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Abstract: in this paper, an improved firefly algorithm with chaos (IFCH) is presented for solving unconstrained optimization 

problems. Several numerical simulation results show that the algorithm offers an efficient way to solve unconstrained optimization 

problems, and has a high convergence rate, high accuracy and robustness. 
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1. INTRODUCTION 
The problem of finding the global optimum of a function with 

large numbers of local minima arises in many scientific 

applications. In typical applications, the search space is large 

and multi-dimensional. Many of these problems cannot be 

solved analytically, and consequently, they have to be 

addressed by numerical algorithms. Moreover, in many cases, 

global optimization problems are non-differentiable. Hence, 

the gradient-based methods cannot be used for finding the 

global optimum of such problems. To overcome these 

problems, several modern heuristic algorithms have been 

developed for searching near-optimum solutions to the 

problems. These algorithms can be classified into different 

groups, depending on the criteria being considered, such as 

population-based, iterative based, stochastic, deterministic, 

etc. Depending on the nature of the phenomenon simulated by 

the algorithms, the population-based heuristic algorithms have 

two important groups: Evolutionary Algorithms (EA) and 

swarm intelligence based algorithms. 

 

Some of the recognized evolutionary algorithms are: Genetic 

Algorithms (GA)  [1], Differential Evolution (DE)  

[2] and [3], Evolution Strategy (ES)  [4] and Artificial 

Immune Algorithm (AIA)  [5] etc. Some of the well known 

swarm intelligence based algorithms are: Particle Swarm 

Optimization (PSO) , Ant Colony Optimization (ACO) , 

Shuffled Frog Leaping (SFL) , and Artificial Bee Colony 

(ABC) algorithms , etc. Besides the evolutionary and swarm 

intelligence based algorithms, there are some other algorithms 

which work on the principles of different natural phenomena. 

Some of them are: the Harmony Search (HS) algorithm, the 

Gravitational Search Algorithm (GSA) , Biogeography-Based 

Optimization (BBO) , the Grenade Explosion Method 

(GEM) , the league championship algorithm  and the charged 

system search . 

 

This paper is organized as follows: after introduction, the 

original firefly algorithm is briefly introduced in section 2. In 

section 3, the proposed algorithm is described, while the 

results are discussed in section 4. Finally, conclusions are 

presented in section 5. 

2. FIREFLY ALGORITHM 
The Firefly Algorithm [FA] is one of many new optimization 

techniques that have been proposed over the past years. It was 

proposed by Yang in 2009 [6] and it has since then been 

applied in several applications bbecause of its few parameters 

to adjust, easy to understand, realize, and compute, it was 

applied to various fields, such as codebook of vector 

quantization [7], in-line spring-mass systems [8]; mixed 

variable structural optimization [9]; nonlinear grayscale image 

enhancement [10], travelling salesman problems [11], 

continuously cast steel slabs [12], promoting products online 

[13], nonconvex economic dispatch problems [14], chiller 

loading for energy conservation [15], stock market price 

forecasting [16], and multiple objectives optimization [17]. 

Although the algorithm has many similarities with other 

swarm based algorithms such as Particle Swarm Optimization 

[18], Artificial Bee Colony Optimization  [19]and Ant Colony 

Optimization [6], the FA has proved to be much simpler both 

in concept and implementation and has better performance 

compared to the other techniques. 

 

2.1 Flashing behaviour of Fireflies 
The FA was based on the flashing patterns and behaviour 

patters of the fireflies. The fireflies use the flashing patterns to 

communicate with each other. Yang did not mimic their 

behaviour in full detail, but created a simplified algorithm 

based on the following three rules:  

i. All fireflies are unisexual, so that one firefly will be 

attracted to other fireflies regardless of their 

sex;  

ii. Attractiveness is proportional to the firefly’s 

brightness; for any couple of flashing fireflies, 

the less bright one will move towards the 

brighter one; attractiveness is proportional to 

the brightness which decreases with increasing 

distance between fireflies; if there are no 

http://www.sciencedirect.com/science/article/pii/S1026309812002672#br000005
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brighter fireflies than a particular firefly, this 

individual will move randomly in the space;  

iii. The brightness of a firefly is somehow related to the 

analytical form of a cost function; for a 

maximization problem, brightness can be 

proportional to the value of the cost function; 

other forms of brightness can be defined in a 

similar matter to the fitness function in genetic 

algorithms. 

2.2 Attractiveness and Light Intensity 
In the algorithm, two important factors are involved: the 

variation of light intensity and the formulation of the 

attractiveness. For example, suppose that the attractiveness of 

a firefly is determined by its brightness, which in turn is 

associated with the encoded objective function, then the 

higher of the brightness and, the better the location and the 

more fireflies will be attracted to the direction. However, if 

the brightness is equal, the fireflies will move randomly. As 

light intensity and thus attractiveness decreases as the distance 

from the source increases, the variations of light intensity and 

attractiveness should be monotonically decreasing functions. 

In order to implement FA, there are some definitions:  

Definition 1: the variation of light intensity; 

   We know, the light intensity varies according to the inverse 

square law 

                                                              (1) 

  Where I(r) is the light intensity at a distance r and Is is the 

intensity at the source. 

  When the medium is given,  the light intensity can be 

determined as follows: 

                                                              (2) 

To avoid the singularity at r=0 in (1), the equations can be 

approximated in the following Gaussian form:  

                                                              (3) 

Where γ is light absorption coefficient. 

Definition 2: formulation of the attractiveness 

As firefly attractiveness is proportional to the light intensity 

seen by adjacent fireflies, we can now define the 

attractiveness β of a firefly by 

 
Where  is the attractiveness at r=0. 

Definition 3: formulation of location moving 

 
Where is the position of  after t+1 times 

movements; α is the step parameter which varies between 

[0,1] ； is a random factor conforming Gaussian distribution 

between[0,1]. 

The basic steps of the FA are summarized as the pseudo code 

shown in Fig. 1 which consists of the three rules discussed 

above. 

 

firefly algorithm 

Begin 

  Objective function 𝑓(𝑥), 𝑥 = (𝑥1, . . . , 𝑥𝑑)𝑇 

  Generate initial population of 𝑛fireflies 𝑥𝑖, 𝑖 = 1, 2, . . . , 𝑛 

   Formulate light intensity 𝐼so that it is associated with 𝑓(𝑥) 

    While (𝑡<MaxGeneration) 

    Define absorption coefficient 𝛾 

     for 𝑖 = 1 : 𝑛(𝑛fireflies) 

   for𝑗 = 1 : 𝑛(𝑛fireflies) 

    if (𝐼𝑗>𝐼𝑖), 

   move firefly 𝑖towards 𝑗 

    end if 

    Vary attractiveness with distance 𝑟 via  

     Evaluate new solutions and update light intensity 

     end for𝑗 

    end for𝑖 
    Rank the fireflies and find the current best 

end while 

Post-processing the results and visualization 

End 

Fig. 1 Pseudo code of the firefly algorithm 

 

3. THE PROPOSED ALGORITHM 

(IFCH) FOR UNCONSTRAINED 

OPTIMIZATION PROBLEMS     

Generating random sequences with a long period, and a good 

consistency is very important for easily simulating complex 

phenomena, sampling, numerical analysis, decision making 

and especially in heuristic optimization [20]. Its quality 

determines the reduction of storage and computation time to 

achieve the desired accuracy [21]. Chaos is a deterministic, 

random-like process found in nonlinear, dynamical system, 

which is non-period, non-converging and bounded. Moreover, 

it depends on its initial condition and parameters [22-24]. 

Applications of chaos in several disciplines including 

operations research, physics, engineering, economics, biology, 

philosophy and computer science[25-27]. 

Recently chaos is extended to various optimization areas 

because it can more easily escape from local minima and 

improve global convergence in comparison with other 

stochastic optimization algorithms [28-34]. Using chaotic 

sequences in FireflyAlgorithm can be helpfully improve the 

reliability of the global optimality, and also enhance the 

quality of the results. 

In the proposed chaotic Firefly Algorithm, we used chaotic 

maps to tune the Firefly Algorithm parameters and improve 

the performance [20]. The steps of the proposed chaotic 

firefly algorithm for solving definite integral are as follows: 

Step 1 Generate the initial population of fireflies, 

 

Step 2 Compute intensity for each firefly 

member,  

Step 3 Calculate the parameters ( ) using the following 

Sinusoidal map[35]: 
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where  is the iteration number. 

Step 4 Move each firefly xi towards other brighter fireflies. 

The position of each firefly is updated by  

 
Where   computed by the following randomness equation as 

shown below:  

 

In this equation  represents randomness parameters at cycle 

i.  and  represent maximum and minimum 

randomness parameters defined in the algorithm respectively. 

 and  represent maximum light intensity, minimum 

light intensity and mean value of light intensity of all fireflies 

at cycle i respectively. 

Step 5 Update the solution set. 

Step 6 Terminate if a termination criterion is fulfilled; 

otherwise go to Step 2. 

 

4. EXPERIMENTAL RESULTS 
Six well known test functions have been given to verify the 

weight of the proposed algorithm. The initial parameters are 

set at n= 40; maximum iteration number = 100;  ; 

. The results of IFCH algorithm are conducted 

from 50 independent runs for each problem. The selected 

chaotic map for all problems is the Sinusoidal map for   

values, and randomized for  values, whose equations is 

shown above. 

All the experiments were performed on a Windows 7 Ultimate 

64-bit operating system; processor Intel Core i7 760 running 

at 2.81 GHz; 8GB of RAM and code was implemented in C#. 

Test problems are considered to extensively investigate the 

performance of the IFCH algorithm, and they are presented as 

follows: 

The first is Sphere function, defined as 

Min f1 = 


N

i

i
x

1

2
 

Where global optimum x*= (0,0,…,0) and f(x*) = 0 for  -100 

≤ xi ≤100. 

The second is Rosenbrock function, defined as 

Min f2 = 

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Where global optimum x*= (1,1,…,1) and f(x*) = 0 for  -100 

≤ xi ≤100. 

The third is generalized Rastrigrin function, defined as 

Min f3= 
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Where global optimum x*= (0,0,…,0) and f(x*) = 0 for  -10 ≤ 

xi ≤10. 

The fourth function is as follows: 

Min f4 = 450
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The fifth is generalized Griewank function, defined as 
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Where global optimum x*= (0,0,…,0) and f(x*) = 0 for  -600 

≤ xi ≤600. 

The sixth is Schwefel’s function, defined as 

Min f6=  
 



N

i
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ii
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||||  

Where global optimum x*= (0,0,…,0) and f(x*) = 0 for  -100 

≤ xi ≤100. 

 

 

 

 

Table 1 the solution of proposed algorithm and firefly algorithm  

Test Problem Algorithm Best Worst Mean Standard Deviation 

f1 
FA 6.0076e+001 2.5205e+002 1.7603e+002 4.4359e+001 

IFCH 2.2757e-010 7.0950e-009 1.8091e-009 1.9488e-009 

f2 
FA 9.6629e+004 8.9231e+005 3.3964e+005 1.9909e+005 

IFCH 2.4458e-001 8.1098e+003 5.3162e+002 1.7208e+003 

f3 
FA 2.9511e+001 5.2810e+001 4.2476e+001 5.7278e+000 

IFCH 3.7993e-009 9.9496e-001 3.3166e-002 1.8165e-001 

f4 
FA -3.5043e+002 -1.6889e+002 -2.5642e+002 4.4840e+001 

IFCH -4.5000e+002 -4.5000e+002 -4.5000e+002 1.2822e-009 

f5 
FA 2.0566e+000 3.2913e+000 2.5946e+000 3.2134e-001 

IFCH 4.4744e-010 1.3045e-001 3.7959e-002 3.8783e-002 

f6 
FA 3.1353e+001 5.0629e+001 4.2350e+001 4.9070e+000 

IFCH 3.6976e-005 2.2687e-004 8.1858e-005 3.7660e-005 
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5. CONCLUSIONS 
This paper introduced an improved Firefly Algorithm by 

blending with chaos for unconstrained optimization problems. 

The proposed algorithm employs a novel method for 

generating new solutions that enhances accuracy and 

convergence rate of FA. The proposed algorithm has been 

successfully applied to various benchmarking of 

unconstrained optimization problems. Case study results 

reveal that the proposed algorithm can find the global optimal 

solutions and is a powerful search algorithm for various 

unconstrained optimization problems. 

. 
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