not, a reverse proxy, which block all
HTML responses from the server and subjects
them to analysis by the JavaScript detection
component and a set of scripts to axiomatically
encode/decode scripts/ script IDs. SWAP
introduces a performance overhead. It cannot
guard counter to other kinds of objectionable
content, such as static links pointing to sites
including malicious scripts

In this paper a result for unit testing and
action-level security of Struts Web applications
is demonstrated by Wu et al. [9] by
experimenting the applications from model-
view-controller (MVC) respectively, and safe
Struts applications with the help of different
access control implementations. The aim of
using struts is to neatly separate the model
(application logic that communicates with a
database) from the view (HTML pages shown to
the client) and the controller (instance that passes
info between view and model). JUnit tests the
model, and StrutsTestCase does the testing of
controller, while HttpUnit does the testing of
view. The action level security solution
comprises of four stages: access control in
actions and JSPs, by extending the request
processor, access control by servlet filtering, &
WEB-INF. The solution of Struts Web
application unit testing and action-level security
just extended the general Web unit testing
methods. The performance of application is
degraded.

Galan et al. [10] suggested a multi-agent
system for the automated scanning of web sites
to disclose the existence of XSS vulnerabilities
exploitable by a stored-XSS attack. The set of
agent’s part of the proposed architecture and the
operation of the scanner are as follows. A
webpage parser agent crawl the web application
from which information about the different web
forms found is used to build a repository of
potential injection points (Injection point
repository). A script injector agent reads the list
of injection points recognized by the parser agent
and also makes a selection of vectors attacks
from the Attack vector repository. The desired
set of attack vectors is launched against each of
the potential points of attack of the application.
A list of the performed attacks is stored in a
Performed attack list. The verificator agent gets
the list of the attacks to be verified and crawl the
web application looking for each of the attacks.
A report about the results of the scanning process

is elaborated and stored. This approach has not
better performance & accuracy.

The approach by Putthacharoen &
Bunyatnoparat [11] aims to change the cookies
so that they would become impractical for XSS
attacks. This technique is called “Dynamic
Cookie Rewriting” enforced in a web proxy
where it will automatically put in place of the
cookies with the randomized value before
sending the cookie to the browser. In this way
browser will keep the randomized value rather of
original value sent by the web server. At the web
server, end the return cookie from the browser
over rewritten to its original form at the web
proxy before being dispatched to the web server.
So in case if XSS attacks swipe the cookies from
the browser’s database, the cookies cannot be
used by the attacker to imitate the users. Four
domains are kept to identify the cookie that is
Name, Domain, Path, and Port. The initial value
of the cookie and the randomized value are also
kept in the same table. This table is reserved at
the web proxy database server. The web proxy
server will use this information to rewrite back
cookies. The drawback of this approach is the
compatibility problem that occurs while
implementing the proxy server and the single
point failure issue

In [12] a technique is proposed which is
invoked when user injects code in the field of
web application by V. & Selvekumar. .It uses the
complete HTML parser and JavaScript Tester to
detect the presence of JavaScript for filtering it
out. The user created HTML content is passed to
the XSS sanitizer and the static tags are checked.
The static tags are retained while rests of tags are
filtered out. Even static tags contain dynamic
content, which are filtered out by JavaScript
Tester. After filtering HTML, content is
converted into DOM. It includes parse tree
generator at client side browser to reduce the
anomalous behavior of browsers. It is restricted
to server side only and browser source need to be
modified for obtaining results.

Choudhary & Dhore [13] proposed code
injection detection tool based on a Proxy Agent,
which classifies the request as scripted request,
or query based request. There are two modules:
Query Detector and Script Detector. The HTTP
request coming from client side is first send to
the CIDT within which the request is passed to
both modules one by one. Firstly, the Query
detector validates the request and the query is
rejected if any invalid character is found. Only

International Journal of Computer Applications Technology and Research
Volume 3– Issue 10, 604 - 609, 2014, ISSN: 2319–8656

www.ijcat.com 608

the valid requests are passed to the next module,
the Script detector that also filters the request for
invalid tags and encodes it before forwarding it
to the web server. The disadvantage of this
approach is it requires more time to response that
is the delay time is more.

 Matsuda & Koizumi [14] suggested a
detection algorithm against cross-site scripting
attacks by extracting an attack feature of XSS by
considering the appearance position and
frequency of symbols. It learns the attack
features from given attack samples. In this three
modules are presented. The first one is the
classification module in which sample of 32
characters is gathered based upon the characters
that occur frequent in attacks. The second
module will calculate the important degree of
characters. The final module will detect the
attack-by-attack feature value & threshold that is
taken as 15 for the proper detection of the attack
in proposed approach. The main disadvantage is
it is calculation based and it does not tackle the
new attacks effectively.

Elhakeem & Barry [15] broach on the issues
surrounding cross-site scripting attacks and
providing a simple and useful security model to
protect websites from such attacks using ZEND
framework application. The security model is
based on a chain of levels and is built using a
combination of tools. It is divided into four
levels as: Security Awareness, Server Security,
Client Security, & Design Guidelines. The
framework described by them is Zend
Framework (ZF), which is an open source
framework for developing web applications and
services with PHP. This loosely coupled
architecture allows developers to use
components individually and offers a robust
Model View Controller (MVC) implementation.
The MVC paradigm breaks the application's
interface, into three parts which are: Model: The
model part of the application is the part that is
concerned with the specifics of the data to be
displayed, View: The view consists of bits of the
application that are concerned with the display to
the user, & Controller: The controller ties
together the specifics of the model and the view
to ensure that the correct data is displayed on the
page. It accepts input from the user and instructs
the model and view port to perform actions
based on that input. It requires lot of tools to be
combined so compatibility issues are there.

5. PROPOSED APPROACH
Cross-Site Scripting is one of the most

dangerous and the common attacks found over
the web applications. This survey presents study
of the ongoing techniques against XSS attacks.
These techniques suffer from the following
weaknesses:

 Built-in limitations
 Partial implementations
 Complicated framework
 Developer’s ability
 Run-time overhead
 False positives and false negatives
 Insecure channel between the web

server and web browser
 Response delay
 Additional infrastructure
 Cost of deployment
 Don’t prevent DOM based attacks

Our proposed system will try to remove
almost all of these weaknesses. It will include a
two-tier approach- one for detecting persistent
and non-persistent XSS attacks and second for
prevention of DOM based XSS attacks. For the
first tier we will implement our logic of script
guard in the controller part of MVC2 architecture
of server. The controller receives all requests
from the clients & forwards those requests to the
respective pages as per request. The controller
receives parameters sent by the client and scans
these parameter values for suspected XSS
attacks. These values are matched with sets of
expressions where every expression match
means an attack. In case of an attack, the
requests do not go beyond the controller and the
client is redirected back to the page where he
requested. For the second tier that is for
prevention of DOM based attacks we will have a
small JavaScript code (DOM attack detector
script) which is sent to the client with every
response. This code acts only at client side and
will prevent any sort of DOM based XSS
attacks. Thus, our proposed work will detect all
types of XSS attacks. Even it will have a little
performance overhead but it will have a
minimum response delay. There is no need of
additional infrastructure and have not a
complex framework.

International Journal of Computer Applications Technology and Research
Volume 3– Issue 10, 604 - 609, 2014, ISSN: 2319–8656

www.ijcat.com 609

6. CONCLUSION
XSS attack is one of the most common and

dangerous web application attacks that can
reveal information about a user or company
profile. This paper presented what XSS attacks
are, what are there types, the previous
approaches for prevention of these attacks with
there limitations. Then we showed our proposed
approach and how it is better.

Many industries are employing web services
for their benefits on the World Wide Web but for
relieving themselves from the additional cost,
they do not go for the security of the websites
they created. Eventually it harms the users and
company too. With the expansion of web
applications, it is urgency to have an
comprehensive and coherent structure for the
prevention of unified XSS and other important
web application attacks.

7. REFRENCES

[1] http://www.ponemon.org/blog/live-threat-

intelligence-impact-report-2013-1
[2] https://www.owasp.org/index.php/Category:OW

ASP_Top_Ten_Project
[3] http://info.cenzic.com/rs/cenzic/images/Cenzic-

Application-Vulnerability-Trends-Report-
2013.pdf

[4] Jeom-Goo Kim,” Injection Attack Detection
using the Removal of SQL Query Attribute
Values”, IEEE, pp. 1-7, 2011.

[5] Martin Johns, Bjorne Englemann, Joachimm
Posegga,”XSSDS: Server-side Detection of
Cross-site Scripting Attacks”, Annual Computer
Security Applications Conference, IEEE, pp.
335-344, 2008.

[6] http://en.wikipedia.org/wiki/Cross-site_scripting
[7] Gary Wassermann, Zhendong Su, “Static

detection of cross-site scripting vulnerabilities”,
ACM/IEEE 30th International Conference on
Software Engineering, ICSE '08. pp. 171-180,
2008.

[8] Peter Wurzinger, Christian Platzer, Christian
Ludl, Engin Kirda, and Christopher Kruegel,”
SWAP: Mitigating XSS Attacks using a Reverse
Proxy”, ICSE Workshop on Software
Engineering for Secure Systems, IEEE, pp. 33-
39, 2009.

[9] Qinglin Wu, Yanzhong Hu, Yan Wang, “Unit
Testing and Action-Level Security Solution of
Struts Web Applications Based on MVC”,
International Conference on Biomedical
Engineering and Computer Science, IEEE, pp. 1-
4, 2010.

[10] E. Galan, A. Alcaide, A. Orfila, J. Blasco,” A
Multi-agent Scanner to Detect Stored-XSS
Vulnerabilities”, International Conference for
Internet Technology and Secured Transactions
(ICITST), IEEE, pp. 1-6, 2010.

[11] Rattipong Putthacharoen, Pratheep
Bunyatnoparat, “Protecting Cookies from Cross
Site Script Attacks Using Dynamic Cookies
Rewriting Technique”, 13th International
Conference on Advanced Communication
Technology (ICACT), IEEE, pp. 1090-1094, Feb
2011.

[12] Sharath Chandra V., S. Selvekumar, “BIXAN:
Browser Independent XSS Sanitizer for
Prevention of XSS Attacks”, ACM SIGSOFT,
Volume 36 Number 5, September 2011.

[13] Atul S. Choudhary And M.L Dhore, “CIDT:
Detection Of Malicious Code Injection Attacks
On Web Application”, International Journal Of
Computing Applications Volume-52-N0.2, pp.
19-25., August 2012.

[14] Takeshi Matsuda, Daiki Koizumi, “Cross Site
Scripting Attacks Detection Algorithm Based on
the Appearance Position of Characters”, 5th
International Conference on Communications,
Computers and Applications, IEEE, pp. 65-70,
October 2012.

[15] Yousra Faisal Gad Mahgoup Elhakeem , Bazara
I. A. Barry,” Developing a Security Model to
Protect Websites from Cross-site Scripting
Attacks Using Zend Framework Application”,
International Conference on Computing,
Electrical and Electronics
Engineering (ICCEEE), pp. 624-629, August
2013.

