
International Journal of Computer Applications Technology and Research

Volume 4– Issue 11, 829 - 837, 2015, ISSN:- 2319–8656

Effects of Object-Oriented Programming on
Modern Software Development

Onu Fergus U.

Ebonyi State

University, Abakaliki

Nigeria

Okorie Kingsley

10 Jideofor Street

Thinkers Corner

Enugu – Nigeria

Ugwa Chioma U

43/45 Unity Street off

Nike Road Trans-

Ekulu,

Enugu – Nigeria

Abstract: Object oriented Programming (OOP) entered the world of programming in the 1980s, but it

actually became very popular from 1990s till date. What changes has it actually introduced into the

programming world when placed in a balance with other programming techniques? This paper answers

this question by taking a detailed and analytical look into the history and evolution of programming

Languages. The paper unraveled the comparative advantages of OOP over a few earlier programming

techniques. We collected data from both primary and secondary sources, analyzed the data and found

out that stakeholders in software development industry have felt the tremendous impact of OOP on

modern software development process. We have also noted that despite all the good and desirable

features offered by Object Oriented programming, it is obvious that stakeholders in software

development still expect easier and more flexible features than those the Object Oriented Programming

currently presents.

Keywords: Object- based programming, procedure-based programming, software development, GSD

1. INTRODUCTION
Herbsleb and Moitra (2001), declared that

software has become a vital component of

almost every business in recent times. Success

in all businesses increasingly depends on using

software as a competitive weapon. This fact

has made software development a construction

of strategy for business success. Software

development is a serious engineering concept

that needs team work. The team members may

be collocated or dispersed depending on where

the needed expertise is found. The team-based

approach to software development has made it

a global concern. This is what Herbsleb

and Moitra termed Global Software

Development (GSD). In GSD distance is a

major issue leading to coordination,

communication, and management issues. To

survive the problems posed by the

globalisation of software development,

collaborative tools among other technologies

will play a key role concludes Herbsleb and

Moitra (2001). Object Oriented Programming

presents this collaborative feature and hence

poses the tendency to provide great success in

modern software development.

International Journal of Computer Applications Technology and Research

Volume 4– Issue 11, 829 - 837, 2015, ISSN:- 2319–8656

2 REVIEW OF RELATED

LITERATURE

2.1Brief History of Computer

Programming

Computer programming has undergone both

tumultuous and turbulent moments which

subjected programmers to rough learning and

application terrain. It used to be so bad that one

programmer may not and (most times) cannot

comprehend what another programmer

presented with their codes. To make the

situation worse, the programmer who authored

a set of codes would end up forgetting

completely what the codes were to do few

years later. The consequence of was a software

or application which is very difficult (if not

impossible) to maintain. Going down the

memory lane, let us recall that programming

the computer started with the novel works of

the following: John Von Neumann, Charles

Babbage, etc. The Assembly language, other

procedural-based programming of 1950s,

Structured programming techniques of late

1960s, Modular programming concepts 1970s

and Object-Oriented programming of late

1980s have taken their turns to influence the

computer programming and software

development landscape.

Assembly Language: Assembly language as

stated by Wikipedia, is a programming

Language that can be used to directly tell the

computer what to do. An assembly language is

almost exactly like the machine language that

a computer can understand, except that it uses

words called mnemonics in place of numbers.

A computer cannot really understand an

assembly program directly. However, an

assembler can easily change the program into

machine code, replacing the mnemonic with

the binary patterns they stand for. It is a

programming language that is a close

approximation of the binary machine code

(Mifflin, 2009).

Procedure-Based programming: Many of

today’s programmers may not be used to some

words such as routines, subroutines in

programming as they are with functions and

objects. These are what procedural

programming paradigm, derived from

structured programming which is built on the

concept of the procedure calls are based on. In

procedural programming, program codes are

organized into small "procedures" that use and

change our data. In ColdFusion for example,

we write our procedures as either custom tags

or functions. These functions typically take

some input, carry out a process, and then

produce some output. Ideally your functions

would behave as "black boxes" where input

data goes in and output data comes out. The

key idea here is that our functions and

procedures have no intrinsic relationship with

the data they operate on. As long as you

provide the correct number and type of

arguments, the function/procedure will do its

work and faithfully return the expected result.

So in a procedural system our

functions/procedures use data "given" to them

(as parameters) but also directly access any

shared data they need. (KevanStannard, 2011).

Procedural programming presents a list or set

of instructions telling a computer what to do

step by step and how to move from the first line

of code to the second line of code. Some

examples include BASIC, Fortran, Pascal, C

and Go.

Modular programming: Modular

programming is a software design technique

that emphasizes the separation of the

functionality of a program into independent,

interchangeable segments called modules.

Theoretically, modules represent a separation

of concerns, and improve maintainability by

enforcing logical boundaries between

components. Modules are typically

incorporated into the program through

interfaces. In the modular programming

methodology, one of the most important

principles is encapsulation, whereby the data

contained within a module is accessible to the

rest of the program only via behaviours of the

module. This makes it much easier to control

what happens when data is modified. Modular

programming is a method for designing

software by way of breaking up components of

http://en.wikipedia.org/wiki/BASIC
http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/Pascal_%28programming_language%29
http://en.wikipedia.org/wiki/C_%28programming_language%29
http://en.wikipedia.org/wiki/Go_%28programming_language%29

International Journal of Computer Applications Technology and Research

Volume 4– Issue 11, 829 - 837, 2015, ISSN:- 2319–8656

a large software program into manageable

pieces. Those pieces, or "modules," can then be

independently developed, tested, and refined.

It's a process that generally helps shorten

development time and avoid replicating code

(WiseGEEK)

Structured Programming: Structured

Programming is a technique for organizing

computer program codes in a hierarchy of

modules/segments showing how they are used.

Each segment has a single entry and a single

exit point. At the entry point, control is passed

downward through the structure to higher

levels of the structure without unconditional

branches. Three types of control flow are used

namely: sequential, test/selection, and

iteration. Structured programming which

includes modular programming, is a subset of

procedure based programming enforces a

logical structure on the program being written

to make it more efficient and easier to

understand and modify (Rouse, 2014)

Object-Oriented programming: Object

Oriented Programming arrangements are in

Classes and in Objects. An instance is classes

of Human beings. These classes can have sub-

classes; the sub-class can be Ebonyi girls.

Classes inherit properties and behaviours so,

Ebonyi girls like money because Ibo girls like

money; Ibo girls like money because human

beings like money. Object-oriented

methodologies are an extension of modular

ones, the additional ingredient being

inheritance. With this ingredient, the code can

refer directly to kinds of interactive things. The

Object Oriented Programming ideals are. In

object-oriented programming, concepts are

directly molded in code employing the ideas of

classes and inheritance. A distinct member of a

class is called an object.

2.2 Features of Object-Oriented

Programming

The concept of Object-Oriented Programming

is very interesting and creates a lot of ease in

the programming process. It includes the

concept of:

 Objects

 Classes

 Data Abstraction and Encapsulation

 Inheritance

 Polymorphism

Objects: Objects are the basic run-time entities

in an object-oriented system. Programming

problem is analyzed in terms of objects and

nature of communication between them. When

a program is executed, objects interact with

each other by sending messages. Different

objects can also interact with each other

without knowing the details of their data or

code.

Classes: A class is a collection of objects of

similar type. Once a class is defined, any

number of objects can be created which belong

to that class.

Data Abstraction and Encapsulation:

Abstraction refers to the act of representing

essential features without including the

background details or explanations. Classes

use the concept of abstraction and are defined

as a list of abstract attributes. Storing data and

functions in a single unit (class) is

encapsulation. Data cannot be accessible to the

outside world and only those functions which

are stored in the class can access it.

Encapsulation: Once an Object is created,

knowledge of its implementation is not

necessary for its use. In older programs, coders

needed understand the details of a piece of code

before using it. Objects have the ability to hide

certain parts of themselves from programmers.

This prevents programmers from tampering

with values they shouldn't. Additionally, the

object controls how one interacts with it,

preventing other kinds of errors. For example,

a programmer (or another program) cannot set

the width of a window to -400. (Popyack,

2012)

Inheritance: Inheritance is the process by

which objects can acquire the properties of

objects of other class. In object oriented

International Journal of Computer Applications Technology and Research

Volume 4– Issue 11, 829 - 837, 2015, ISSN:- 2319–8656

programming, inheritance provides reusability,

like, creating additional features to an existing

class without modifying the class. This is

achieved by deriving a new class from the

existing one. The new class will have

combined features of both the classes.

Polymorphism: Polymorphism means the

ability to take more than one form. An

operation may exhibit different behaviors in

different instances. The behavior depends on

the data types used in the operation.

Polymorphism is extensively used in

implementing Inheritance.

2.3 Inherent Pros of Object-

Oriented Programming

Code Reuse and Recycling: Objects created

for Object Oriented Programs can easily be

reused in other programs.

Design Benefits: Large programs are very

difficult to write. Object Oriented Programs

force designers to go through an extensive

planning phase, which makes for better designs

with fewer flaws. In addition, once a program

reaches a certain size, Object Oriented

Programs are actually easier to program than

non-Object Oriented ones. (Jeffrey L.

Popyack)

Software Maintenance: Programs are not

disposable. Legacy code must be dealt with on

a daily basis, either to be improved upon (for a

new version of an exist piece of software) or

made to work with newer computers and

software. An Object Oriented Program is much

easier to modify and maintain than a non-

Object Oriented Program. So although a lot of

work is spent before the program is written,

less work is needed to maintain it over

time. .(Jeffrey L. Popyack)

2.4 Procedure-Based Versus

Object-Based Programming

Procedural Programming lays emphasis on

identification and specification of a set of steps

to solve a given task and the precise way to

execute it to reach the desired outcome. For

example, if you want to calculate the month-

end closing balance of the departmental

imprest, the steps would follow thus:

 Assign the initial monthly-allocation

 Sum up all the expenses within the

month

 then subtract the sum of the expenses

from the initial monthly allocation

 the subtraction will give you the

month-end closing balance

A procedure which can be a subroutine or a

function contains an ordered list of instructions

to be carried out. A procedure can be called at

any time during the execution the program by

any other procedure or by itself. Let us note at

this point that Procedure-based and Object-

based programming are two ways of showing

problems to be solved and how to go about

solving them.

The key difference between Object Oriented

Programming and Procedural Programming is

that the focus of Procedural Programming is to

break down the programming task into a

collection of variables and subroutines while,

the focus of Object Oriented Programming is

to break down the programming task into

objects, which encapsulate data and methods.

Most notable difference could be that while

Procedural Programming uses procedures to

directly operate on data structures, Object

Oriented Programming will bundle the data

and methods together so that an object will

operate on its own data (KevanStannard,

2011).

3. METHODOLOGY

We studied the effect of OOP on modern

software development with data from two main

sources as discussed below.

Primary source: We conducted oral

interviews with a total of 125 interviewees out

of which 10 were Lecturers, 15 were freelance

indigenous software developers in Enugu

Nigeria and 100 were final year students of

computer Science. These respondents were

selected from three different Universities

mailto:%20%22Jeffrey%20L.%20Popyack%22%20%3CJPopyack@CS.Drexel.edu%3E?Subject=CS%20164%20Course%20Notes:%20Object%20Oriented%20Programming/Advantages%20of%20OOP%20%28Advantages.html%29
mailto:%20%22Jeffrey%20L.%20Popyack%22%20%3CJPopyack@CS.Drexel.edu%3E?Subject=CS%20164%20Course%20Notes:%20Object%20Oriented%20Programming/Advantages%20of%20OOP%20%28Advantages.html%29
mailto:%20%22Jeffrey%20L.%20Popyack%22%20%3CJPopyack@CS.Drexel.edu%3E?Subject=CS%20164%20Course%20Notes:%20Object%20Oriented%20Programming/Advantages%20of%20OOP%20%28Advantages.html%29

International Journal of Computer Applications Technology and Research

Volume 4– Issue 11, 829 - 837, 2015, ISSN:- 2319–8656

namely: Ebonyi State University Abakiliki -

Nigeria, Nnamdi Azikiwe University, Awka -

Nigeria and Enugu State University of Science

and Technology, Enugu - Nigeria. The

questions sought the views of the above named

groups of persons’ on the effects of Object-

Oriented Programming on modern software

development.

Secondary source: we consulted existing

documents like computer science journals, text

books, laboratory manuals and manuscripts,

etc. The Internet was a major source of the

secondary data source. Most of our journal

articles were sourced through the internet. We

studied various reviews and comments from

people of all walks of life.

4.0RESULTS PRESENTATION

& SUMMARY OF FINDINGS
Table 1 shows the occupational

distribution of the interviewee. A total of

125 respondents’ opinions were sampled

and responses collected and analyzed on a

5-point linker type scale as shown

subsequently.

Table 1: Occupation distribution of

interviewed respondents

S/

n

Respondent

s’

Occupation

No

.

Percentag

e

1. Software

developers

15

8%

2. Lecturers 10 12%

3. Final year

students

10

0 80%

 Total 12

5 100%

International Journal of Computer Applications Technology and Research

Volume 4– Issue 11, 829 - 837, 2015, ISSN:- 2319–8656

Figure 1: Pie Chart Showing the Occupational distribution of interviewed respondents

Table 2 presents the opinion of the respondents to the questions presented by the interviewer. These questions were presented

to indigenous software developers, Lecturers and final year students of Computer Science selected from three universities

mentioned earlier.

Table 2: Questions and responses by respondents

S/N Questions

x

F

fx



(mean)

%

1
Object oriented programming languages enable programming in

modules?

 Strongly Agree 5 100 500 4.80 80.00

 Agree 4 25 100 20.00

 Undecided 3 0 0 0.00

 Disagree 2 0 0 0.00

 Strongly Disagree 1 0 0 0.00

2
Program can be divided into units of task and tested differently in

OOP?

 Strongly Agree 5 83 417 4.60 66.67

 Agree 4 33 133 26.67

 Undecided 3 8 25 6.67

 Disagree 2 0 0 0.00

 Strongly Disagree 1 0 0 0.00

3
Object oriented programming languages have the concept of

objects, class, data abstraction, inheritance, and polymorphism?

 Strongly Agree 5 100 500 4.73 80.00

 Agree 4 17 67 13.33

 Undecided 3 8 25 6.67

 Disagree 2 0 0 0.00

 Strongly Disagree 1 0 0 0.00

4
It is easy to debug programs written with object oriented

programming than procedure oriented programming?

 Strongly Agree 5 83 417 4.53 66.67

 Agree 4 25 100 20.00

 Undecided 3 17 50 13.33

 Disagree 2 0 0 0.00

 Strongly Disagree 1 0 0 0.00

5
Tasks are broken into smaller units in object oriented

programming?

 Strongly Agree 5 17 83 3.40 13.33

 Agree 4 17 67 13.33

 Undecided 3 92 275 73.33

8%

12%

80%

Lecturers

Software Developers

Final Year Students

International Journal of Computer Applications Technology and Research

Volume 4– Issue 11, 829 - 837, 2015, ISSN:- 2319–8656

 Disagree 2 0 0 0.00

 Strongly Disagree 1 0 0 0.00

6

Object oriented programming languages have graphical interface

that allow for the design of a more attractive program interface

than in procedure oriented programming?

 Strongly Agree 5 25 125 3.33 20.00

 Agree 4 42 167 33.33

 Undecided 3 17 50 13.33

 Disagree 2 33 67 26.67

 Strongly Disagree 1 8 8 6.67

7
Object oriented programming aids team work better than

procedure oriented programming?

 Strongly Agree 5 67 333 4.53 53.33

 Agree 4 58 233 46.67

 Undecided 3 0 0 0.00

 Disagree 2 0 0 0.00

 Strongly Disagree 1 0 0 0.00

8
Object oriented programming makes it easy to modify existing

codes for a re-use?

 Strongly Agree 5 67 333 4.33 53.33

 Agree 4 42 167 33.33

 Undecided 3 8 25 6.67

 Disagree 2 8 17 6.67

 Strongly Disagree 1 0 0 0.00

9
Objects created for object oriented programs can easily be reused

in other programs?

 Strongly Agree 5 58 292 4.13 46.67

 Agree 4 42 167 33.33

 Undecided 3 17 50 13.33

 Disagree 2 0 0 0.00

 Strongly Disagree 1 8 8 6.67

10
In object oriented programming, once an object is created,

knowledge of its implementation is not necessary for its use?

 Strongly Agree 5 50 250 3.87 40.00

 Agree 4 33 133 26.67

 Undecided 3 17 50 13.33

 Disagree 2 25 50 20.00

 Strongly Disagree 1 0 0 0.00

International Journal of Computer Applications Technology and Research

Volume 4– Issue 11, 829 - 837, 2015, ISSN:- 2319–8656

4. DISCUSSION
We can see from table 2 that all the questions/factors listed

for the opinion of the respondents were turned-in with

high arithmetic mean. Exceptions to these were two

factors namely: presence of graphical interface that allow

for the design of a more attractive program interface than

in procedure oriented programming and breaking of tasks

into smaller units. These factors have arithmetic mean of

3.33 and 3.40 respectivey. That shows that respondents do

not see these factors as a positive impact that OOP has

brought to software development. Those factors really do

exist in the previous programming techniques.

All the other factors that were tested had high positive

impact as they presented with high arithmetic mean. These

showed that Object-Oriented Programming has made a

very remarkable positive impact on modern software

development. The impact has brought about resultant

increase in the production of millions of software on daily

basis all over the world. Object-Oriented Programming

has been very successful and possibly more successful

than other conventional programming approaches.

The later popularity of OOP notwithstanding, a few issues

affected its popularity in its early stage. These issues were:

technological shortcomings such as disc space and

energy/time dissipated in program planning and design.

OOP has brought a lot of changes into computer

programming in particular and the world of software

development in its entirety. Suffice it to say in a nut shell

that Object Oriented Programming has brought the dawn

of a new epoch in the software development world.

Encapsulation, inheritance, instance, abstraction the

reuse property, etc were some of the key characteristics of

OOP that made it stand out from the earlier programming

techniques. These properties were so unique and

interesting that their usage in software development

heralds a revolution in the software industry. Deploying

Object Oriented Programming paradigm in software

development saves a lot of code through the reusable of

components, frameworks and designs. Object Oriented

Languages made available generic templates and saved

the time and space needed for code duplication.

5. CONCLUSIONS

There is so much software now than has ever been in the

world of software development and in the world in

general. Is it possible that this is as a result of time and

chance? What do we attribute these daily churning of

software to? We attribute these changes and the ease of

software development to object oriented programming

and all the easy manipulations of data and functions. A

glimpse at our oral interview result shows in every area

that Object Oriented Programming is preferred by all the

three groups of respondents. In view of the above we

affirm that the effects of Object Oriented Programming on

modern software Development is very positive and makes

software development very fast to development.

6. REFERENCES

1. Abadi, Martin; Cardelli, Luca (1996). A Theory of

Objects. Springer-Verlag New York, Inc.

2. Ambler, Scott (1st January 1998). "A Realistic Look at

Object-Oriented Reuse". www.drdobbs.com.

3. Armstrong, Joe. In Coders at Work: Reflections on the

Craft of Programming. Peter Seibel, ed.

Codersatwork.com.

4. Booch, Grady (1986). Software Engineering

5. Boronczyk, Timothy (11 June 2009). "What's Wrong

with OBJECT ORIENTED PROGRAMMING",

zaemis.blogspot.com.

6. Brooks, Fred P. (April 1987). "No Silver Bullet —

Essence and Accidents of Software Engineering".

7. C. J. Date, Hugh Darwen. Foundation for Future

Database Systems: The Third Manifesto (2nd Edition)

8. C. J. Date, Introduction to Database Systems, 6th-ed.,

Page 650

9. Cambridge: Prentise Hall International Series in

Computer Science. p. 23.

10. Cardelli, Luca (1996). "Bad Engineering Properties

of Object-Oriented Languages".

11. Computation Center and Research Laboratory.

p. 88f. "In the local M.I.T. patois, association lists [of

atomic symbols]

12. Conway, Richard (1978). A primer on disciplined

programming using PL/I, PL/CS, and PL/CT.

Winthrop Publishers.

13. Dr. Alan Kay on the Meaning of "Object-Oriented

Programming"". 2003.

14. Graham, Paul. The Emerald Programming

Language". 2011-02-26

15. 1995 Reviewers Guide to Visual FoxPro 3.0:

DFpug.de

16. Hoare, C. A. (Nov 1965). "Record Handling".

ALGOL Bulletin (21): 39–69.

doi:10.1145/1061032.1061041.

17. Holmevik, Jan Rune (1994). "Compiling Simula: A

historical study of technological genesis". IEEE

Annals of the History of Computing 16.

18. Jacobsen, Ivar; Magnus Christerson; PatrikJonsson;

Gunnar Overgaard (1992). Object Oriented Software

Engineering. Addison-Wesley ACM Press. pp. 43–

69.

19. James, Justin (1 October 2007). "Multithreading is

a verb not a noun". Techrepublic.com. Archived from

the original on 2 January 2013.

20. John C. Mitchell, Concepts in programming

languages, Cambridge University Press, 2003, p.278

http://www.drdobbs.com/

International Journal of Computer Applications Technology and Research

Volume 4– Issue 11, 829 - 837, 2015, ISSN:- 2319–8656

21. Kay, Alan. "The Early History of Smalltalk".

September 2007.

22. Kindler, E.; Krivy, I. (2011). Object-Oriented

Simulation of systems with sophisticated control.

International Journal of General Systems. pp. 313–

343.

23. Lewis, John; Loftus, William (2008). Java Software

Solutions Foundations of Programming Design 6th ed.

Pearson Education.

24. M.Trofimov, OBJECT ORIENTED

PROGRAMMING - The Third "O" Solution: Open

OBJECT ORIENTED PROGRAMMING. First Class,

OMG, 1993, Vol. 3, issue 3, p.14.

25. Meyer, Bertrand (1988). Object-Oriented Software

Construction.. p. 105. "Object - a synonym for atomic

symbol" Meyer, Second Edition, p. 230

26. Michael Lee Scott, Programming language

pragmatics, Edition 2, Morgan Kaufmann, 2006, p.

470

27. Neward, Ted (26 June 2006). "The Vietnam of

Computer Science". Interoperability Happens.

28. Pierce, Benjamin (2002). Types and Programming

Languages. MIT Press. section 18.1 "What is Object-

Oriented Programming?"

29. Poll, Erik. "Sub typing and Inheritance for

Categorical Data types".

30. Potok, Thomas; MladenVouk; Andy Rindos (1999).

"Productivity Analysis of Object-Oriented Software

Developed in a Commercial Environment". Software

31. Rich Hickey, JVM Languages Summit 2009

keynote, Are We There Yet? November 2009.

32. Robert Harper (17 April 2011). "Some thoughts on

teaching FP". Existential Type Blog.

33. Ross, Doug. "The first software engineering

language". LCS/AI Lab Timeline:.

34. Shelly, Asaf (22 August 2008). "Flaws of Object

Oriented Modeling". Intel Software Network.

35. Shelly, Asaf (22 August 2008). "HOW TO:

Multicore Programming (Multiprocessing) Visual

C++ Class Design Guidelines, Member Functions".

support.microsoft.com.

36. Stepanov, Alexander. "Stlport: An Interview with

A. Stepanov". Sutherland, I. E. (30 January 1963).

"Sketchpad: A Man-Machine Graphical

Communication System"

