
International Journal of Computer Applications Technology and Research

Volume 3– Issue 12, 785 - 790, 2014, ISSN:- 2319–8656

www.ijcat.com 785

Reverse Engineering for Documenting Software

Architectures, a Literature Review

Hind Alamin Mohamed

College of Computer Science and

Information Technology,

Sudan University of Science and

Technology,

SUST University, SUDAN

Hany H Ammar

Lane Computer Science and

Electrical Engineering Department,

College of Engineering and Mineral

Resources,

West Virginia University, USA

Abstract: Recently, much research in software engineering focused on reverse engineering of software systems which has become one

of the major engineering trends for software evolution. The objective of this survey paper is to provide a literature review on the

existing reverse engineering methodologies and approaches for documenting the architecture of software systems. The survey process

was based on selecting the most common approaches that form the current state of the art in documenting software architectures. We

discuss the limitations of these approaches and highlight the main directions for future research and describe specific open issues for

research.

Keywords: Reveres Engineering; Software Architecture; Documenting Software Architectures; Architectural Design Decisions.

1. INTRODUCTION
 Reverse engineering has become one of the major

engineering trends for software evolution. Reverse

engineering is defines as the process of analyzing an existing

system to determine its current components and the

relationship between them. This process extracts and creates

the design information and new forms of system

representations at a higher level of abstraction [1, 2]. Garg et

al. categorized engineering into forward engineering and

reverse engineering. Both of these types are essential in the

software development life cycle. The forward engineering

refers to the traditional process for developing software which

includes: gathering requirements, designing and coding

process till reach the testing phase to ensure that the

developed software satisfied the required needs [1]. While

reverse engineering defined as the way of analyzing an

existing system to identify its current components and the

dependencies between these components to recover the design

information, and it creates other forms of system

representations [1, 2].

Legacy systems are old existing systems which are important

for business process. Companies rely on these legacy systems

and keep them in operations [2]. Therefore, reverse

engineering is used to support the software engineers in the

process of analyzing and recapturing the design information

of complex and legacy systems during the maintenance phase

[2, 3].

In addition, the main objectives of reverse engineering are

focused on generating alternative views of system's

architecture, recover the design information, re-

documentation, detect limitations, represent the system at

higher abstractions and facilitate reuse [1, 2, 4].

The main purpose of this survey paper is to achieve the

following objectives: provide a literature review on the

existing reverse engineering methodologies for documenting

the architecture of software systems, and highlights the open

issues and the directions for future research.

The rest of the paper is organized as follows: Section 2;

presents a literature review of the common existing researches

on reverse engineering from different perspectives. Section 3;

highlights the new research areas as open issues for future

works. Finally, concludes with summarizing the main

contribution and the future research.

2. LITERATURE REVIEW
Program understanding plays a vital role in most of software

engineering tasks. In fact; the developers use the software

documentation to understand the structure and behavior of

existing systems [4, 5]. However, the main problem that

developers face is that the design document or others software

artifacts were out-of-date to reflect the system's changes. As a

result, more effort and time needed for understanding the

software rather that modifying it [4, 5]. The following

sections will introduce the most common reverse engineering

approaches that focused in documenting the architecture of

software from different perspectives.

2.1 Reverse Engineering for

Understanding Software Artifacts
Kumar explained that developers should understand the

source code based on the static information and dynamic

information [5]. The static information explained the

structural characteristic of the system. While dynamic

information explained the dynamic characteristics or

behaviors of the system. Hence, these details help the

developers on understanding the source code in order to

maintain or evaluate the system. However, Kumar clarified

that few reverse engineering tools supported both of dynamic

and static information [5]. Therefore, he presented alternative

methodology to extract the static and dynamic information

from existing source code. This methodology focused on

using one of the reverse engineering tools; namely, Enterprise

Architect (EA) to extract the static and dynamic views.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 3* Issue 12, December 2014

www.ijcat.com 786

Additionally, all of the extracted information was represented

in form of Unified Modeling Language (UML) models. The

main purpose was to get the complementary views of software

in the form of state diagrams and communication diagrams.

The stages of this methodology are summarized as it shown in

Figure 1.

Figure 1. Reverse Engineering thorough Complementary

Software Views [5]

This proposed methodology was very useful for supporting

developers to understand the software artifacts of existing

software systems. However, the methodology needs to

support additional stakeholder beside the developers in order

to identify the stakeholders' concerns and their decisions

about the whole system.

2.2 Model Driven Reverse Engineering
Model driven reverse engineering (MDRE) was proposed as

described in [6] to improve the traditional reverse engineering

activities and legacy technologies. It is used to describe the

representation of derived models from legacy systems to

understand their contents. However, most of MDRE solutions

focused on addressing several types of legacy system

scenarios, but these solutions are not complete and they do not

cover the full range of legacy systems. The work also

introduced several reverse engineering processes such as: the

technical/functional migration, processes of MDRE [6].

Recently, Hugo et al. presented a generic and extensible

MDRE framework called "MoDisco". This framework is

applicable to different refactoring and re-documentation

techniques [6]. The architecture of MoDisco is represented in

three layers, each layer is comprised of one or more

components (see Figure 2). The components of each layers

provided high adaptability because they are based on the

nature of legacy system technologies and the scenario based

on reverse engineering.

However, the MoDisco framework was limited to traditional

technologies such as: JAVA, JEE (including JSP) and XML.

This framework needs to be extended to support additional

technologies and to add more advanced components to

improve the system comprehension, and expose the key

architecture design decisions.

Figure 2. MoDisco Framework’s Architecture [6, p9]

2.3 Documenting of Architectural Design

Decisions (ADDs)

Historically, Shaw and Garlan introduced the concepts of

software architecture and defined the system in terms of

computational components and interactions between these

components as indicated in [7]. Moreover, Perry and Wolf

defined software architecture in terms of elements, their

properties, and the relationships among these elements. They

suggested that the software architecture description is the

consequence of early design decisions [7].

Software architecture is defined by the recommended practice

(ANSI/IEEE Std 1471-2000) as: the fundamental organization

of a system, embodied in its components, their relationships to

each other and the environment, and the principles governing

its design and evolution. Software architecture development is

based on a set of architectural design decisions (ADDs). This

is considered as one of the important factors in achieving the

functional and non-functional requirements of the system [8].

Che explained that the process of capturing and representing

ADDs is very useful for organizing the architecture

knowledge and reducing the possibility of missing this

knowledge [8]. Furthermore, the previous research focused on

developing tools and approaches for capturing, representing

and sharing of the ADDs.
However, Che clarified that most of the previous research

proposed different methods for documenting ADDs, and these

methods rarely support architecture evaluation and knowledge

evaluation in practice [8]. Accordingly, Che et al. presented

an alternative approach for documenting and evaluating

ADDs. This approach proposed solutions described in the

following subsections [8, 9]:

2.3.1 Collecting of Architectural Design

Decisions
The first solution focused on creating a general architectural

framework for documenting ADDs called the Triple View

Model (TVM). The framework includes three different views

for describing the notation of ADDs as shown in Figure 3. It

also covers the features of the architecture development

process [8, 9].

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 3* Issue 12, December 2014

www.ijcat.com 787

Figure 3. Triple View Model Framework [8, p1374]

As it shown in Figure 3; the Element View describes the

elements that should be defined to develop the architecture;

such as: Computation elements, Data elements, and Connector

elements. The Constraint View explains how the elements

interact with each other by defining what the system should

do and not to do, the constraint(s) on each element of the

element view. Additionally, define the constraints on the

interaction and configuration among the elements.

Finally, the Intent View includes the rationale decision that

made after analyzing all the available decisions, Moreover,

the selection of styles and patterns for the architecture and the

design of the system.

2.3.2 Scenario-Based Documentation and

Evaluation Method

The second solution called SceMethod is based on the TVM

framework. The main purpose is to apply the TVM

framework by specifying its views through the end-user

scenarios; then manage the documentation and the evaluation

needs for ADDs [8, 10].

2.3.3 UML Metamodel

The third solution is focused on developing the UML

Metamodel for the TVM framework. The main purpose was

to make each view of TVM specified by classes and a set of

attributes for describing ADD information. Accordingly, this

solution provided the following features [8]: a) establish

traceable evaluation of ADDs, b) apply the evaluation related

to the specified attributes, c) support multiple ways on

documenting during the architecture process and allow

explicit evaluation knowledge of ADDs.

Furthermore, TVM and SceMethod solution was validated in

using a case study to ensure the applicability and the

effectiveness. Supporting the ADD documentation and

evaluation in geographically separated software development

(GSD) is currently work in progress.

2.4 Comparison of Existing Architectural

Design Decisions Models

Researchers made a great of effort to present related tools and

models for capturing, managing, and sharing the ADDs.

These proposed models were based on the concept of

architectural knowledge to promote the interaction between

the stakeholders and improve the architecture of the system

[8, 11].

Accordingly in [11], Shahin et al. presented a comparison

study that is based on surveying and comparing the existing

architectural design decisions models. Their comparison

included nine ADD models and used six criteria based on

desired features [11, 12]. The main reason was to investigate

the ADD models to decide if there are similarities and

differences in capturing the ADDs. Moreover, the study aimed

at finding the desired features that were missed according to

the architecture needs [11]. The authors in [11] classified the

ADD elements into two categories: major elements and

minor elements. The major elements refer to the consensus on

capturing and documenting ADDs based on the constraints,

rationale, and alternative decisions. While the minor elements

refer to the elements that used without consensus on capturing

and documenting the ADDs, such as: stakeholders, problem,

group, status, dependency, artifacts, and phase/iteration.

The main observations of this comparison study are

highlighted as follow: 1) all of the selected ADD models

included the major elements and used different terms to

express similar concepts of the architecture design. 2) Most

ADD models used different minor elements for capturing and

documenting ADDs. 3) All the selected ADD models deal

with the architecture design as a decision making process. 4)

While not all of them are supported by tools, some were based

on only textual templates for capturing and documenting

ADDs. 5) The most important observation was that most of

existing ADD tools do not provide support for ADD

personalization which refers to the ability of stakeholders to

communicate with the stored knowledge of ADD [11, 12]

based on their own profile.

We summarize the approaches and methodologies described

in this section in Table 1. The main observation is that

existing methods are focused on the developer’s concerns and

viewpoints as the main stakeholder. Recent approaches such

as: Triple View Model (TVM) [8], scenario-based method

(SceMethod) [9], and managing ADDs [10] suggested the

need for alternative solutions for supporting ADDs

personalization for different stakeholders.

3. OPEN ISSUES

We describe in this section the open issues that require further

research based on the research work described in the previous

section. These issues are listed as follows:

 There is a significant need to develop alternative

approaches of reverse engineering for documenting the

architectures that should simplify and classify all of the

available information based on identifying the

stakeholders' concerns and their decisions about the

system.

 Improve the system's comprehension by establishing

more advanced approaches for understanding the

software artifacts. These approaches should help in

documenting the architecture at different levels of

abstractions and granularities based on the stakeholders

concerns.

 Finally, it's important to support multiple methods and

guidelines on how to use the general ADDs framework

in the architecting process. These methods should be

base on the architecture needs, context and challenges in

order to evaluate the ADDs in the architecture

development and evolution processes.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 3* Issue 12, December 2014

www.ijcat.com 788

Table 1. Examples of some Methodologies and

Approaches for Documenting Software Architecture

Author

(year)

Problem

Statement
Proposed Solution(s) Results and Findings Limitation(s)

1 Kumar

(2013)

Reverse

engineering for

understanding the

software artifacts

- Alternative

methodology to

extract the static and

dynamic information

from the source code.

- The main purpose is

to get complementary

views of software

systems.

- This methodology

support developers to

achieve the reverse

engineering goals in

order to understand

the artifacts of

software systems.

This methodology needs to

support additional stakeholder

beside the developers in order

to identify the stakeholders'

concerns and their decisions

about the whole system.

2 Hugo et al

(2014)

Understanding the

contents of the

legacy systems

using model

driven reverse

engineering

(MDRE)

- Generic and extensible

MDRE framework

called "MoDisco".

- This framework is

applicable to different

types of legacy

systems.

- MoDisco provided

high adaptability

because it is based on

the nature of legacy

system technologies

and the scenario(s)

based on reverse

engineering.

MoDisco should extend to

support additional technologies

and include more advanced

components to improve the

system comprehension.

3 Che et al

(2011)

Collecting

architectural

design decisions

(ADDs)

- Triple View Model

(TVM) an architecture

framework for

documenting ADDs.

- TVM framework

includes three

different views for

describing the

notation of ADDs.

- TVM covers the main

features of the

architecture process.

TVM framework should extend

to manage the evaluation and

documentation of ADDs by

specifying its views through the

stakeholders' scenarios.

4 Che et al

(2012)

Managing the

documentation

and evolution of

the architectural

design decisions

- Scenario based

method (SceMethod)

for documenting and

evaluating ADDs.

- This solution is based

on TVM. The main

purpose is to apply

TVM for specifying

its views through end-

user scenario(s).

- Manage the

documentation and

the evaluation needs

for ADDs through

stakeholders'

scenario(s).

There is a need to support

multiple ways on managing and

documenting the ADDs during

the architecture process.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 3* Issue 12, December 2014

www.ijcat.com 789

Author

(year)

Problem

Statement
Proposed Solution(s) Results and Findings Limitation(s)

5 Che

(2013)

Documenting

and evolving the

architectural

design decisions

- Developed UML

Metamodel for the TVM

framework. The main

purpose was to make

each view of TVM

specified by classes and a

set of attributes for

describing ADDs

information.

- Apply the evaluation

related to the

specified attributes

and establish

traceable evaluation

of ADDs,

- Allow explicit

evaluation knowledge

of ADDs.

- Support multiple

ways for

documenting ADDs

during the

architecture process.

This solution is focused on the

developers view point and

their work is currently in

progress to support the ADD

documentation and evaluation

in geographically separated

software development (GSD).

6 Shahin et

al (2009)

A survey of

architectural

design decision

models and tools

- The purpose of this

survey was to investigate

ADD models to decide if

there are any similar

concepts or differences

on capturing ADD.

- The survey classified

ADD concept into two

categories: Major

elements which refer to

the consensus on

capturing and

documenting ADD based

on the constraint,

rationale and alternative

of decision. While the

Minor elements refers to

the elements that used

without consensus on

capturing and

documenting ADD.

- Moreover, to clarify the

desired features that are

missed according to the

architecture needs

- All of selected ADD

models include the

major elements.

- Most of ADD models

are based on using

different minor

elements for

capturing and

documenting the

ADD.

- All of selected ADD

models deal with the

architecture design as

the decision making

process.

- Not all models were

supported by tools.

Hence, some of these

ADD based on text

template for

capturing and

documenting ADDs.

- However, most of

existing ADD tools

do not support the

ability of

stakeholders to

communicate with

the stored knowledge

of ADD.

There is a need to focus on

stakeholder to communicate

with the stored knowledge

of ADDs. This could be

achieved by applying the

scenario based

documentation and

evaluation methods through

stakeholders' scenario(s) to

manage the documentation

and the evaluation needs for

ADDs.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 3* Issue 12, December 2014

www.ijcat.com 790

4. CONCLUSIONS
This paper presented a survey on the current state of the art in

documenting the architectures of existing software systems

using reverse engineering techniques. We compared existing

methods based on their findings and limitations. The main

observation is that existing methods are focused on the

developer’s concerns and viewpoints as the main stakeholder.

We outlined several open issues for further research to

develop alternative approaches of reverse engineering for

documenting the architectures for development and evolution.

These issues show the need to simplify and classify available

information based on identifying the stakeholders' concerns

and viewpoints about the system, improve comprehension by

documenting the architecture at different levels of abstractions

and granularities based on the stakeholders concerns, and

support multiple methods and guidelines on how to use the

ADDs framework based on the architecture needs, context

and challenges in order to evaluate these ADDs during the

architecture development and evolution processes.

5. ACKNOWLEDGMENTS
This research work was funded in part by Qatar National

Research Fund (QNRF) under the National Priorities

Research Program (NPRP) Grant No.: 7 - 662 - 2 - 247

6. REFERENCES
[1] Mamta Gar and Manoj Kumar Jindal. 2009. Reverse

Engineering – Roadmap to Effective software Design. In

Proceedings of 2th International Journal of Recent

Trends in Engineering. Information Paper, vol.1, (May

2009).

[2] Rosenberg, Linda H. and Lawrence E. Hyatt, Software

re-engineering. Software Assurance Technology Center,

1996. http://www.scribd.com/doc/168304435/ Software-

Re-Engineering1, visited on 26 April 2014.

[3] M. Harman, W. B. Langdon and W. Weimer.2013.

Genetic Programming for Reverse Engineering, In R.

Oliveto and R. Robbes, editors, In Proceedings of 20th

Working Conference on Reverse Engineering

(WCRE'13). Koblenz, Germany (14-17 October 2013),

IEEE, 2013.

[4] M. Harman, Yue Jia, W. B. Langdon, Justyna Petke,

Iman H. Moghadam, Shin Yoo and Fan Wu. 2014.

Genetic Improvement for Adaptive Software

Engineering. In Proceedings of 9th International

Symposium on Software Engineering for Adaptive and

Self-Managing Systems (SEAMS'14). Hyderabad, India

(2-3 June 2014), ACM, 2014.

[5] Niranjan Kumar. 2013. An Approach for Reverse

Engineering thorough Complementary Software Views.

In Proceedings of International Conference on Emerging

Research in Computing, Information, Communication

and Applications (ERCICA'13), 2013, 229-234.

[6] Hugo Brunelière, Jordi Cabot, Grégoire Dupé and

Frédéric Madiot. 2014. MoDisco: A Model Driven

Reverse Engineering Framework. Information and

Software Technology 56, no. 8, 2014, 1012-1032.

[7] May Nicholas. 2005. A survey of software architecture

viewpoint models. In Proceedings of 6th Australasian

Workshop on Software and System Architectures, 2005,

13-24.

[8] Meiru Che. 2013. An Approach to Documenting and

Evolving Architectural Design Decisions. In Proceedings

of International Conference on Software Engineering

(ICSE'13), San Francisco, CA, USA, IEEE, 2013.

1373-1376.

[9] Meiru Che and Dewayne E. Perry. 2011. Scenario-based

architectural design decisions documentation and

evolution. In Proceedings of Engineering of Computer

Based Systems (ECBS'11), Las Vegas, NV, (27-29 April

2011), IEEE, 2011, 216-225.

[10] Meiru Che and Dewayne E. Perry. 2012. Managing

architectural design decisions documentation and

evolution. In Proceedings of 6th International Journal of

Computers, 2012, 137-148.

[11] M. Shahin, P. Liang and M.R. Khayyambashi. 2009.

Architectural design decision: Existing models and

tools. In Proceedings of Software Architecture, 2009 &

European Conference on Software Architecture.

WICSA/ECSA 2009. Joint Working IEEE/IFIP

Conference, IEEE, 2009, 293-296.

[12] M. Shahin, P. Liang, and M.R. Khayyambashi. 2009. A

Survey of Architectural Design Decision Models and

Tools. Technical Report SBU-RUG-2009-SL-01.

http://www.cs.rug.nl/search/uploads/Publications/shahin

2009sad.pdf, visited on 8 July 2014.

7. AUTHORS BIOGRAPHIES
Hind Alamin Mohamed BSIT and MSCS, is a lecturer in

Software Engineering department, College of Computer

Science and Information Technology at Sudan University of

Science and Technology (SUST). She has participated in the

Scientific Forum for Engineering and Computer Students

(December 2005) in SUDAN, and had the first prize of the

Innovation and Scientific Excellence for the best graduated

project on computer science in 2005. She has been teaching in

the areas of Software Engineering and Computer Science

since 2006. In 2010 she was the head of Software

Engineering Department till December 2012. She is currently

a PhD candidate in Software Engineering since 2013.

Hany H. Ammar BSEE, BSPhysics, MSEE, and PhD EE, is

a Professor of Computer Engineering in the Lane Computer

Science and Electrical Engineering department at West

Virginia University. He has published over 170 articles in

prestigious international journals and conference proceedings.

He is currently the Editor in Chief of the Communications of

the Arab Computer Society On-Line Magazine. He is serving

and has served as the Lead Principal Investigator in the

projects funded by the Qatar National Research Fund under

the National Priorities Research Program. In 2010 he was

awarded a Fulbright Specialist Scholar Award in Information

Technology funded by the US State Department - Bureau of

Education and Cultural Affairs. He has been the Principal

Investigator on a number of research projects on Software

Risk Assessment and Software Architecture Metrics funded

by NASA and NSF, and projects on Automated Identification

Systems funded by NIJ and NSF. He has been teaching in the

areas of Software Engineering and Computer Architecture

since 1987. In 2004, he co-authored a book entitled Pattern-

Oriented Analysis and Design: Composing Patterns to Design

Software Systems, Addison-Wesley. In 2006, he co-authored

a book entitled Software Engineering: Technical,

Organizational and Economic Aspects, an Arabic Textbook

http://www.ijcat.com/
http://www.cs.rug.nl/search/uploads/Publications/shahin2009sad.pdf
http://www.cs.rug.nl/search/uploads/Publications/shahin2009sad.pdf

