
International Journal of Computer Applications Technology and Research
Volume 3– Issue 10, 634 - 639, 2014, ISSN: 2319–8656

www.ijcat.com 634

A Comparative Analysis of Slicing for Structured
Programs

LipikaJhaK.S.Patnaik
Department of Computer Science Department of Computer Science

and engineering, and engineering,
Birla Institute of Technology,Birla Institute of Technology,

Mesra, Ranchi, IndiaMesra, Ranchi,India

Abstract: Program Slicing is a method for automatically decomposing programs by analyzing their data flow and control flow.
Slicing reduces the program to a minimal form called “slice” which still produces that behavior. Program slice singles out all
statements that may have affected the value of a given variable at a specific program point. Slicing is useful in program
debugging, program maintenance and other applications that involve understanding program behavior.In this paper we have
discuss the static and dynamic slicing andits comparison by taking number of examples.

Keywords: Slicing techniques, control and data dependence, data flow equation, control flow graph, program dependence graph

1. INTRODUCTION

Program slicing is one of the techniques of
program analysis. It is an alternative approach to
develop reusable components from existing
software. To extract reusable functions from ill-
structured programs we need a decomposition
method which is able to group nonsequential
sets of statement. Program is decomposed based
on program analysis. A program is analyzed
using data flow and control flow. The
decomposed program is called slice which is
obtained by iteratively solving data flow
equations based on a program flow graph.
Program analysis uses program statement
dependence information (i.e. data and control
dependence) to identify parts of a program that
influence or are influenced by a variable at
particular point of interest is called the slicing
criterion.

Slicing Criterion:

 C = (n, V)

 where n is a statement in program P and V is a
variable in P .A slice S consists of all statements
in program P that may affect the value of
variable V at some point n.

Program slicing describes a mechanism or tool
which allows the automatic generation of a slice.
All statements affecting or affected by the
variables V in n mentioned in the slicing
criterion becomes a part of the slice.

This paper gives the detail description of
slicing techniques and comparison of different
slicing. The paper is organized as follows.
Section 2 defines some common slicing
techniques.Section 3 defines static and dynamic
slicing .Section 4 defines comparison of
different slicing, section 5 presents conclusion
andfinallyacknowledgement and references.

2. SLICING TECHNIQUE
The original concept of a program slice was
introduced by Weiser[1].He claims that a slice
corresponds to the mental abstractions that

International Journal of Computer Applications Technology and Research
Volume 3– Issue 10, 634 - 639, 2014, ISSN: 2319–8656

www.ijcat.com 635

people make when they are debugging a
program. A slice S consists of all statements in
program P that may affect the value of variable
V at some point n.

Variables V at statements n can be affected
by statements because:

– Statements which control the
execution of n(Control
Dependence)

– Statements which uses the V at
n (Data Dependence)

The goal of slicing is to create a subprogram of
the program (by eliminating some statements),
such that the projection and the original program
compute the same values for all variables in V at
point n.

The computation of a slicing is done using data
dependence and control dependence. Data
dependence and control dependence are defined
in terms of the CFG of a program. A control
flow graph is a graph which is interpreted as a
program procedure. The nodes of a graph
represent program statements and edges
represent control flow transfers between
statements.
A Control Flow Graph for program P is a graph
in which each node is associated with a
statement from P and the edges represent the
flow of control in P. With each node n (i.e., each
statement in the program) associate two sets:
USE(n), the set of variables whose values are
used at n, and DEF(n),the set of variables whose
values are defined at n.

There are three main techniques to compute
slice:

2.1Data dependence(DD) and control
dependence(CD)
 Data dependence and control dependence are
defined in terms of the CFG of program.A
statement j is data dependent on statement i if a
value computed at i is used at j in some program

execution. A data dependence may be defined
as; there exists a variable x such that
(i) x ε DEF(i) and x ε USE(j)

or
x ε DEF(i) and x ε DEF(j)
 (ii) There exists a path from i to j without
intervening definitions of x.

Control dependence information identifies the
conditionals node that may affect execution of a
node in the slice. In a CFG, a node j post-
dominates a node i if and only if j is a member
of any path from i to Stop.Node i is control-
dependent on j in program P if
1.thereexists a path P from i to j such that j post
dominates every node in P.
2. i is not post dominated by j.

SC={m | n . n є C and m→*n}.
Or
Sc = DD U CD

2.2Data Flow Equation
According to Weiser the slicing is computed by
iteratively solving data flow equation.He defines
slice as an executable program that is obtained
from the original program by deleting zero or
more statement. At least one slice exists for any
criterion for any program that is the program
itself.
The set of relevant variable RO

C(i) with respect
to slicing criterion C=(p,V) is:
1. RO

C(i)=V when i=p
2. RO

C(i)= (RO
C(j)-DEF(i))U (USE(i) if

RO
C(j)∩DEF(i)≠ø)

The set of relevant statements to C denoted
S0

C,is defined as:
ܵ௖଴={i | Def(i) ∩ ܴ௖଴(j) ≠ ø ,i → CFG j}
ܵ௖଴={3,4,9}
The set of conditional statements which control
the execution of the statements in S0

C,denoted
B0

C is defined as:
 B0

c={bєG|Infl(b) ∩ S0
C≠ ø }

Infl(5)={6,7,8}
The sliced program Sc is defined recursively on
the set of variables and statements which have
either direct or indirect influence on V. Starting
from zero, the superscripts represent the level of
recursion.

International Journal of Computer Applications Technology and Research
Volume 3– Issue 10, 634 - 639, 2014, ISSN: 2319–8656

www.ijcat.com 636

ܴ௖௜ାଵ(n)= ܴ௖௜ (n)∪௕∈஻೎೔ ܴ௕,∪(௕))
௢ (n)

 ௖௜ାଵ={bε G|INFL(b) ∩ ܵ௖௜ାଵ ≠ ø }ܤ
ܵ௖௜ାଵ={n ε G|DEF(n) ∩ ܴ௖௜ାଵ(j) ≠ ø}U ܤ௖௜

The sliced program includes the conditional
statements with an indirect influence on a
slice,the control variables which are evaluated in
the logical expression , and the statements which
influence the control variables.

2.3Program dependence graph
Program dependence graph is defined in terms
of a program’s control flow graph .The PDG
includes the same set of vertices as the
CFG,excluding the EXIT vertex.The edges of
the PDG represent the control and flow
dependence induced by the CFG.
The extraction of slices is based on data
dependence and control dependence. A slice is
directly obtained by a linear time walk
backwards from some point in the graph,
visiting all predecessors.

3. TYPES OF SLICING

3.1 Static Slicing
It includes all the statements that affect variable
v or affected by the variable at the point of
interest (i.e., at the statement x). It is computed
by finding consecutive sets of indirectly relevant
statements, according to data and control
dependencies. Static slicing criterion consists of
a pair (n, V)where n is point of interest and V is
a variable in a program based on which program
will be sliced.

3.2 Dynamic Slicing
A dynamic program slice includes all statements
that affect the value of the variable occurrence
for the given program inputs, not all statements
that did affect its value. Dynamic slicing
criterion consist of a triple (n, V, I) where I is an
input to the program. In static slicing, only
statically available information is used for
computing slices.

4. COMPARISON USING DATA FLOW
EQUATION

Example 1: Let us consider a program which
computes the sum and product of first n
numbers, using a single loop.

void main()

1. {int n;
2. cin>>n;
3. if (n>0)
4. int i=1;
5. int sum=o;
6. int product=1;
7. int k;
8. while(i<=n)
9. {cin>>k;
10. sum=sum+k;
11. product=product*k;
12. i=i+1;}
13. cout<<sum;
14. cout<<product;

}
Static slicing: Slicing criterion C is (14, product)

St
at
e
m
en
t

USE() DEF() Ro
c ܴ௖ଵ

1 n Ø Ø
2 n Ø Ø
3 N Ø N
4 i Ø i,n
5 sum Ø i,n
6 product Ø product,i,n
7 k product product,i,n
8 i,n product product,i,n
9 k product product,i,n

,
10 sum,k sum product,

k
product,i,n
,k

11 product,
i

product product,
k

product,i,n
,k

12 I i product product,i,n
13 Sum product Product
14 Product product Product

ܵ஼଴= {6,9,11}

International Journal of Computer Applications Technology and Research
Volume 3– Issue 10, 634 - 639, 2014, ISSN: 2319–8656

www.ijcat.com 637

 ஼଴={3,8}ܤ
ܴ஼ଵ(n)=ܴ஼଴(n)∪௕∈ழଷ,଼வ ܴ௕,∪(௕))

௢ (n)
ܴଷ,௡
௢ (3)=n ܴଷ,௡

௢ (14)=n ܴଷ,௡
௢ (13)=n

ܴଷ,௡
௢ (12)=n ܴଷ,௡

௢ (11)=n
ܴଷ,௡
௢ (10)=n ܴଷ,௡

௢ (9)=n ܴଷ,௡
௢ (8)=n

ܴଷ,௡
௢ (7)=n ܴଷ,௡

௢ (6)=n ܴଷ,௡
௢ (5)=n

ܴଷ,௡
௢ (4)=n ܴଷ,௡

௢ (2)= Ø ܴଷ,௡
௢ (1)= Ø

଼ܴ,ழ௜,௡வ
௢ (8)=i,n ଼ܴ,ழ௜,௡வ

௢ (12)=i,n
଼ܴ,ழ௜,௡வ
௢ (11)=i,n ܴ ଼,ழ௜,௡வ

௢ (10)=i,n
଼ܴ,ழ௜,௡வ
௢ (9)=i,n ଼ܴ,ழ௜,௡வ

௢ (7)=i,n
଼ܴ,ழ௜,௡வ
௢ (6)=i,n ଼ܴ,ழ௜,௡வ

௢ (5)=i,n
଼ܴ,ழ௜,௡வ
௢ (4)=i, ଼ܴ,ழ௜,௡வ

௢ (3)= Ø
଼ܴ,ழ௜,௡வ
௢ (2)= Ø ଼ܴ,ழ௜,௡வ

௢ (1)= Ø
ܵ஼ଵ={12,11,9,6,4,2}
 ௖ଵ={bε G|INFL(b) ∩ ܵ௖௜ାଵ ≠ ø }ܤ
 ௖ଵ={3,8}ܤ
ܵ௖௜ାଵ={n ε G|DEF(n) ∩ ܴ௖௜ାଵ(j) ≠ ø}U ܤ௖௜
ܵ௖ଵ={2,3,4,6,8,9,11,12}

Dynamic slicing: Slicing criterion
C:(14,product,n=2)
voidmain ()

1. {int n;
2. cin>>n;
3. if (n>0)
4. int i=1;
5. int sum =1;
6.int product=1;
7.int k;
81. i<=n
91.cin>>k;
101. sum=sum+k;
111.product=product*k;
121.i=i+1;}
82. i<=n
92. cin>>k;
102. sum=sum+k;
112. product=product*k;
122. i=i+1;
83. i<=n
13. sum=sum+k;
14. cout<<product;

}

DU:{(2,3),(2,81),(2,82),(2,83),(4,81),(4,121),
(121,82)
(121,122),(122,83),(6,111),(111,112),(112,14),(91,1
11),(92,112)

TC:
{3,4},{3,5},{3,6},{3,7}{3,81},{(81,91),(81,111),
(81,121), (82,92),(82,112), (82,122) }
IR: {(81,82), (81,83), (82,81), (82,83), (83,81),
(83,82)

S0={112}
A1={111,92,82}
S1= {112, 111, 92, 82}
A2={6,91,81,2,83,121}
S2={112, 111, 92, 82, 6,91,81,2,83,121}
A3={4, 121,122}
S3= {112, 111, 92, 82, 6,91,81,2,83, 4, 121,122}

Example 2: Let us consider a program which
computes the sum and product of first n
numbers, using for loop.

void main()

1. {int n;
2. cin>>n;
3. if (n>0)
4. int sum=0;
5. int product=1;
6. int k;
7. for(i=1;i<=n;i++)
8. {cin>>k;
9. sum=sum+k;
10. product=product*k;

 }
11. cout<<sum;
12. cout<<product;

}

Static slicing: Slicing criterion C is (12, product)

St
at
e
m
en
t

USE() DEF() ܴ௖଴ ܴ௖ଵ

1 n Ø I
2 n Ø I
3 N Ø i,n
4 sum Ø i,n
5 product Ø i,n
6 k Product product,i,n
7 i,n i Product product,i,n
8 k Product product,i,n

International Journal of Computer Applications Technology and Research
Volume 3– Issue 10, 634 - 639, 2014, ISSN: 2319–8656

www.ijcat.com 638

,
9 sum,k sum product,

k
product,i,n
,k

10 product,
k

product product,
k

product,i,n
,k

11 Sum product Product
12 Product product Product

ܵ஼଴= {11,6,4}
 ஼଴={7,8,9}ܤ
ܴ଻,௡
௢ (3)=n ܴ଻,௡

௢ (11)=product,n
ܴ଻,௡
௢ (10)=product,k,n

 ܴ଻,௡
௢ (9)=product,k,nܴ଻,௡

௢ (8)=product,n
ܴ଻,௡
௢ (7)=product,n ܴ଻,௡

௢ (6)=product,n
 ܴ଻,௡

௢ (5)=n
ܴଷ,௡
௢ (4)=n ܴ଻,௡

௢ (2)= Ø ܴଷ,௡
௢ (1)= Ø

ܴ଻,ழ௜,௡வ
௢ (7)=i,n ܴ଻,ழ௜,௡வ

௢ (11)=i,n
ܴ଻,ழ௜,௡வ
௢ (10)=i,nܴ଻,ழ௜,௡வ

௢ (9)=i,n
ܴ଻,ழ௜,௡வ
௢ (8)=i,nܴ଻,ழ௜,௡வ

௢ (6)=i,n ܴ଻,ழ௜,௡வ
௢ (5)=i,n

ܴ଻,ழ௜,௡வ
௢ (4)=i,n ܴ଻,ழ௜,௡வ

௢ (3)=i,n
ܴ଻,ழ௜,௡வ
௢ (2)=i ܴ଻,ழ௜,௡வ

௢ (1)=i
ܵ஼ଵ={10,8,7,5,2}
 ௖ଵ={3,7}ܤ
ܵ௖ ={2,3,5,7,8,10}

Dynamic slicing: Slicing criterion
C:(12,product,n=2)
void main ()

1. {int n;
2. cin>>n;
3. if (n>0)
4. int sum =1;
5. int product=1;
6. int k;
71. i=1; i<=n
81. cin>>k;
91. sum=sum+k;
101. product=product*k;
72. i<=n
82. cin>>k;
92. sum=sum+k;
102. product=product*k;
73. i<=n
11. cout<< sum;
12. cout<<product;

}

DU: {(2,3),(2,71),(2,72),(2,73),(4,91),(91,92),
(92,11),(5,101),(101,102),(102,12),(81,91),(81,101),
(82,92), (82,102)}
TC:
{(3,4),(3,5),(3,6),(3,71),(71,81),(71,91),(71,101),
(72,82),(72,92), (72,102) }
IR: {(71,72), (71,73), (72,71), (72,73), (73,71),
(73,72)

S0= {102}
A1= {101, 82, 72}
S1= {102, 101, 82, 72}
A2= {5, 81, 71, 2, 73,101}
S2= {102, 101, 82, 72, 5, 71, 81, 2, 73}
A3= {3}
S3= {102, 101, 82, 72, 5, 71, 81, 2, 73,3}

5. CONCLUSION
The concept of program slicing was originally
defined by Weiser as a method for decomposing
a program into pieces, i.e., slices. The static slice
produced by his method is of the partially
equivalent program type. His solution produces
a static program slice based on solving data flow
equations iteratively on the flow graph of the
program. Here in this paper we have used the
same concept for computing the static and
dynamic slicing. We have taken the number of
example and analyzed the slicing .As the
number of control statement increases in a
program it becomes difficult to compute the
control dependent statement and then the
relevant variable. In for loop we can either
consider the different statement for the three
section or we can consider a single statement.
The output will be same the only difference is
that it will be easy to compute from the different
statement.

6. ACKNOWLEDGEMENT
I wish to convey my sincere gratitude and
appreciation to each and every person who
helped me in writing this paper. I am grateful to
my institution, Birla Institute of Technology and
my colleagues. I would especially like to thank
Dr. K. S. Patnaik, my guide for his advice and
guidance.

International Journal of Computer Applications Technology and Research
Volume 3– Issue 10, 634 - 639, 2014, ISSN: 2319–8656

www.ijcat.com 639

7. REFERENCES
[1] M. Weiser, “Program Slicing,” IEEE
Transactions on Software Engineering, Vol. 16,
No. 5, 1984, pp. 498-509.

[2] F. Tip, “A Survey of Program Slicing
Techniques,” Journal of Programming
Languages, Vol. 3, No. 3, 1995, pp. 121-
189

[3] D. Binkley and K. B. Gallagher,
“Program Slicing,” Advances in Computers,
Vol. 43, 1996, pp. 1-50.

[4] B. Korel and J. Laski. Dynamic program
slicing. Information Processing Letters,
29(3):155–163, 1988.

[5] M. Kamkar, “An overview and
comparative classification of program slicing
techniques,” J. Systems Software, vol. 31, pp.
197–214, 1995.

