
International Journal of Computer Applications Technology and Research
Volume 3– Issue 4, 216 - 220, 2014, ISSN: 2319–8656

www.ijcat.com 216

Implementation of FSM-MBIST and Design of Hybrid
MBIST for Memory cluster in Asynchronous SoC

Lakshmi H R

Dept. of Electronics and
Communication

BNM Institute of technology
Bangalore, India

Varchaswini R
Dept. of Electronics and

Communication
BNM Institute of technology

Bangalore, India

Yasha Jyothi M Shirur
Dept. of Electronics and

Communication
BNM Institute of Technology

Bangalore, India

Abstract: In current scenario, power efficient MPSoC’s are of great demand. The power efficient asynchronous MPSoC’s with
multiple memories are thought-off to replace clocked synchronous SoC, in which clock consumes more than 40% of the total power. It
is right time to develop the test compliant asynchronous MpSoC. In this paper, Traditional MBIST and FSM based MBIST schemes
are designed and applied to single port RAM. The results are discussed based on the synthesis reports obtained from RTL Complier
from Cadence. FSM based MBIST is power and area efficient method for single memory testing. It consumes 40% less power when
compared with traditional MBIST. But, in case of multiple memory scenarios, separate MBIST controllers are required to test each
individual memories. Thus this scheme consumes huge area and becomes inefficient. A novel technique for testing different memories
which are working at different frequencies is in need. Therefore, an area efficient Hybrid MBIST is proposed with single MBIST
controller to test multiple memories in an Asynchronous SoC. It also includes multiple test algorithms to detect various faults. An
Asynchronous SoC with DWT processor and multiple memories is discussed in this paper, which will used as Design under Test
[DUT] and Hybrid MBIST is built around it to test the heterogeneous memories. The design is coded in Verilog and Validated in
Spartan-3e FPGA kit.

Keywords: FSM MBIST, Hybrid MBIST, Asynchronous SoC, low area, flexible, MARCH Algorithms

1. INTRODUCTION
Today’s SoC’s are memory dominant. More than 90% of
physical area is dominated by memory according to the ITRS
[International Technology Roadmap for Semiconductors] [3].
As memories become denser, they are more prone to defects
and faults are more complex. Using external Automatic Test
Equipment (ATE) will become expensive for dense memories
due to pin inductance and tester pins cost [12]. Also, at-speed
testing is not possible. Test time increases as the number of
memories increase in a chip. An on-chip at-speed testing
technique is the call of the hour. BIST is a Design for Test
(DFT) technique [2] in which part of the circuit is used to test
the circuit itself. MBIST is the most widely used technique for
testing memories. MBIST technique integrates the
functionality of automatic test equipment on the same die as
embedded memories. It provides high speed testing and also
testing can be done during operation and maintenance stage
even outside the electrical testing environment.

There are two widely used techniques for MBIST. FSM based
MBIST and microcode based MBIST. In FSM based MBIST,
control signals for BIST controller operations are defined as
state machines [8]. It is hardwired. Microcode based MBIST
has a Programmable Memory BIST (P-MBIST) controller. It
has flexibility of programming new test algorithms into the
controller as and when needed, but suffers from area overhead
[8].

The paper is organised as follows. Section 2 describes FSM
based MBIST and introduces a hybrid MBIST scheme called
FSM-based Programmable MBIST. Section 3 describes
various MBIST algorithms. Section 4 describes Design Under
Test (DUT) for hybrid MBIST and the proposed MBIST
Controller.

2. FSM BASED BIST
FSM based BIST has a number of states. This technique uses
1 test algorithm for test operation. In the proposed paper,
MARCH C- algorithm is used. This algorithm is chosen
because it is simple and yet can detect many faults like stuck-
at faults, address decoder faults, transition faults and some
coupling faults [9].

Figure. 1 Block Diagram for FSM MBIST

Figure 1 Shows block diagram for FSM based MBIST
Architecture. In the block diagram Start, rst, Clk, Sys_datain,
Sys_addr are input signals, ramout and Fail/Pass are the
output signals. The blocks in Figure 1 are Address generator,
Single -port Memory, Comparator and Multiplexers. The
Address generator is a counter which generates address for the
memory to be tested. It can count up or down to provide
address in ascending or descending order. Comparator
compares the datain and ramout, if they are not equal Fail
signal is raised, else, Pass signal is raised. The multiplexer

ramout

Fail/
Pass

Sys_add

Sys_datain

rst

Clk

Sys_datain
ld

cin
updown

clk

equ

ramout

datain

sys_datain

ram_datain

start

sys_addr

q

addr

Memory

Address
Generator

Comparator

Start

International Journal of Computer Applications Technology and Research
Volume 3– Issue 4, 216 - 220, 2014, ISSN: 2319–8656

www.ijcat.com 217

chooses between normal mode and test mode. When start=1,
test mode is selected.

Figure. 2 State Diagram of FSM MBIST

Figure 2 shows the State Diagram for implemented FSM
MBIST. The faults covered by this architecture are Address
Decoder Faults, Transition Faults and Stuck-at Faults [2] The
FSM MBIST has low area and good fault coverage. The
percentage of fault coverage depends on the MARCH
algorithm used. But since FSM MBIST is hard-wired, it is not
flexible.

Presently, due to the need for low power and low area,
asynchronous System on Chip (SoC)s are evolving. An
asynchronous SoC contains memories of different types and
different sizes operating at different frequencies. Hence a
MBIST controller should be capable of testing heterogeneous
memories at their respective frequency of operation. A single
algorithm is not sufficient to test all the memories. Hence
FSM MBIST will not be efficient in case of multiple
memories. A microcode MBIST scheme can be used, but it
results in larger area. To compensate for lack of flexibility in
FSM MBIST and area overhead in microcode MBIST, a
hybrid scheme is proposed- FSM based programmable
MBIST. The test algorithms and the MARCH elements are
represented by codes and clusters of micro codes. Read/write
operations, the applied test data and the addressing orders in
an element are still controlled by the FSM.

3. MARCH ALGORITHMS
Patterns are the key elements in memory testing. These
patterns look for weakness in the analog circuitry and for
interaction between two or more neighboring structures [2]. A
test algorithm is a finite sequence of test elements. A test
element contains memory operations, data for write and read
operations and address specified for the read and write
operations to the memory [4].

A march based test algorithm is a finite sequence of March
elements. A March element is specified by an address order
and a number of reads and writes. March based tests are
simple and they bear good fault coverage. Hence they are

widely accepted and implemented in most modern memory
BIST schemes [5].

The manner in which an operation of March algorithm
progresses from cell- to-cell is determined by the addressing
order, which can be an ascending order (addresses moving up
from cell 0 to cell n- 1), denoted by the '↑' symbol, or a
descending order, denoted by the '↓' symbol (addresses
moving down from cell n-1 to cell 0). For some March
elements the address order can be chosen arbitrarily, ie either
ascending or descending. This will be indicated by the '↕'
symbol. operations applicable to cells can be a 'w0', a 'wl', an
'r0' or an 'rl' operation. A complete march test is contained
within the '{...}' bracket pair; while a March element is
contained within the '(...)' bracket pair [13]. The codes of all
test algorithms used in the proposed work are listed in the
Table I. 8 MARCH algorithms are used.

Table 1. Test Algorithms with March Element Codes

4. DUT AND HYBRID MBIST TOP
MODULE
Due to the recent trend in the use of asynchronous SoC’s, a
prototype has been designed to replicate the scenario. The
asynchronous SoC in the proposed paper has a Discrete
Wavelet Transform (DWT) processor, a Dual port RAM
(Memory-1) and two Single port RAMs (Memory-2,
Memory-3). All the blocks interact via asynchronous
handshaking signals.
An input image is stored in Memory-1. The DWT processor
requests the image and converts it to high frequency and low
frequency components. On request by Memory-2 and
Memory-3 the high and low frequency components are stored
in these two memories respectively. All the 3 memories are
operating at different frequencies. The proposed BIST
controller tests these heterogeneous memories at their
respective frequency of operation. The design operates in two
modes – normal mode and test mode.

Sl
No. Code Algorithm

 March Element Code

1 000 Mats Plus {↕(w0); ↑(r0,w1); ↓(r1,w0)}

2 001 March X {↕(w0); ↑(r0,w1); ↓(r1,w0);↕(r0)}

3 010 March C
Minus

{↕(w0); ↑(r0,w1); ↑(r1,w0); ↓(r0,w1);
↓(r1,w0); ↕(r0)}

4 011 March LR {↕(w0);↓(r0,w1);↑(r1,w0,r0,w1);
↑(r1,w0); ↑(r0,w1,r1,w0); ↑(r0)}

5 100 March A
{↕(w0);↑(r0,w1,w0,w1) ;↑(r1,w0,w1);

↓(r1,w0,w1,w0); ↓(r0,w1,w0);}

6 101 March U {↕(w0);↑(r0,w1,r1,w0); ↑(r0,w1);
↓(r1,w0,r0,w1); ↓(r1,w0)}

7 110 March B

{↕(w0);↑(r0,w1,r1,w0,r0,w1);
↑(r1,w0,w1);↓(r1,w0,w1,w0);

↓(r0,w1,w0)}

8 111 March SS
{↕(w0);↑(r0,r0,w0,r0,w1);

↑(r1,r1,w1,r1,w0); ↓(r0,r0,w0,r0,w1);
↓(r1,r1,w1,r1,w0); ↕(r0)}

International Journal of Computer Applications Technology and Research
Volume 3– Issue 4, 216 - 220, 2014, ISSN: 2319–8656

www.ijcat.com 218

Figure. 3 DUT and Top Level of Hybrid MBIST

The top level of MBIST consists of a pattern generator,
PMBIST controller and a comparator. The pattern generator
generates the necessary MARCH patterns which are written to
and read from the memory under test (MUT). The PMBIST
controller controls the read and write operations. The
comparator compares the pattern read from the memory with
the pattern given by pattern generator and issues Pass/Fail
signal.

Figure. 4 Hybrid MBIST Controller

Figure 4 shows the block diagram for implementation of the
proposed MBIST scheme. The MBIST controller shown if
Figure 4 comprises of 4 blocks; Address Decoder, Algorithm
Encoder, Element R/W Data Encoder and Data Decoder.
The Algorithm Encoder sends the MARCH elements’ code
and the address microcode to the Element R/W Data Encoder
and the Address Decoder. The Element R/W Data Encoder
receives the MARCH element’s code and encodes the R/W
operation as 0 for Read and 1 for Write. For example, element
2, r1w0 is encoded as 0110. It produces the Endetd signal to
indicate the end of the encoding for the element under test.
The address decoder is controlled by Endetd and Adrm
(which represents address sequence microcode). It generates
the Elend signal which triggers the Algorithm Encoder. The
active Elend signal means the MARCH element under test
has reached the last address and is ready for the next MARCH
element. Finally the R/W-Data Decoder receives the encoded
test data in form of microcode instructions, decodes it and

writes to the memory. It also creates the EndRW signal to
signify the end of RW operation for that cluster. The
comparator compares the data read from memory, Data_out
and data written to memory, Data_in. if both data are same,
Pass signal is asserted, else Fail signal is asserted. This block
shares the same clock as the memory under test. In this paper
a multiplexer is used to select one of the three memories, for
test.

Table 2. March Element Clusters

4 bits MARCH
Element Code

R/W Operation in the
Element

0000 w0
0001 r0
0010 w1
0011 r1
0100 r1,w0
0101 r0,w1
0110 r1,w0,w1
0111 r0,w1,wo
1000 r0,w0
1001 r1,w1
1010 r0,w1,r1,w0

Table 1 shows the 8 MARCH algorithms used in the proposed
hybrid MBIST scheme. Based on the code, Algorithm
Encoder selects one of the 8 algorithms and encodes it in form
of clusters of microcode. Clusters are shown in Table 2. As
the algorithms use common clusters, area is reduced. The first
algorithm is selected and if no faults are detected next
algorithm is selected and so on. If no faults are detected in all
8 algorithms, the memory is defect free.

5. RESULTS AND DISCUSSIONS

Figure. 5 RTL Schematic of Traditional MBIST

Figure. 6 Simulation result of Traditional MBIST with fault

at address 45

Memory

Decoder Mux

Comparator

BIST
Controller

Fail Signal is
High

Pass/Fail

Pass
/Fail

International Journal of Computer Applications Technology and Research
Volume 3– Issue 4, 216 - 220, 2014, ISSN: 2319–8656

www.ijcat.com 219

Figure. 7 RTL Schematic of FSM MBIST

Figure. 8 Simulation result of FSM MBIST with fault at address 45

Figure. 9 Chip Scope Window showing Fail Signal

Figure. 10 Power Comparison

Figure. 11 Area Comparison

The Traditional MBIST was developed and the results
obtained has been compared with FSM based MBIST. Figure
5 shows the RTL schematic for traditional MBIST. Figure 6
shows the simulation where Fail signal is asserted at location
45. Similarly Figure 7 shows the RTL schematic for FSM
MBIST. Figure 8 shows the Fail signal being asserted in FSM
MBIST. The fault is at address location 45 and it is stored in a
register. FSM MBIST was successfully downloaded on the
Spartan 3e kit and results were verified on chip scope as
shown in Figure 9, where a fail signal is shown low for
faultless architecture. The synthesis reports obtained from
RTL Compiler from Cadence are used for comparison. The
power taken by FSM MBIST is about 36% less when
compared with the traditional one. The area remains almost
same as that of traditional. The comparison graphs for power
and area are shown in Figure 10. The fault coverage of the
proposed hybrid MBIST is expected to be higher than that for
FSM MBIST.

6. CONCLUSION
MBIST is the most widely used technique for testing
memories. Traditional MBIST and FSM based MBIST can be
applied to single memory at any given instant of time. Both
these techniques are coded in Verilog and validated in
Spartan-3e FPGA kit. The synthesis reports obtained from
RTL Complier from Cadence are used to arrive at conclusion.
FSM based MBIST is power and area efficient method for
memory testing. It consumes nearly 40% less power when
compared with traditional MBIST. But, in case of multiple
memory scenarios, separate MBIST controllers are required to
test individual memory. This method of testing memories
consumes huge area and becomes inefficient. Therefore, an
area efficient Hybrid MBIST is proposed with single MBIST
controller to test multiple memories in an Asynchronous SoC.
It also includes multiple test algorithms to detect various
faults.

7. ACKNOWLEDGEMENTS
The authors wish to acknowledge BNMIT Management for
supporting this work.

8. REFERENCES
[1] K.Zarrineh, and S.J. Upadhyaya, 1999. On

programmable memory built in-self test architecture. In
Proceedings of IEEE Design, Automation and Test in
Europe Conference.

[2] R. Dean Adam. 2003. High Performance Memory
Testing. Kluwer Academic Publisher.

[3] Paul McEvoy and Ronan Farrell. 2004. Built-In Self Test
Engine For Memory Test. In proceedings of IEEE IC
Test Workshop.

[4] A.J. Van de Goor. 1991. Testing semiconductor
memories: Theory and Practice. John Wiley and Sons,
Inc.

[5] Gayathri CV, Kayalvizhi N, and Malligadevi M. 2009.
Generation of New March Tests with Low Test Power
and High Fault Coverage By Test Sequence Reordering
Using Genetic Algorithm. In proceedings of International
Conference on Advances in Recent Technologies in
Communication and Computing.

Comparator Memory

Address
Generator

Fail Signal is High Location 45

nW

Fail Signal is Low

35.49% Reduction in
Power

No. of
Cells

3.47% Reduction in
Area

International Journal of Computer Applications Technology and Research
Volume 3– Issue 4, 216 - 220, 2014, ISSN: 2319–8656

www.ijcat.com 220

[6] Po-Chang Tsai, Sying-Jyan Wang and Feng-Ming
Chang. 2005. FSM- Based Programmable Memory BIST
with Macro Command. In proceedings of IEEE
International Workshop on Memory Technology,
Design, and Testing (MTDT).

[7] Sonal Sharma, Vishal Moyal. February 2013.
Programmable FSM based MBIST Architecture.
International Journal of Digital Application &
Contemporary research, Volume 1, Issue 7.

[8] NurQamarina Mohd Noor, Azilah Saparon,Yusrina
Yusof. 2010. Programmable MBIST Merging FSM and
Microcode Techniques Using Macro Commands. In
proceedings of 25th International Symposium on Defect
and Fault Tolerance in VLSI Systems.

[9] Said Hamdioui1, Ad J. van de Goor, Mike Rodgers.
2002. March SS: A Test for All Static Simple RAM
Faults. Proceedings of the 2002 IEEE International
Workshop on Memory Technology, Design and Testing.

[10] Nor Zaidi Haron, Siti Aisah Mat Junos, Abdul Hadi
Abdul Razak and Mohd. Yamani Idna Idris. 2007.
Modelling and Simulation of Finite State Machine
Memory Built-in Self Test Architecture for Embedded
memories. In proceedings of Dec. 2007 Asia-Pacific
Conference on Applied Electromagnetics. pp. 1-5.

[11] http://en.wikipedia.org/wiki/Discrete_wavelet_transform
[12] www.eng.auburn.edu
[13] Van de Goor, A. J. Zorian, Yervant. 1993.

EffectiveMarch Algorithms for Testing Single Order
Addressed Memories. In proceedings of the European
Conference on Design Automation with the European
Event in ASIC Design

