
International Journal of Computer Applications Technology and Research
Volume 3– Issue 10, 626 - 633, 2014, ISSN: 2319–8656

www.ijcat.com 626

A Metamodel and Graphical Syntax for NS-2 Programing

Elham Azadi Marand
Department of Computer Engineering,

Shabestar Branch, Islamic Azad University,
Shabestar, Iran.

Moharram Challenger
Department of Computer Engineering,

Shabestar Branch, Islamic Azad University,
Shabestar, Iran.

Abstract: One of the most important issues, around the world, which manufacturers pay special attention to is to promote their
activities in order to be able to give high quality products or services. Perhaps the first advice to achieve this goal is simulation idea.
Therefore, simulation software packages with different properties have been made available. One of the most applicable simulators is
NS-2 which suffers from internal complexity. On the other hand, Domain Specific Modeling Languages can make an abstraction level
by which we can overcome the complexity of NS-2, increase the production speed, and promote efficiency. So, in this paper, we
introduce a Domain Specific Metamodel for NS-2.This new metamodel paves the ways for introducing abstract syntax and modeling
language syntax. In addition, created syntax in Domain Specific Modeling Language is supported by a graphical modeling tool.

Keywords: Metamodel, Graphical Concrete Syntax, Model Driven Engineering, Network Simulation, NS-2 Programing.

1. INTRODUCTION
From physics to biology, to weather forecast, to prediction of
a new processor design, researchers make models or, in fact,
simulate the aspects of the science, variety of phenomena or
theoretical scenario which they cannot analyze, produce or
scientifically observe. Therefore, researchers rely highly on
simulators. This is also generalized to computer networks.
Network simulation, as an important technology in modern
age, is a technique which simulates network behavior with
calculating pro actions among existent networks, and uses
mathematical formulas, receives observations and uses variety
of tools such as NS-2 [6,7], NS-3[8], OMNET++ [9], JIST
[5], PeerSim [10] and OPNET [4] which may help simulation
and designing process [4,5].

NS-2 is one of the most important simulators.
Development of NS began in 1989. From the time on, it has
gradually been improved. NS-1, under supporting of
American Defend Minister – central research and
development administration, introduced in 1995 by Berkley
Laboratory. In 1996, the second version of NS which was
originated over Keshav, S. early work, introduced in
university of California. It had plenty of major architectural
changing, and later on, was known as NS-2. The development
of NS-2 was supported by DARPA VINT Project from 1997
till 2000, and SAMANDARPA and NSF CONSER from 2000
to 2004. Nowadays, NS-2 is one of the most popular
simulation tools in source free networks which are based on
objective and discrete event simulator. NS-2 also supports
TCP simulator, navigators and multi-purpose protocols in
different networks (wired and wireless). They can be used for
distributer and parallel simulators as well. NS-2 simulator has
been designed and performed over C++ programmer and
OTCL manual programmer.

Some of main advantages of NS-2 are as below:
- Most of the protocols have been done on it in

advance.
- It has countless of models in hand.
- It is very popular and supported by many

communities.
- It is capable to be used in parallel and wireless

simulators.
- It is source less and free.
Despite the advantages, NS-2 has also some defects. It

takes a long time to get familiar with it, and its source code

and instructions are mall documented, and its documentations
are not easy for amateurs, difficulty in rapid evaluation of a
simple idea, and being risky in manual code of Tel are
examples of NS-2 problems [11,12,6,7]. Considering the
latest problems, NS-2 needs to reduce its complexity.
 Model-driven engineering (MDE) [14] is one way of
promoting abstract level in software development the aim of
which is changing programing focus from code to model. In
this method, models are created with required details; then,
codes are generated automatically. In some cases, full models
with executable tasks can be made. This increases
productivity, reuse (through reusing standardized model),
simplifying design process, and promoting team work
capability on the system. It must be considered that a
modeling paradigm is effective when its model is
understandable from a user’s view that is familiar with that
domain, enabling the model to act as a basis for executing
systems [15].
 To work with Domain-specific Languages (DSL) [1,16] a
programmer designs his/her own program in the language
specific for the applied domain and the language produces the
architectural code for him/her. In this way, instead of dealing
with coding details, the programmer works with a model of
the program. Also, instead of working with a general purpose
language (GPL), he/she works with a specific language of the
domain; thus, key words, relations, and concepts will be very
close to regarded application’s terms. One of DSL types is
Domain-specific Modeling Language (DSML) [20, 23], in
which graphical elements and models are used for designing
programs, giving a better insight about software elements and
relations. This methodology is applied in many other cases. In
this paper, NS-2 programs were selected as domain to apply
DSML-based environments for increasing abstract level and
reducing production complexities of NS-2 programs.

 For this reason, we have drawn NS-2 concepts and their
relations in the format of a metamodel which shows an
abstract and concrete syntax which pave a way for generating
a domain specific language.

The rest of the paper as below: Section 2 discusses
metamodel and abstract syntax. Section 3 discusses graphical
concrete syntax, Section 4 talks about sample model and its
explanation, Section 5 explains related work, and Section 6
concludes the paper.

International Journal of Computer Applications Technology and Research
Volume 3– Issue 10, 626 - 633, 2014, ISSN: 2319–8656

www.ijcat.com 627

2. METAMODEL
 For many years, metamodels have been made along side with
different application domains, and Objective Management
Group (OMG) has played important role in utilizing them in a
standardized way. With beginning of Model Driven
Architecture (MDA) and increasing the need for
standardization, the amount of metamodel applications has
been highly increased. Whenever there is a need for defining a
piece of language, abstract syntax comes on the scene and
appears in Ecore format. In fact, an abstract syntax of a
language explains key concepts of that language and shows
how these concepts combine to make new models. In
addition, abstract syntax includes definitions and relations
among meta-elements. These relations exist among concepts
and the way they combine with each other [20]. It can be said
that, abstract syntax of a language is independent from
semantic and concrete syntax and works with structure of the
concepts, regardless the meaning or usage of those concepts
[17]. In this part of the paper, we have tried to deal with the
topology and NAM of NS-2 programs and draw on their
relations among metamodels which show the abstract syntax.
To have a clear understanding and efficient use, we draw it
under several meta-elements as in figures 1 and 2, and will
explain them later on.

2.1 Topology Viewpoint
Before any activity, there should be a simulator object for NS-
2 program in every Tel document. In this case, it is necessary
to have a simulator meta-element in order to install simulator
object for ns variable. Since the formation of a network is by
nodes and relations among them, there is a hasNode and
hasLink relation among simulator meta-element, and Node
and Link meta-elements. Node meta-element is anything that
connects to network. According to this definition, computers,
cell phones, printers and routers are all defined as nodes in the

program. Name property differentiates nodes from each other.
To send a package, there should be a tool in every network
formation, so every node has countless of tools. In proposed
metamodel, we supposed connectAgent relation between
Node and Agent meta-elements. Agent meta-element is a
protocol which runs inside nodes, and determines nodes’
behavior in sending and receiving packages. We have given a
name for each agent to differentiate tools from each other. We
also defined the sort of protocol in metamodel which is shown
by TCP and UDP meta-elements connected to Agent meta-
element with inherit relation. TCP is a reliable dynamic
protocol in controlling crowd. TCP also gets benefit from
corrected packages produced in destination part and checks
whether these packages have appropriately received or not.
Lost packages are interpreted as crowd. In these meta-
elements senders and receivers should be given. AgentTCP
and AgentTCPSink with hasAgentTCP and hasAgentTCPSink
relation are meta-elements which have been connected with
TCP and show receiver and sender agents. Both of these
meta-elements have connected to Node meta-element with
attachAgent link and show which node is receiver and which
one is sender.
 UTP meta-element is a part of the Internet protocol. By
using this meta-element, data are sent as datagram format.
Like TCP, UTP also has sender and receiver agents named
AgentUDP and AgentNull. Both of these meta-elements
connect UDP meta-element through hasAgentUDP and
hasAgentNull and show receivers and senders. These meta-
elements connect Node through attachAgent and show which
node is sender and which one is receiver.

As it was mentioned earlier, the time we define nodes in
simulator program, we need to define a connector object for
them as well. In this case the existence of Link meta-element
is necessary. There should be a connecting link between Link
and Node meta-elements to connect them. Name property is
supposed for each link to differentiate them.

Figure 1. Metamodel of Topology Viewpoint

International Journal of Computer Applications Technology and Research
Volume 3– Issue 10, 626 - 633, 2014, ISSN: 2319–8656

www.ijcat.com 628

Each link also has own band width property as
bandwidth and distribution delay as propagationDelay which
are shown in proposed metamodel. Any link may have duplex
or simplex relation with nodes. For this reason, DuplexLink
and SimplexLink meta-elements have been connected to Link
meta-element using hasDuplex and hasSimplex relations. It
should be said that in NS-2 programs, queues are performed
as a part of links; therefore, there is a hasQueue relation
between Link and QueueingDiscipline meta-elements.
QueueingDiscipline meta-element sends and reveives buffers
in each node. On the other hand, size property has been
defined to show the length of the queue and limit the size of
the link.
 We also can define the type of the queue for every Link
meta-element. In proposed metamodel, we supposed DropTail
meta-element whose structure enables it to drop the latest
package by the time the queue capacity finishes.
In addition to all items mentioned above, every simulator has
an event timer which schedules the simulations. In Proposed
metamodel, we name it as schedulingEvents and suppose has
link for it which includes start and stops points to show
commence and end points. Since NS is a discrete event
simulator, TCLs are being defined by the time events happen.
In this case, this meta-element determines start and stop points
of applications and connects to SchedulingEvents through
schedule meta-element. It should be noted that Application
meta-element includes FTP meta-element (this is the first
attempt to make standards in file transportation in networks
based on TCP protocols) and CBR meta-element (this meta-
element sends bits with fixed rate and has PacketSize, rate and
random properties). In these meta-elements, inherit concept is
attendant, in a way that, both FTP and CBR meta-elements
acquire Application meta-element characteristics. This issue is
important because it supports hierocracy concepts.

It should be said that, FTP meta-element, uniquely, uses
TCP protocol (it never uses UDP protocol). There is
setupTCP between TCP elements that is responsible for
scheduling.

2.2 NAM Viewpooint
As it was mentioned before, to make programs in NS-2 there
should be an object simulator for manual TCL. In this case,
the existence of a simulator meta-element in turning an object
to ns is necessary. Since NS-2 simulator gets help of NAM in
graphical simulation, supposing a NAM named meta-element
makes a graphical picture out of network topology.

Away from all these items, every network formation is
made up of nodes, links and events that cause sending and
receiving process. In suggestive meta-elements, we have
supposed (Agent, Link and node) meta-elements as concepts
for NS-2, and connected these meta-elements to simulator
meta-element through a link.

To distinguish Node meta-elements from each other, we
supposed a name property. In addition, if in NS-2 programs
the place and shape of the nodes have not been statically
defined, in that case, we can use Position and Shape meta-
elements to decide on the location and shape of the nodes. We
can also decide on node color using ColorNode meta-element.
To mark nodes to make difference among them, we can use
MarkUp meta-element, and to eliminate the marks we can use
MarkDelete meta-elements. We can also use AddLabel meta-
element to put label on the nodes. All these meta-elements
connect to Node meta-element through separate links.

To distinguish Link meta-elements from each other, we
supposed a name property. To color Link meta-element, we
can use ColorLink meta-element. Like Node and Link meta-
elements, to distinguish Agent meta-elements from each
other, we supposed a name property. We can also use
ColorFlow meta-element to give color to flows.

Figure 2. Metamodel of NAM Viewpoint

International Journal of Computer Applications Technology and Research
Volume 3– Issue 10, 626 - 633, 2014, ISSN: 2319–8656

www.ijcat.com 629

3. GRAPHICAL CONCRETE SYNTAX
All languages provide notations that describe representation
and building blocks of programs in those languages. These
notations are known as concrete syntax of those languages.
Concrete syntax has basically two main types: visual and text
syntax [13], used by different languages [17]. This paper
suggests a graphic concrete syntax for NS-2 programing.
 To achieve concrete syntax, first a metamodel is defined for
NS-2 programs in Ecore. Then to check its models’ validity,
we produce an EMF based tool and chose a graphical symbol
for each concept and its relations. Table 1 and Table 2 show
graphical symbols for concrete syntax in Topology
Viewpoint, and NAM Viewpoint for NS-2 programs.

TABLE 1. SOME OF THE CONCEPTS AND NOTATIONS FOR THE
CONCRETE SYNTSX OF TOPOLOGY VIEWPOINT

TABLE 2. SOME OF THE CONCEPTS AND NOTATIONS FOR THE

CONCRETE SYNTSX OF NAM VIEWPOINT

Concept Symbol Concept Symbol

Simulator

NAM

Link

ColorLink

Monitor

Agent

ColorFlow

Node

Shape

AddLabel

Position

ColorNode

MarkUp

MarkDelete

 After selecting graphical symbols, eclipse modeling
framework was used for relating domain concept, Ecore
format, and their symbols. Resultant structure is a graphic
editor developed according to concrete syntax of NS-2
programs.

4. CASE STUDY
Since there are plenty of samples in NS-2 programs, in this
chapter, we have selected simulation scenario in formation
dynamic networks using nodes and relations among them, and
the way we send information from a node to node, and the
observing way of a queue and running simulation nam scripts,
and since it is one of the most important issues in network
formation and is popular in computer world, and more
importantly, it has enough complexity in code generation.

We have drawn the methodology over these samples in
figures 3 and 4 with graphical editor. With a quick view on
research sources about dynamic network scenario, we can
easily understand that circular topology of this case study has
made more nodes than the others which can hold them in a
Tel presentation. With using ring links with reciprocal
connection among nodes in DropTail type, we can connect
circular topology nodes in a way that connects from one node
to the other, except the latest node that joins the first node. To
transfer information among nodes, there is a factor defined to
recognize sender and receivers in the nodes. It also helps
transfer information from one node to the other in a way that
data traffic uses the shortest way. It should be said that in
topology scenario for transferring information, we have used
UDP.

In addition, in this study case, there is the possibility for
visualizing with the help of nam program which also helps
color nodes, shape them, color links among nodes, mark
nodes, add labels to nodes, and color the flow of information
transferring among nodes [22].

Needless to say that, illustrated models with this tool
will help change models to executable codes, as the next work
in this paper, in NS-2 program.

As it can be seen in this case study scenario of Figure 3,
circular topology formation includes seven nodes (N0, N1,
N2, N3, N4, N5 and N6).

To connect all the nodes to each other, except the last
node that connects to the first one, we have used reciprocal
links with band width of 1 mega bytes per second and 10
mille second of delay. Every node also gets benefit of a queue
with DropTail (dropping from the head part) property.

A UDP protocol agent is connected to N0. This agent is
in relation with Null server in N3. N3 is connected with UDP
agent that is CBR traffic generator, as well. CBR traffic
generator has been formed in a way that can make 500 kilo
bytes per second with the rate of 0.005. CBR generator starts
in 0.5 and stops after 4.5 seconds after simulation.

Symbol Concept Symbol Concept

Node

Application

TCP

UDP

FTP

CBR

AgentTCP

AgentTCPSink

AgentUDP

AgentNull

Simulator

Link

DuplexLink

SimplexLink

QueuingDiscipline

Agent

DropTail

CBQ

RED

SchedulingEvents

International Journal of Computer Applications Technology and Research
Volume 3– Issue 10, 626 - 633, 2014, ISSN: 2319–8656

www.ijcat.com 630

Figure 3. Topology viewpoint modeling

Figure 4. NAM viewpoint modeling

International Journal of Computer Applications Technology and Research
Volume 3– Issue 10, 626 - 633, 2014, ISSN: 2319–8656

www.ijcat.com 631

In this scenario of Figure 4, NS simulator has NAM
which supplies the visual picture of network topology. In
addition, it also has seven nodes and relative links among
them, and a factor that causes data be sent from sender to
receiver node. By using nam program, we can specify
separate property for each node, link and agent. In this
sample, we have supposed the circle as the shape and red as
the color of the nodes. To differentiate N0 from N3, by the
time a node starts sending a package, circumference of the
node changes into blue color and a label appears saying the
active node’s name, and when the sending activity finishes,
there will be a label saying that the node is inactive. In
addition, for all links among nodes, we have specified green
color. Finally, flow number 1 is highlighted with blue color.

5. LITERATURE REVIEW
Evaluation of application and network potential efficiency are
gotten through simulation experiments. This needs
appropriate environment with several simulators and result
analyzers tools. We evaluated and compared them in [2, 3].
One of the network simulators is NS-3 simulator which
formally, started in mid 2006, but its first version appeared in
2008. It has appeared in library and dynamically or statically
joins C++. These libraries start NS-3 and define simulation
topology. Because of NS-3 architecture hardware simulators
can work with all types of protocols. It also needs a few codes
in protocol simulation location to perform it in real world.
Unlike NS-2 that only works with some selective protocols,
NS-3, because of its architecture can work with all types of
protocols. It also needs a few codes in protocol simulation
location to perform it in real world. Despite of the advantages,
NS-3 has some disadvantages as well. This is a software
simulator that is mainly based on GNU GNV2, and generally
used for instructional and research purposes. Experiments also
showed that this simulator can control large packages;
however, it is problematic with small packages. On the other
hand, there are not many models accessible for NS-3. Unlike
DSMLs, there is no GUI for making typologies, let alone its
picturing is temporary [8].

OMNET++ is another simulation tool which is known as
a free multi-purpose broken simulation tool, and is used
mainly for university and non-business purposes. Architecture
based on objective structure of OMNET++ makes it possible
to simulate in all systems. Since OMNET++ is just a multi-
purpose simulator, it can only supply the core and
programmer connector for API application to make a
simulator. This simulator does not make elements to be used
in particular networks such as computer networks. With a
deep looking at OMNET++ structure, it can easily be
understood that everything in OMNET++ appears as a
module. Modules are written in C++, and form the real
behavior of the system. Simulation activity is so complex in
OMNET++. A person needs to learn NED language to
understand interactive modules, INET frames, NED files, and
ini files. OMNET++ is also supported by GUI and is
performable on GUI as well. The GUI simulator of
OMNET++ only shows the performance of simulation rather
than making a scenario. In comparison with Domain Specific
Modeling Languages, we can make several formation
scenarios graphical formats [9].

To compensate the disadvantages of simulators, there is
an attempt to have system developments over formal
designing languages such as SDL, and supporting them in
creation, holding, validation and performing happens
automatically. For this reason, researchers introduced
NS+SDL simulator which is developed version of NS and is a
combination of NS2 simulator and SDL language design.

NS+SDL enables developer to use SDL designing plan as
basic common codes in generating codes for simulators. From
this basic code, C code is generated automatically using SDL-
to-C which expected to reflect the results of system behavior
application evaluation. In addition, when NS2 combines with
a proper environmental SDL package which is fully supported
by NS+SDL, all the system nodes may use their formation
and Log files. With this shape of support, the attempt to
simulate system application will decrease, and NS+SDL
simulator can survive as a valuable ring in tools’ cycle. A
sample work has been done in Humbold University of Berlin
in which integrative tool environment of SDL has been
created with compiler parameters in C++ destination language
and JAVA. The problem here is that, since compiler
parameters such as code generators suffer from lack of
constancy and enough documents, the project hasn’t been
certified. On the other hand, self-contained systems on SDL
can be simulated. For instance, it is impossible to simulate and
control several SDL systems with an external simulator or
with simulation parameters from variety of different sources.
Recently, an application environment for simulation based on
SDL set has been created in Aocher University. This
environment is made of up SDL application evaluation tool of
class library (SPEETCL), SDL-to-C compiler for code
generation and graphical interactive simulation tool (GIST).
SDL set of planning property is used as a common basic code
in code generation and simulation. The problem is that, since
compilers that are used in code generation and simulation are
different from each other, the validity of results drops down
[18].

In a research [25] subjected as SDL code generator for
network simulation, Brumbulli and Ficher introduced new
techniques for combining and changing SDL codes. The aim
was to generate automatic C++ codes to produce modules for
NS-3 simulator. Since new module integrates with simulator,
the simulator stays unchanged. In this trend, system
developing process uses SDL designing language and RTDS
tools to make an integrative environment for validation,
holding and automatic performing for the system. On the
other hand, these tools disable to evaluate application
behavior of network and distribution systems.

One of the tools in showing and evaluating simulation
products is NAM network animator which supplies a visual
picture of network topology. This tool enables operators to
generate NS-2 codes with operator graphical link and based
on Tel. NS-2 cable manual simulators have 5 main elements:
nodes, links, queues, packages and agents. NAM, visually
explains nodes with defined shapes in directed files and shows
cable links among connected nodes as lines between them. It
also gives cable packages as blocks which run in link routs.
During replaying active information and packages are shown
on monitoring window of NAM. NAM first was made to
cable networks. It can be used to show nodes’ movement
rather than wireless systems. On the other word, there is no
visualize in transporting and commuting in produced routs
during NAM usage for NS-2 wireless scenarios [19].

 Another simulator is Pyviz, which explains visual
aspects, nodes moving, links among nodes and data
transferring. It has a mediator interactive program. After NS-
3010 was published, Pyviz was made as a separate connector
from NS-3. This visualizing tool is a part of NS-3 source code
that mainly is written by Python language; however, supports
C++ network simulator. The motivation beyond Pyviz
production was completely operator oriented and sociological.
Like other network simulators, visualizing tools are needed in
evaluation of its validity. Pyviz has no information supporting
to tolerate delays in network simulation. A defect for Pyviz in

International Journal of Computer Applications Technology and Research
Volume 3– Issue 10, 626 - 633, 2014, ISSN: 2319–8656

www.ijcat.com 632

moving nodes in visualizing is that nodes pay no attention to
moving area of Pyviz so they disorder program while it is
running [21]. Another tool in showing simulation results is
Scalar that can be used in producing scalar files. It enables the
extraction of a single text which can be read by MATLAB,
and spread sheets such as Excel and open Office Cale. All
these external applications are strongly able to statistical
analyze and visualize. On the other hand, OMNET++ cannot
improve its capacity. On the contrary, OMNET++ mainly
focuses on real simulators and pays no attention to the
simulation results [19]. All the existent simulators have their
own defect in Domain Specific Modeling Language. A
Domain Specific Modeling Language not only is able to
model a graphical program and control it, but also can change
that model into other peer models and improve language
semantics, generate performable codes on popular languages
and improve efficiency. In this case the speed of code
generation increases and the risk of error arising decreases, as
a result, overall efficiency will increase.

6. CONCLUSION
In this paper, NS-2 programs are selected as regarded domain
for developing a DSML. Considering simulation concepts and
relations, abstract syntax was formally defined as a
metamodel proportional to language complexities. Then, the
concrete syntax was prepared in the form of appropriate
notations and a graphic modeling editor supported by a
graphical tool. Also, a instance model was represented by this
tool to illustrate the use of proposed methodology.
As our future work, we are going to focus on the formal
semantic representations for NS-2 programs in the form of
constraints [24]. To identify language statements and their
meanings considering language, semantic is a must.
Otherwise, some imaginations may form about language,
leading to its incorrect application. As another future work, to
have the new language applicable, we aim to use the models
as input for code generation. This will be realized in the form
of operational semantics and model transformation. Finally,
integrated tools will be developed for supporting these
features of NS-2 programs in target language.

ACKNOWLEDGMENT
 The authors would like to acknowledge Dr. Ali Akbar
Dadjouyan for his helpful comments and suggestions during
the preparation of this study regarding NS-2 programing.
Also, Elham Azadi Marand would like to acknowledge
Moharram Challenger, her M.Sc supervisor, for all his
guidance and support during her thesis study.

REFERENCES
[1] Azadi, E.. and M.Challenger, 2013. Assessment and

Comparison of designing methods, Implementation and
required tools for Domain Specific Languages (DSLs)
development. First National Conference on Advances in
computer science and information retrieval approaches.
Young Researchers Club, Islamic Azad University.
Roudsar and Amlash, Iran, pp. 1-8. (in Persian).

[2] Azadi, E., E. Azadi and M. Challenger, 2014.
Assessment and Comparison of Network Simulation
Tools and Languages. 8th Symposium on Advances in
Science & Technology (8th SASTech 2014), Mashhad,
Iran, pp. 1-8, (in Persian).

[3] Azadi, E., E. Azadi and M. Challenger, 2014.
Assessment and Comparison of Topology generation tool
and View and analyze the results of network simulation.
8th Symposium on Advances in Science & Technology
(8thSASTech 2014), Mashhad, Iran, pp. 1-8. (in Persian).

[4] Lacage, M. and T.R. Henderson, 2006. Yet Another
Network Simulator. In Proceedings of the Seventh ACM
Symposium on Modeling. pp. 1-8.

[5] Barr, R., V. Haas and R. Renesse, 2004. JiST: An
efficient approach to simulation using virtual machines.
Software practice and Experience. pp.1-7.

[6] Siraj, S., A.K. Gupta and R. Badgujar, 2012. Network
Simulation Tools Survey. International Journal of
Advanced Research in Computer and Communication
Engineering. Vol. 1, Issue 4, pp. 1-10.

[7] Naicken, S., A. Basu, B. Livingston and S. Rodhetbhai,
2006. A Survey of Peer-to-Peer Network Simulators.
Proceedings of the Seventh Annual Postgraduate
Symposium, Liverpool, UK. Pp. 1-8.

[8] Thomas, C. 2011. NS-3 Simulation Of Wimax Networks.
MSc Thesis. Department of Computer Science &
Engineering - Washington University in St. Louis. pp. 1-
60.

[9] Hogie, L. 2007. Mobile Ad Hoc Networks: Modelling,
Simulation and Broadcast-based Applications. Ph.D
thesis in Computer Science. University of Luxembourg.

[10] Montresor, A. and M. Jelasity. 2009. PeerSim: a scalable
P2P simulator. In Proc. of the 9th Int. Conference on
Peer-to-Peer (P2P’09). pp. 1-2.

[11] Ezreik, A. and A. Gheryani, 2012. Design and
Simulation of Wireless Network using NS-2. 2nd
International Conference on Computer Science and
Information Technology (ICCSIT'2012). Pp. 157-161.

[12] Weingartner, E., H. Lehn and K. Wehrle, 2009. A
Performance Comparison of Recent Network Simulators.
in: Proceedings of the IEEE International Conference on
Communications 2009 (ICC 2009), Dresden, Germany,
IEEE, pp:1 – 5.

[13] Demirkol, S., M. Challenger, S. Getir, T. Kosar, G.
Kardas and M. Mernik, 2013. A DSL for the
Development of Software Agents Working in the
Semantic Web Environment. International Journal of
Computer Science and Information Systems (ComSIS).
(Accepted) DOI: 10.2298/CSIS121105044D.

[14] Kent, S. 2002. Model Driven Engineering. Lecture Notes
in Computer Science Volume 2335, pp 286-29.

[15] Schmidt, D.S. 2006. Model-driven engineering. IEEE
Computer Society, pp. 25-31.

[16] Voelter, M., S. Benz, C. Dietrich, B. Engelman, M.
Helander, L. Kats, E. Visser and G. Wachsmuth, 2014.
DSL Engineering. 2010-1013, Available online at:
http://dslbook.org.

[17] Clark, T., P. Sammut and J. Willans, 2008. Applied Meta
Modeling A Foundation For Language Driven
Development. available online at:
http://eprints.mdx.ac.uk/6060/1/Clark-
Applied_Metamodelling_(Second_Edition)[1].pdf. pp .1-
224.

[18] Kuhn, T., A. Geraldy, R. Gotzhein and F. Rothl, 2005.
ns+SDL – The Network Simulator for SDL Systems. A.
Prinz, R. Reed, and J. Reed (Eds.): SDL 2005, LNCS
3530, pp. 103–116.

[19] Reineck, K.M. 2008. Evaluation and Comparisonof
Network Simulation Tools. Master Thesis, University of
Applied Sciences Bonn Rhein-Sieg, Department of
Computer Science.

[20] Challenger, M., S. Getir, S. Demirkol and G. Kardas,
2011. A Domain Specific Metamodel for Semantic Web
enabled Multi-agent Systems. Lecture Notes in Business
Information Processing, vol. 83, pp. 177-186.
Multi-agent Systems", Lecture Notes in Business
Information Processing , Vol. 83, pp. 177-186, 2011.

[21] Kurkowski, S., T. Camp and M. Colagrosso, 2004. A
Visualization and Animation Tool for NS-2 Wireless
Simulations: iNSpect. Dept of Mathematical and
Computer Sciences.

International Journal of Computer Applications Technology and Research
Volume 3– Issue 10, 626 - 633, 2014, ISSN: 2319–8656

www.ijcat.com 633

[22] Ekram, H. and I. Teerawat, 2009. Introduction to
Network Simulator NS2. Springer New York Dordrecht
Heidelberg London. ISBN: 978-1-4614-1405-6.

[23] Challenger, M., Demirkol S., Getir S., Kosar T., Kardas
G., Mernik M, 2014. On the use of a Domain-Specific
Modeling Language in the Development of Multiagent
Systems. International Journal of Engineering
Applications of Artificial Intelligence, Vol. 28, pp. 111–
141.

[24] Getir, S., M. Challenger and G. Kardas, 2014. The
Formal Semantics of a Domain-specific Modeling
Language for Semantic Web enabled Multi-agent
Systems. International Journal of Cooperative
Information Systems, vol. 23, issue 3, pp. 1450005.

[25] Brumbulli, M and J. Fisher, 2011. SDL Code Generation
for Network Simulators. Springer-Verlag Berlin
Heidelberg 2005, pp. 103–116.

