
International Journal of Computer Applications Technology and Research 
Volume 3– Issue 5, 299 - 303, 2014, ISSN:  2319–8656 

www.ijcat.com  299 

Remote Control based Audio-Video Content Filter Application 
for Philips 2K10 TV with JointSPACE Architecture  

Mohan Kumar J 
School of Information Sciences 
Manipal University, Manipal. 

India 
 

Sandhesh Gowda 
School of Information Sciences 
Manipal University, Manipal. 

India 

Rahul Devi Reddy 
School of Information Sciences 
 Manipal University, Manipal. 

India 

Harishchandra Hebbar 
School of Information Sciences 
Manipal University, Manipal. 

India 

Sundaresan C 
School of Information Sciences 
Manipal University, Manipal. 

India 

Chaitanya C.V.S 
School of Information Sciences  
Manipal University, Manipal. 

India 
 

Abstract: JointSPACE is an Open Source project that allows every user/supplier to develop applications for Philips TV displays. 
JointSPACE is based on the SPACE architecture which was developed by Philips to ease internal development. At a certain point of 
time, Philips decided to open its architecture to allow everyone developing code for the TV target. In this paper we propose and 
implement a Remote control application for Audio-Video Content Filter Application. One of the major issues with people watching the 
Television shows, as a family with children, especially in Asian context, there may be some inappropriate visuals with audio may 
appear. These contents affect the children mental health. So a remote application is created to mask the video and mute the audio for 
the required time, by the user. Even the change of channel may have the similar type of content. So this application is not providing the 
complete solution for this problem, but helps in certain scenarios. 
 
Keywords: Philips JointSPACE TV, Directfb, Voodoo, Mobile Applications 
 

1. INTRODUCTION 
Television (TV) is an essential entertainment media in 
common man’s life. Presently smartTv started emerging and 
in the next decade, the user space will be more. These smart 
TV run a particular software platform for running the 
applications. One such software platform is JointSPACE from 
Philips. JointSPACE is an Open Source project that will allow 
every user/supplier to develop applications for Philips TV 
displays. JointSPACE is based on the SPACE architecture 
which was developed by Philips to ease internal development. 
At a certain point of time, Philips decided to open its 
architecture to allow everyone developing code for the TV 
target. [1][2].  

2. JointSPACE 
JointSPACE facilitates mainly 2 aspects:  

i. Integration of applications made by suppliers.     

ii. Integration of applications made by customers. 
JointSPACE addresses this by opening and 
extending the current TV architecture. [1] 

Some of the features of Jointspace are:  

JointSPACE proposes a single platform to develop 
applications. The platform may be any Linux PC or device 
capable of running Linux/DirectFB technologies. JointSPACE 
publishes the essential TV APIs used in the SPACE 
architecture. JointSPACE provides portable prototyping 
software that includes and illustrate the essential of the 
SPACE architecture. [1] 

JointSPACE extends the TV architecture to allow:  

1. Executing TV applications on a remote system, rendering 
and being controlled on the TV  

2. Executing application on a remote system, controlling 
the TV APIs remotely [1] 

JointSPACE continuously provide new technologies/libraries 
to ease and improve the development of new applications. 
JointSPACE extends the TV API to allow controlling more 
TV functionalities. As JointSPACE is based on DirectFB 
technologies; following DirectFB packages are used 

 DirectFB 1.4 
 SaWMan 1.4 
 FusionDale 0.8.1.  

The JointSPACE exposes 3 core APIs apart from these 
packages for developers, as shown in Figure 1. 

 

Figure 1. JointSPACE Architecture  

plfApi is the API for control various platform devices, like 
Audio/video setup and playback, demux, tuner control, 



International Journal of Computer Applications Technology and Research 
Volume 3– Issue 5, 299 - 303, 2014, ISSN:  2319–8656 

www.ijcat.com  300 

Picture and sound properties (Brightness, contrast, volume 
etc.) 

plfApi is the key API which needs to be explicitly managed 
because multiple application will need to access it. To reduce 
complexity of resource management plfApi is divided into a 
number of resource groups 

 Source  
 Front End 
 Audio featuring 
 Video Featuring 
 Connectivity 
 Mute 

2.1 Resource Management – plfApi 

Management of plfApi is done by application manager 
(amApp).All applications needing to control any of plfApi 
interfaces must create these special windows of directfb and 
use the window Id as an identifier to call plfApi.Audio node 
window for calling plfApi functions related to audio control. 
Border window for calling any other plfApi functions. 

All plfApi calls are routed through a resource gating layer 
within the plfApp which only allows calls with the owned 
window ID. Application request resource groups of plfApi 
that they need to call towards amApp. AmApp ensures that 
the requesting application’s window ID is set into resource 
gate of plf. 

2.2 Application Manager API 

Application Manager API (amApi) is the API used for 
communication between clients and application 
manager.Some of the important functions available are: 

 Power related functions: PreparePowerState, 
RequestPowerState, ConfirmPowerState. 

 Platform Resources: RequestPlfApi, PlfApiDenied. 
 Key grabbing: RequestKey. 
 Activities: Requesting various activities. 
 Focus management: RequestOverlay, SetFocus 
 Multiview: AddToLayout, MoveToLayout. 
 System event management: DisableEvents. 

2.3 Connection Management 
 

The connection between the remote device and the television 
is established by a set of processes. Firstly the application 
manager api, amapp, starts the communication, after the 
device discovery. Then the remote device calls the directfbinit 
function, so that the jsapp master can fork another process 
jsapp1. Also the process will be added to the application 
manager. Then the remote device initiates directfbcreate and 
createwindow functions. Then a window will be created 
inside the application manager for the particular process. Then 

the remote device requests requestfocus, through jsapp1 so 
that the application manager focuses to the amapp. 

 

 

Figure 2. Connection Management 

2.4 DirectFB – Direct Frame Buffer 
A thin library that provides hardware graphics acceleration, 
input device handling and abstraction, integrated windowing 
system with support for translucent windows and multiple 
display layers, not only on top of the Linux Frame buffer 
Device. It is a complete hardware abstraction layer with 
software fallbacks for every graphics operation that is not 
supported by the underlying hardware. DirectFB adds 
graphical power to embedded systems and sets a new standard 
for graphics under Linux.[5] 

2.5 JointSPACE Simulator 
The jointSPACE simulator allows to experiment with the 
SPACE architecture on a Linux PC[3][4]. It is splitted into 
various packages organised into sub-directories. 

 

Figure 3. JointSPACE Simulator[4] 

The package currently includes: DirectFB (in the form of 



International Journal of Computer Applications Technology and Research 
Volume 3– Issue 5, 299 - 303, 2014, ISSN:  2319–8656 

www.ijcat.com  301 

installation scripts and patches, as DirectFB itself is hosted at 
directfb.org), the basic SPACE applications (amapp, plfapp, 
homeapp, tvapp other examples in the form of source code),  
the basic libraries required by SPACE (presenting amApi and 
plfApi to all applications, across processes' boundary using 
FusionDale IPC; in the form of dynamic libraries and header 
files), the platform porting glue header files (papi), mainly 
required by HW suppliers to integrate their platform in the 
architecture (the default plfapp delivered is based on a papi 
implementation delivered in source code but mainly 
consisting in stubs that could be mapped on standard Linux 
device drivers as v4l or other higher level packages as SDL or 
mplayer.)  

These packages represent the minimum required by the 
simulator. New packages will be added during the life time of 
this project (new libraries, new APIs etc) to ease the 
development of future applications.  

3. REMOTE APPLICATIONS 
Remote applications are applications running on external 
devices, making use of TV capabilities to render GFX and 
media. External devices can be any computing device 
including iPod/iPhone, game consoles, PDA, lightweight PC, 
PC servers, MAC. Remote applications are using the IP 
network (wired or wireless) to communicate with the TV. It 
can be used to extend TV functionality with customizable 
features, integrated together with "standard" TV applications.  
Remote applications can also be controlled with the TV 
remote[6]. They are making use of DirectFB/VooDoo 
technologies and follow (joint)SPACE architecture rules. 

Two kind of remote applications are currently supported:  

1. Applications to control the TV remotely (inject events 
like keys over the network)  

2. Applications making use of the TV resources to render 
GFX and media content.[6] 

3.1 Block Diagram  
A remote based content filter application has been created for 
the television, which can be used at the any remote device. 
Here the users have to press a key in a remote device, which 
can be a laptop or a mobile phone, pressing the key will block 
the content and wait for the another key press for releasing the 
content. For the implementation a laptop is considered as a 
remote device. This can be extended to mobile phones. 
Instead of the Television, the JointSPACE simulator is used 
[2], which is an open source simulator for the Philips 
JointSPACE Television, to test the applications. 

The filter should have an application running on the 
Television and also another application running on the remote 
device. Whenever the user send a signal from the remote 
device, this signal will be received TV, through the Wi-Fi 
Connection. Once the signal is received a screen is created on 
top of the visual. Also the audio is muted. The simple block 
diagram of the implementation is shown in Figure 3. 

 

  Figure 4 Block Diagram 
 

3.2 Scenario and Scope of the 
Implementation 

For the implementation scenario, considered certain major 
issues in the human life with regard to the Television. Present 
scenarios families face difficulty in control of children 
watching Television. The content broadcasted in television are 
sometimes not apt for children. So it is necessary to provide 
Parental Guidance for child. One way of avoiding is to mask 
the video and mute the audio, for some time. Even though 
change of channel can be one of the solutions, we can’t 
predict the content broadcasted on changed channel. So this 
application can be used for masking video and mute audio for 
the required time until the user decides to unmask.   

Scope of this project extends from each and every family, 
who is having a television, to very large display halls, where 
people watch different programs on television especially as a 
family. 

3.3 Implementation  
 

The implementation of this project was a step by step 
procedure. An application is created such that a signal is send 
from the remote device when the users press a button. A RC 
code is send to the TV. On the TV this code is received and 
accordingly a window is drawn on the video running on the 
TV. Also the audio is muted. The project is implemented 
using C programming and linux commands. Filter.c file is 
written when a header file Control.h is invoked. The Control.h 
has two functions defined, namely dfb_start() and dfb_stop(). 
These functions are used to input the key for masking and 
unmasking the video along with muting and unmuting the 
audio. Two threads are created, one is to show the image 
continuously on TV until stop event is given from the remote 
device. Second thread is to wait for event to stop given from 
the remote device ie to unmask the screen layer and unmuting 
the audio. The following RC code for Mute and Demute in the 
program which is #defined in the filter.c program. 

 



International Journal of Computer Applications Technology and Research 
Volume 3– Issue 5, 299 - 303, 2014, ISSN:  2319–8656 

www.ijcat.com  302 

#define NOTRCSOURCEMASK         0x20 

#define keySourceRc6            3 

#define rc6S0AvMute             163 

#define rc6S0DeMute              13 

 
The flowchart of the implementation is shown in Figure 5. 
Figure 6 shows the user input for blocking/masking the TV 
content. For the prototype the program waits for the user to 
give an input as 1.Figure 7 shows the normal TV channel 
watching. Once the key is pressed a new layer is created on 
the currently watched TV screen blocking the content. Audio 
is also muted. This is shown in Figure 8.  
 
 

 

 
Figure 5 Flowchart of the Implementation 

  

 

 

Figure 6 Running family filter application in Remote Device 
(laptop) 

 

Figure 7 Watching a channel in the TV 



International Journal of Computer Applications Technology and Research 
Volume 3– Issue 5, 299 - 303, 2014, ISSN:  2319–8656 

www.ijcat.com  303 

 

Figure 8 Blocks the running video for a while 

 

Figure 9 Sending a signal to get back to normal audio and 
video 

 
To bring back the audio and video another key is pressed. 
Here it is number 2. This is shown in Figure 9. 

 
4. CONCLUSION AND SCOPE 
A remote based Audio-Video Content Filter Application for 
Philips Joint SPACE is developed and checked under the 
development environment. The application has the capability 
to block and mute the inappropriate contents when watch with 
the family especially with children. The application is not 

developed to eradicate the complete impact of problems due 
to watching TV by children. But it can be used in some 
scenarios. This application is tested on the laptop as a remote 
device and JointSPACE simulator. The same can be 
developed on an android mobile as remote control application 
is already available for Philips TV with JointSPACE 
architecture. This idea can be incorporated with the android 
remote control application. Similarly can be implemented for 
IPHONE and Windows based mobile.   

5. ACKNOWLEDGEMENT 
We thank Dr. A Narendranath Udupa, Philips Research, 
Bangalore and Mr. Manjunatha Maiya, Sr. Project Manager, 
MU - BoP, Philips Pvt.Ltd for providing us the JointSPACE 
platform training and donating a TV for executing projects. 

6. REFERENCES 
 
[1].http://foundation.webinos.org/deliverabled026target

-platform-requirements-and-ipr/26-nettv-
fraunhofer/ ( March 2014) 

  
[2]. http://jointspace.sourceforge.net/ ( March 2014) 
 
[3]. http://sourceforge.net/projects/jointspace/ (March 
2014) 
 
[4].http://sourceforge.net/apps/mediawiki/jointspace/ind
ex.php?title=JointSPACE_Simulator (March 2014) 

 
[5]. http://directfb.org/ (March 2014) 
 
[6].” System architecture for virtual world interfacing 

with TV platform” - Virtual world interfacing with 
TV platforms Article, http://wg11.sc29.org/mpeg-
v/?page_id=298 ( March 2014) 

 


