
International Journal of Computer Applications Technology and Research
Volume 3– Issue 7, 451 - 456, 2014, ISSN: 2319–8656

www.ijcat.com 451

Classification and Searching in Java API Reference
Documentation

Monali Metkar
K.K.W.I.E.E.R

Nashik,
University Of Pune, India

S. M. Kamalapur
K.K.W.I.E.E.R

Nashik,
University Of Pune, India

Abstract: Application Program Interface (API) allows programmers to use predefined functions instead of writing them from scratch.
Description of API elements that is Methods, Classes, Constructors etc. is provided through API Reference Documentation. Hence
API Reference Documentation acts as a guide to user or developer to use API’s. Different types of Knowledge Types are generated by
processing this API Reference Documentation. And this Knowledge Types will be used for Classification and Searching of Java API
Reference Documentation.

Keywords: API, API Reference Documentation, Knowledge Types, Classification, Searching.

1. INTRODUCTION
An Application Programming Interface (API) is a set of
commands, functions, and protocols. It also specifies the
interaction between the software components. In most
procedural languages, an API specifies a set of functions or
routines that accomplish a specific task or are allowed to
interact with a specific software component. For example,
consider following Constructor in Java:

AbstractAction()

Whenever user or developer is referring to an API and has
planned to use it for specific purpose API Reference
documentation works as a guide. API Reference
Documentation is an important part of programming with
APIs and it complements the API by providing information
about the API. So, it plays a crucial role in how developers
learn and use an A PI, and developers will expect the
information about API elements they should find therein By
considering the above example, if new developer wishes to
use “AbstractAction()” constructor in Java Program, he can
refer to API Reference Documentation of Java and he will
find the description of “AbstractAction()” constructor in
Constructor Summary as:

Creates an Action.

In above example Java Documentation is considered and Java
APIs are documented through Javadocs which is a set of web
pages such that one for each package or type in the API.

To enhance the quality of API reference documentation and
the efficiency with which the relevant information it contains
can be accessed, it’s necessary to first understand its contents
by analyzing it. Therefore, to reason about the quality and
value of Java API reference documentation, focus should be
about what knowledge it contains. Because Knowledge refers
to retrieve useful information from data and then use this
knowledge for specific purpose. By analyzing the contents of
Java API Reference Documentation, Knowledge is generated
and this knowledge can be categorized further.

Previous work focused separately on Studies of Knowledge
Categorization and of API reference Documentation and
Knowledge retrieval was done based on Experience,
Observations and Analysis.

So proposed system focuses on generation of Knowledge
Types, classification of API Reference Document according
to Knowledge Types and also on searching depending upon
Knowledge Types.

Section 2 focuses on Literature Review. Section 3 gives
Implementation Details with Block Diagram, Concept with
Example and Algorithms are highlighted in Section 4. Data
Set, Results obtained and Performance Measure are discussed
in Section 5 of Results. The paper ends with concluding
remarks.

2. LITERATURE REVIEW
The previous work mainly focused on the Knowledge
Categorization and API Reference Documentation Separately.

2.1 API Reference Documentation
Study of documentation needs for a domain-specific API,
using surveys and interviews of developers was done by
Nykaza et al.[6] This study identified, among other
requirements and the importance of an overview section in
API documentation.

Jeong et al. [10] conducted a lab study with eight participants
to assess the documentation of a specific service-oriented
architecture. This study identified 18 guidelines they believe
would lead to increased documentation quality for the system
under study, including “explaining starting points” for using
the API.

Robillard and DeLine [9] identified the obstacles faced by
developers when trying to learn new APIs through surveys
and interviews with Microsoft developers. The study showed
that many obstacles were related to aspects of the

International Journal of Computer Applications Technology and Research
Volume 3– Issue 7, 451 - 456, 2014, ISSN: 2319–8656

www.ijcat.com 452

documentation, but did not include the systematic analysis of
API documentation content.

 Similarly, Shi et al. [8] studied API documentation evolution.
The authors apply data mining techniques over the source
repository of five open-source APIs. Their study provides
various quantitative measures of which parts of the API
documentation are most frequently revised, and how often
API documentation is changed consistently with the
corresponding elements.

2.2 Knowledge Categorization based on
Manual Methods
Researchers have applied Knowledge from one field to other
field, they also studied which are the different questions raised
in Software Project Development.

Mylopoulos et al.[5] discussed how knowledge representation
techniques from the field of Artificial Intelligence can be
applied to software engineering. The authors presented a
categorization of different knowledge types, presumably
derived from their experience.

Requirement and Design are the important stages in Software
Project Development. Herbsleb and Kuwana[4] classified
questions asked in design meetings to study the kinds of
knowledge that may benefit from explicit capture at the
requirements and design stages based on their general
experience.

Hou et al.[2] studied 300 questions related to two specific
Swing widgets (JButton and JTree) posted on the Swing
forum. They then mapped the questions to the different design
features of the widgets. Their classification focuses more on
the target of the question and less on discovering the different
types of knowledge provided to and sought by API users.

More recently, Ko et al.[1] observed 17 developers at
Microsoft for a 90 minutes session each, studying their
information needs as they perform their software engineering
tasks. From the observation data the authors collected 334
specific information needs, which they abstracted into 21
general information needs.

Kirk et al.[3] investigated the knowledge problems faced by
them and their students when trying to develop applications
by extending the JHotDraw framework.

Similarly to Ko et al.’s study, Sillito et al.[7] produced a
catalog of 44 types of questions developers ask during
software evolution tasks. The questions in the catalog do not
focus exclusively on API usage, but rather relate to software
evolution and maintenance tasks.

So, researchers focused on how different stages of Software
Project Development and tools required can be analyzed in
different ways and they classified the Questions raised in
different phases into different categories based on their

Experience, Observations. Knowledge Types was not
generated automatically.

Here, authors referred and studied API Reference
Documentation in different ways. So, Separate study of
Knowledge Categorization and API Reference Documentation
was done previously.

The proposed work focuses on generation of Knowledge
Types from Java API Reference Documentation,
Classification and Searching in Java API Reference
Documentation.

3. IMPLEMENTATION DETAILS
3.1 Block Diagram of the System
The following figure explains the Block Diagram of Proposed
System:

Figure 1: Block Diagram of the System

 The System focuses on Java API Reference Documents
that is Javadocs. Input to the system is API Reference
Document of Java which is HTML Page.
This Java API Reference Document is then parsed by finding
Pattern for the Tags having Description.
After finding the Patterns, the required Text is retrieved from
the HTML page.
In the next step, Description of API elements is analyzed and
then Knowledge Types will be generated.

Following are the Knowledge Types that are to be generated:

1. Functionality and Behavior: This Knowledge Type
describes functionality and features of API. And also specifies
what happens when the API is used.
e.g.: protected boolean enabled
Specifies whether action is enabled; the default is true.

2. Directives: It is related to accessibility that is what users are
allowed or not allowed to do with the API element. Directives

Java API
Reference
Document

Parsing of
HTML file

Using
Pattern
Finding

Retrieve
Description of

Java API
Elements

Discover
Knowledge Types
from Description

Classify Java API
Reference
Document

according to
Knowledge Types

Searching of Java
API Reference

Document using
Knowledge Types

International Journal of Computer Applications Technology and Research
Volume 3– Issue 7, 451 - 456, 2014, ISSN: 2319–8656

www.ijcat.com 453

are clear contracts.
e.g.: public class AccessException extends
RemoteException
An AccessException is thrown by certain methods of
the java.rmi.Naming class (specifically bind, rebind,
and unbind) and methods of the
java.rmi.activation.ActivationSystem interface to indicate that
the caller does not have permission to perform the action
requested by the method call. If the method was invoked from
a non-local host, then an AccessException is thrown.

3. Control-Flow: How the API (or the framework) manages
the flow of control is described by this knowledge type. For
example by stating what events cause a certain callback to be
triggered?
e.g.: Set<String> getSupportedAnnotationTypes()
If the processor class is annotated
with SupportedAnnotationTypes, return an unmodifiable set
with the same set of strings as the annotation.

4. Code Examples: Code examples are provided for how to
use and combine elements to implement certain functionality
or design outcomes.
e.g.: public abstract class AbstractExecutorService extends
Object implements ExecutorService
Provides default implementations of ExecutorService
execution methods. This class implements the submit,
invokeAny and invokeAll methods using a RunnableFuture
returned by newTaskFor, which defaults to the FutureTask.
class provided in this package. For example, the
implementation of submit(Runnable) creates an associated
RunnableFuture that is executed and returned. Subclasses may
override the newTaskFor methods to return RunnableFuture
implementations other than FutureTask.
 Extension example. Here is a sketch of a class that
customizes ThreadPoolExecutor to use a CustomTask class
instead of the default FutureTask:
 public class CustomThreadPoolExecutor extends
ThreadPoolExecutor {
 static class CustomTask<V> implements
RunnableFuture<V> {...}
 protected <V> RunnableFuture<V>
newTaskFor(Callable<V> c) {
 return new CustomTask<V>(c);
 }
 protected <V> RunnableFuture<V> newTaskFor(Runnable
r, V v) {
 return new CustomTask<V>(r, v);
 }
 // ... add constructors, etc.
 }

5. Environment: Aspects related to the environment in which
the API is used is described in this type, but not the API
directly, e.g., compatibility issues, differences between
versions, or licensing information.
e.g: public abstract class AbstractElementVisitor7<R,P>
extends AbstractElementVisitor6<R,P>
A skeletal visitor of program elements with default behavior
appropriate for the RELEASE_7 source version.

6.External References: It includes any pointer to external
documents, either in the form of hyperlinks, tagged ”see also”
reference, or mentions of other documents (such as standards

or manuals).
e.g: public interface DOMLocator
DOMLocator is an interface that describes a location (e.g.
where an error occurred).
See also the Document Object Model (DOM) Level 3 Core
Specification.

7. Non-information: A section of documentation containing
any complete sentence or self-contained fragment of text that
provides only uninformative boilerplate text.
e.g: DefinitionKindHelper()

After generating the Knowledge Types, the given Java API
Reference Document is classified according to the Knowledge
Types generated for class.

Also, searching of Document is done depending upon the
Knowledge Types.

3.2 Concept in detail with example:
a) Consider following HTML file as Input: In this example,
one of the class of Javadocs , named void AbstractAction is
taken into consideration.

Figure 2: Example of the API Reference Document

b) Parsing of HTML document is done using following
technique:
In this technique, initially all HTML Tags are fetched from

International Journal of Computer Applications Technology and Research
Volume 3– Issue 7, 451 - 456, 2014, ISSN: 2319–8656

www.ijcat.com 454

the HTML Page.
After fetching all the HTML Tags, the Tags having the
required descriptions are observed.
And then the required Text is retrieved from the all HTML
Tags.

For Example: To get the Description of Class , all HTML
Tags are observed.
And then Pattern is detected as: Description of the Class is
present under div tag having identity as <div class="block">.
But here, there will be multiple div tags in one HTML page
with same class=”block”.

So again, pattern is observed in all HTML pages of Java API
Reference Documents as: Description of the Class is always
present in the First tag having class=”block”.
And then Text is retrieved from this tag.
So after this First div tag, multiple div tags with class=
“block” may be present.

c) After separating the tags having the description, next step is
to generate Knowledge Types for the given API Reference
Document. Here description of one API elements of the API
Reference Document may fall under more than one
Knowledge Types.

To generate Knowledge Types, identity of each Knowledge
Type is observed.
For Example:
For generating the Functionality and Behavior Knowledge
Type, Description of API Elements is considered as it is.
Because Functionality and Behavior Knowledge Type
describes functionality and features of API. And also specifies
what happens when the API is used.

For above class, Following Knowledge Types are generated:
For Description of class: External References, Environment,
Functionality and Behavior.
For Constructor of class: Functionality and Behavior.
For Fields, Methods of class: Control Flow, Functionality and
Behavior.

d) After generating the Knowledge Types, depending upon
the Knowledge Types generated for class the given Java API
Reference Document is classified into respective Knowledge
Type category.

So here for above example of AbstractAction , this document
will be classified in External References, Environment
,Functionality and Behavior.

e) Knowledge Types generated will be used for searching.
For above example of AbstractAction , user can search for
“Code Example of AbstractAction” for getting Example of
AbstractAction.

3.3 Algorithms
3.3.1 Parsing of HTML Files to fetch Description:
a) Initially, one of the Javadocs pages that is Java API
Reference Document which is to be processed is taken as
input.
b) Source code of the Javadocs is HTML tags and hence the
actual input to the first step is HTML and JavaScript tags.

c) After taking HTML tags as input, the next step is to parse
the HTML tags to fetch the tags having description.
d) So, to fetch the description of API element from the current
page using Pattern Finding.

3.3.2 For Generation of Knowledge Types for the
Description of API elements:
a) After fetching the description of API elements in second
step, next step is to process this description.
b) To process the description of the API elements, the patterns
of the Descriptions are observed, that is whether the
descriptions are having some common words in them or they
are starting with same words or having some common format.
c) So, after finding some common patterns in the descriptions,
the Knowledge Types are generated.
That is description will be classified to the appropriate
Knowledge Type. For Example, Description of all API
elements will have common Knowledge Type as
Functionality and Behaviour.

3.3.3 For classification of Java API Reference
Document:
a) Here the Knowledge Types generated for Class are
observed first.
b) Depending on the Knowledge Types generated for Class ,
the document will be classified into the respective
Knowledge Types.

3.3.4 Searching using Knowledge Types
a) After classification of Documentation in above step, the
searching will be performed.
b) Here depending upon query given by user, the query will
be parsed and the searching of the query will be done
depending upon the Knowledge Types.

4. RESULTS
4.1 Data Set
The Data Set for the system are set of API Reference
Documents. The jdk-7u51-apidocs.zip file contains the set of
API Reference Documents for Java. The above said file can
be obtained by using following link:
http://www.oracle.com/technetwork/java/javase/documentatio
n/java-se-7-doc-download-435117.html

4.2 Results
4.2.1 Results of Classification:
Consider the API Reference Documentation in Figure 2 for
Class AbstractAction.

For API Reference Document in Figure 2, the document will
be classified as follows:

Table 1: Results obtained for AbstractAction and for
other Classes

International Journal of Computer Applications Technology and Research
Volume 3– Issue 7, 451 - 456, 2014, ISSN: 2319–8656

www.ijcat.com 455

4.2.2 Results of Searching:
When user wish to search query like “Code Examples of
AbstractAction” the results will show that respective
document.
So depending upon user requirement the Searching is done.

4.2.3 Performance Measure:
Following table shows Performance Measures:

Table 2: Performance Measure for different documents

tested by system

Sr.
No. Class Name

Knowledge
Types
generated Of
Class

Classification
of Document
Into Following
Knowledge
Types

1

AbstractActio
n (Java

Platform SE 7
)

External
References,

Environment,
Functionaliy
and Behavior

External
References

,Environment
,Functionaliy
and Behavior

2

AbstractAnno
tationValueVi
sitor6 (Java

Platform SE 7
)

Environment,

Functionality
and Behavior

Environment,
Functionality
and Behavior

3

BoxLayout
(Java Platform

SE 7)

External
References,

Environment,
Control Flow,
Functionality
and Behavior

External
References,

Environment,
Control Flow,
Functionality
and Behavior

4

ButtonGroup
(Java Platform

SE 7)

External
ReferencesEn
vironmentFun
ctionality and

Behavior

External
ReferencesEnvir
onmentFunction

ality and
Behavior

5

CellRenderer
Pane (Java

Platform SE 7
)

External
ReferencesCo

de
ExampleEnvir
onmentFuncti

onality and
Behavior

External
ReferencesCode
ExampleEnviro
nmentFunctiona

lity and
Behavior

6

DefaultButton
Model (Java

Platform SE 7
)

External
ReferencesEn
vironmentFun
ctionality and

Behavior

External
ReferencesEnvir
onmentFunction

ality and
Behavior

7

DefaultListCe
llRenderer

(Java Platform
SE 7)

External
ReferencesEn
vironmentCon

trol
FlowFunction

ality and
Behavior

External
ReferencesEnvir
onmentControl

FlowFunctionali
ty and Behavior

8

DefaultRowS
orter (Java

Platform SE 7
)

External
ReferencesCo

ntrol
FlowFunction

ality and
Behavior

External
ReferencesCont

rol
FlowFunctionali
ty and Behavior

Java API
Reference
Document

Tested

Knowledge
Types

Expected

Knowledge
Types

Generated Precision

AbstractAction
(Java Platform
SE 7) 4 4 1.00

AbstractAnnotat
ionValueVisitor
6 (Java Platform
SE 7) 2 2 1.00

BoxLayout
(Java Platform
SE 7) 4 4 1.00

ButtonGroup
(Java Platform
SE 7) 4 3 0.75

CellRendererPa
ne (Java
Platform SE 7) 6 5 0.83

DefaultButtonM
odel (Java
Platform SE 7) 3 3 1.00

DefaultListCell
Renderer (Java
Platform SE 7) 5 4 0.80

DefaultRowSort
er (Java
Platform SE 7) 3 3 1.00

GroupLayout
(Java Platform
SE 7) 3 3 1.00

ImageIcon (Java
Platform SE 7) 4 3 0.75

International Journal of Computer Applications Technology and Research
Volume 3– Issue 7, 451 - 456, 2014, ISSN: 2319–8656

www.ijcat.com 456

5. CONCLUSION AND FUTURE WORK
 API’s are used as interface for using predefine functions,
packages, classes etc. Developers read API reference
documentation to learn how to use the API and answer
specific questions they have during development tasks. Thus
API Reference Documentation provides guide to user for
referring to API. API Reference Documentation contains
description of API elements; this description will be analyzed
for generating Knowledge. This system focuses on
classification of description of API elements into different
Knowledge Types for Java API Reference Documentation.
After generating Knowledge Types, classification of the Java
API Reference Document is done according to Knowledge
Types. Java API Reference Document then can be searched
using the Knowledge Types. Other Types of Documentation
like MSDN, Documentation of Python can be considered for
parsing and processing further.

6. REFERENCES
[1] A. J. Ko, R. DeLine, and G. Venolia, “Information needs

in collocated software development teams,” in
Proceedings of the 29th International Conference on
Software Engineering, 2007, pp. 344–353.

[2] D. Hou, K. Wong, and J. H. Hoover, “What can
programmer questions tell us about frameworks?” in
Proceedings of the 13th International Workshop on
Program Comprehension, 2005, pp. 87–96.

[3] D. Kirk, M. Roper, and M. Wood, “Identifying and
addressing problems in object-oriented framework
reuse,” Empirical Software Engineering, vol. 12, pp.
243–274, June 2007.

[4] J. D. Herbsleb and E. Kuwana, “Preserving knowledge in
design projects: what designers need to know,” in
Proceedings of the Joint INTERACT ’93 and CHI ’93
Conferences on Human Factors in Computing Systems,
1993, pp. 7–14.

[5] J. Mylopoulos, A. Borgida, and E. Yu, “Representing
software engineering knowledge,” Automated Software
Engineering, vol. 4, no. 3, pp. 291–317, 1997.

[6] J. Nykaza, R. Messinger, F. Boehme, C. L. Norman, M.
Mace,and M. Gordon, “What programmers really want:
Results of a needs assessment for SDK documentation,”
in Proceedings of the 20th Annual ACM SIGDOC
International Conference on Computer Documentation,
2002, pp. 133–141.

[7] J. Sillito, G. C. Murphy, and K. D. Volder, “Asking and
answering questions during a programming change task,”
IEEE Transactions on Software Engineering, vol. 34, no.
4, pp. 434–451, July-August 2008.

[8] L. Shi, H. Zhong, T. Xie, and M. Li, “An empirical study
on evolution of API documentation,” in Proceedings of
the Conference on Fundamental Approaches to Software
Engineering, 2011, pp. 416–431.

[9] M. P. Robillard and R. DeLine, “A field study of API
learning obstacles,” Empirical Software Engineering,
vol. 16, no. 6, pp. 703–732, 2011.

[10] S. Y. Jeong, Y. Xie, J. Beaton, B. A. Myers, J. Stylos, R.
Ehret, J. Karstens, A. Efeoglu, and D. K. Busse,
“Improving documentation for eSOA APIs through user

studies,” in Proc. 2nd Int’l Symp. on End-User
Development, ser. LNCS, vol. 5435. Springer,2009, pp.
86–105.

[11] Walid Maalej and Martin P. Robillard , Patterns of
Knowledge in API Reference Documentation, IEEE
TRANSACTIONS ON SOFTWARE ENGINEERING,
VOL. 39, NO. X, XXXXXXX 2013.

