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Abstract: A model is presented utilizing a Hamiltonian with equal spin singlet and triplet pairings based on quantum field theory and 

green function formalism, to show the correlation between the superconducting and spin density wave (SDW) order parameters. The 

model exhibits a distinct possibility of the coexistence of superconductivity and long-range magnetic phase, which are two usually 

incompatible cooperative phenomena. The work is motivated by the recent experimental evidences on high-TC superconductivity in 

the FeAs-based superconductors. The theoretical results are then applied to show the coexistence of superconductivity and spin density 

wave (SDW) in NaFe1-xCoxAs. 
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1. INTRODUCTION 
            Since the discovery of superconductivity in quaternary 

pnictide-oxides with critical temperatures (TC) up to 55 K, a 

lot of tremendous interest has been generated in the study of 

co-existence of the two cooperative phenomena of 

superconductivity and magnetism. After first reports on 

superconductivity in undoped LaNiPO [1, 2] below 5 K, the 

breakthrough was the discovery of the phenomena at  TC - 

26K in the F-doped arsenide LaO1−xFxFeAs system [3].  

            In addition to this several groups reported an increase 

of Tc values by replacing La with smaller-size rare-earth ions 

like CeO1−xFxFeAs [4], and samarium-arsenide oxides Sm(O1-

xFx)FeAs with a critical temperature Tc of 55K [5,6]. The iron 

based superconductors promise interesting physics and 

applications. While the interplay of superconductivity and 

magnetism, as well as their mechanisms remain the issues of 

active studies, one thing in FeSC riddle is clear, that it is the 

complex multi-band electronic structure of these compounds 

that determines their rich and puzzling properties. What is 

important and captivating is that this complexity seems to 

play a positive role in the struggle for understanding the FeSC 

physics and also for search of the materials with higher Tc [7]. 

            The FeSC is quite promising for applications. Having 

much higher Hc than cuprates and high isotropic critical 

currents [8], they are attractive for electrical power and 

magnet applications, while the coexistence of magnetism and 

superconductivity makes them interesting for spintronics [9]. 

All the compounds share similar electronic band structure in 

which the electronic states at the Fermi level are occupied 

predominantly by the Fe 3d electrons [7]. 

             Scanning tunnelling microscopy studies of the local 

electronic structure of an underdoped NaFe1-xCoxAs near the 

SDW and SC phase boundary. Spatially resolved 

spectroscopy directly reveals both SDW and SC gap features 

at the same atomic location, providing compelling evidence 

for the microscopic coexistence of the two phases. The 

strengths of SDW and SC features are shown to anticorrelate 

with each other, indicating the competition of the two orders. 

The underlying physical picture is that Cooper pairing in the 

iron pnictides can occur when portions of the Fermi surface 

(FS) are already gapped by the SDW order [10]. 

            The above exciting discovery stimulated a lot of 

interest in the study of coexistence of superconductivity and 

magnetism. The proximity of the superconductivity state to 

the spin density wave phase in the phase diagram implies that 

the interplay between the magnetism and superconductivity 

might play an important role in understanding the pairing 

mechanism and other physical properties of the iron-based 

superconductors. It is generally believed that the magnetic 

couplings between the itinerant electrons and/or between the 

itinerant electron and local spin are essential to both spin 

density wave instability and superconductivity. Besides other 

experimental and theoretical findings, especially the 

antiferromagnetic ground state and the SDW anomaly of 

LaFeAsO strongly suggest that, the pairing mechanism of the 

electrons is likely to be connected with spin fluctuations, as it 

has been assumed for the cuprates [11]. 

             In many high TC superconductors, superconducting 

mechanism is attributed to strong coulomb interactions of the 

electrons in the system, which can also be the cause for the 

appearance of SDW state and this suggests the existence of 

competition between the two states [12].  The properties of 

unconventional triplet superconductivity and SDW with an 

emphasis on the analysis of their order parameters are 

reviewed. 

            The relation between the superconducting and spin-

density-wave (SDW) order is a central topic in current 

research on the FeAs-based high TC superconductors. So, in 

this paper, we start with a model Hamiltonian which 

incorporates the BCS theory for iron pnictide superconductors 

NaFe1-xCoxAs, to examine the coexistence of 

superconductivity and spin density wave. 

 

2. MODEL HAMILTONIAN OF THE 

SYSTEM 
             The purpose of this work is to study theoretically the 

co-existence of spin density wave and superconductivity 
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properties in the compound NaFe1-xCoxAs in general and to 

find expression for transition temperature and order parameter 

in particular. For this purpose, we tried to find the 

mathematical expression for the superconducting critical 

temperature (Tc), superconducting order parameter (∆sc) the 

magnetic order parameter (M) and SDW transition 

temperature (TSDW). Within the framework of the BCS model, 

the model of the Hamiltonian for coexistence SDW and 

superconductivity in the compound can be express as:  

  ∑   ̂  
  ̂  

  

  ∑  ̂    
  ̂     ̂   

  ̂      

 

     ∑  ̂  
  ̂   

 

 

  ̂    ̂         

Where       ̂  
  ̂    are the creation (annihilation) operators of 

an electron having the wave number    and spin . Whereas 

(   ) superconducting order parameter and (M) SDW order 

parameters. The Hamiltonian in (1) will be used to determine 

the equations of motion in terms of the Green function. 

3. COUPLING OF SDW AND 

SUPERCONDUCTING ORDER 

PARAMETERS 
           The Double time dependent Green’s function equal to 

the change of the average value of some dynamic quantity by 

the time t and useful because they can be used to describe the 

effect of retarded interactions and all quantities of physical 

interest can be derived from them. To get the equation of 

motion we use the double-time temperature dependent 

retarded Green function is given by Zubarev [13]: 

           ̂     ̂              

            
               ̂     ̂          

Where  ̂ and  ̂  are Heisenberg operators and  (    ) is the 

Heaviside step function. Now, using Dirac delta function and 

Heisenberg operators, we can write as; 

 
 

  
                 [ ̂     ̂    ]    

     ̂        ̂        

The Fourier transformation        is given by 

               ∫                                   

Taking the Fourier transform we get: 

        [ ̂     ̂(  )]   

    ̂        ̂                         

From (4), it follows that 

   ̂ 
    ̂

 
      [ ̂ 

    ]  ̂ 
                     

where the anti-commutation relation, 

{ ̂    ̂ 
    }                                                            

has been used. To derive an expression for   ̂ 
    ̂

 
     , 

we have calculate the commutator [ ̂ 
    ] , using (1) and  

using the identities and  

                     and               
                                             

            Solving the commutator in eq.(5) by using the 

Hamiltonian in eq.(1), we get 

* ̂ 
   ∑   ̂  

  ̂  

  

+  ∑    ̂ 
    ̂

 
  

 ̂   

  

 

=∑    { ̂ 
    ̂  

 }   ̂    ̂  
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          [ ̂ 
   ∑    ̂  

  ̂    ]      ̂
 
                        (8a) 

After some lengthy but straightforward calculations; we arrive 

at the following results: 

[ ̂ 
    ∑  ̂    

  ̂     ̂   
  ̂     

 

]     ̂ 
          

* ̂ 
       ∑  ̂  

  ̂   
 

 

  ̂    ̂   +        ̂               

Substituting  (8) in to (5), we get 

   ̂ 
    ̂

 
          ̂ 

    ̂
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      ̂

 
           ̂     ̂

 
   

  

        ̂ 
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         ̂ 

      ̂
 
         

  ̂     ̂
 
                                         

The equation of motion for the correlation 

  ̂ 
      ̂

 
     in (9) can be described as: 

   ̂ 
      ̂

 
            [ ̂ 

      ]  ̂ 
     

   ̂ 
      ̂

 
       [ ̂ 

      ]  ̂ 
           

Evaluating the commutator in eq.(10) using Hamiltonian: 

* ̂ 
     ∑   ̂  
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      ̂
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=∑    { ̂ 
      ̂  

 }   ̂    ̂  
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      ̂  } 

   [ ̂ 
     ∑    ̂  

  ̂    ]        ̂ 
               (11a) 

After some lengthy but straightforward calculations; we arrive 

at the following results: 

[ ̂ 
      ∑  ̂    

  ̂     ̂   
  ̂     

 

]     ̂ 
          

* ̂ 
         ∑  ̂  

  ̂   
 

 

  ̂    ̂   +      ̂             

Substituting  (11) in to (10), we get 

   ̂ 
      ̂

 
            ̂ 

      ̂
 
      

  ̂ 
    ̂

 
          ̂       ̂

 
   

  

(      )   ̂ 
      ̂

 
         ̂ 

    ̂
 
   

        ̂       ̂
 
           

Similarly as we did in the above the equation of motion for 

the correlation   ̂       ̂
 
     and                        

 ̂     ̂
 
     is given by: 

   ̂       ̂
 
             ̂       ̂

 
      

  ̂     ̂
 
           ̂ 

      ̂
 
   

  

http://www.ijcat.com/


International Journal of Computer Applications Technology and Research 

Volume 4– Issue 2, 119 - 125, 2015, ISSN:- 2319–8656 

 

www.ijcat.com  121 

 

(       )   ̂       ̂
 
        ̂     ̂

 
   

        ̂ 
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         ̂     ̂
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From eq. (12), we obtain: 
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And from eq. (14): 
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Plugging eq.(15) and (16) in (9), yields: 
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And insert eq. (15) and (16) in (13), we have: 
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Applying nesting condition         ,          and use 

approximation,       ; eq.(17) and (14) becomes: 
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Let        and         

Then eq. (19) and (20) respectively becomes: 
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[          
 ]   ̂       ̂
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Finally we can express: 

  ̂ 
    ̂

 
     

   ⁄         

     
           

 
   ⁄         

      
                       

Using the expression                   , where 

     is effective order parameter and the Matsubara’s 

frequency, we can write eq. (23) as: 

  ̂ 
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To take into account the temperature dependence of order 

parameters, we shall write as: 
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Where   
 

  
 

Using eq.(24) into eq.(25), we obtain 
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Let us use 

      
    

       ⁄                                                          

and  

∑
 

           
 

      ⁄

  

 

  

                                       

Plugging eq.(28) and eq.(29) in eq.(27), we get: 

     
 

 
∑   

     

         
 
 

   
    

       ⁄

   
    

       ⁄
            

For mathematical convenience, we replace the summation in 

(27) by integration. Thus 

∑  ∫        

   

     

 

where      is the density of states at the Fermi level. 

The density of state                  

Assume             this implies that            ⁄ . 
For j=2: 

    

  ∫         
    

 
 

   
              ⁄

   
              ⁄

   

   

 

   

Where          
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Finally we can write eq.(31) as: 

 

 

 ∫    
 

    
 
    

 
 

   
              ⁄

   
              ⁄

   

   

 

     

From (32), it clearly follows that the order parameters 

          , for superconductivity and SDW are 

interdependent. 

            We now consider the equations of motion for SDW, 

we can write,  

   ̂ 
    ̂            [ ̂ 

    ]  ̂          

Doing a lot as we did in the above, we finally get: 

        ̂ 
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  ̂     ̂                                        
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Doing a lot as we did in the previous, we finally get: 
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Using eq.(38) in to eq.(26), the SDW order Parameter M is 

given by: 

   
 

 
∑
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So, finally we get: 

       ∫
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       ⁄
   

   

 

         

From (41), it is again evident that the order parameters 

          , for superconductivity and SDW are 

interdependent, as was the case from (32).  

            It is, therefore, possible that in some temperature 

interval, SDW and superconductivity can co-exist, although 

one phase has a tendency to suppress the critical temperature 

and the order parameter of the other phase. 

 

4. DEPENDENCE OF THE MAGNETIC 

ORDER PARAMETER ON THE 

TRANSITION TEMPERATURE FOR 

SUPERCONDUCTIVITY AND SDW 
                      To study eq.(32), we consider the case, when 

         

We can then replace 

    
 

 
   

              ⁄    

In (32) and get, 
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Using the integral relation, 
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the above equation reduces to, 

              ( 
 

 (  
 

    
)
,                             

from the BCS theory, the order parameter     , at T=0 for a 

given superconductor with transition temperature TC is given 

by 

                         

using this result in (43), we obtain 

                  ( 
 

 (  
 

        
*
,        

To solve (45) numerically we use Debay temperature and the 

interband BCS coupling constant.  

            To estimate α, we consider the cas                  

                                                         which implies,           

From (32), we then have 
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Using Laplacian’s transformation with Matsuber relation 

result we can write, 

∫
    

 
 

   
       ⁄

   
       ⁄

   

   

 

 ∫
        ⁄

  
   

   

 

 ∫
 

 
∑

  

         

 

   

   

 

  

Where    
  

 

  
 and         

 

 
 and using integrating by 

part, 

∫
    

 
 

   
       ⁄

   
       ⁄

   

   

 

               
  ∫

   

      

 

 

  

 ∫
 

 
∑

  

         

 

   

   

 

 

∫
    

 
 

   
       ⁄

   
       ⁄

   

   

 

   
    

 
       ⁄  

   (
 

      
)

 

              

Using the fact that, for low temperature,      
   

    
      

Where   is the Euler constant having the value   
     (Hsian) [14] and the last equation can be neglected since 

   is very small.   

                        we can write (48) as, 

     (    
   

     
*                                               

Using L’ Hospital’s rule, it is easy to show that 

    ∫      
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which can be neglected since     
  is very small.  

Substituting (49) in (46), we then obtain 
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This implies, 

           
       

  
   ( 

 

 
*                

which can be used to estimate    ( 
 

 
) for NaFe1-xCoxAs, 

using the experimental value    and cut-off energy.            

To study how   depends on the magnetic transition 

temperature     , we consider (41).  
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Proceeding as before, it is easy to show that, 
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Neglecting   
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This gives;  

             (
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)              

            We can use (52) to draw the phase diagram for M and 

       

 

5. PAIRING OF SPIN DENSITY WAVE 

(SDW) AND TRIPLET 

SUPERCONDUCTIVITY 
           In this section we want to drive an expressions for the 

order parameters of SDW, M, and triplet superconductivity, 

    , as a function of both of them and temperature, and to 

compare the variation of each with temperature. Still we can 

use the Hamiltonian given by equation (1), but in this case the 

superconducting order parameter depends on spin alignment 

[15] and they can be expressed as; 

  ∑   ̂  
  ̂  
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  ̂     ̂   

  ̂      
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where the superconducting order parameter is given by: 

                               ∑  

 

 ̂  
   ̂ 
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We now consider the equation of motion: 

   ̂ 
    ̂ 

      [ ̂ 
    ]  ̂ 

          

Doing a lot as we did in the above for the commutation and 

using the assumption               we finally get: 

        ̂ 
    ̂

 
         ̂ 

      ̂
 
        

  ̂     ̂
 
                                     

The nesting property of the Fermi surface that expected for 

low dimensional band structure and attributed to the SDW 

ordering gives as an expression        . 

Finally: 

        ̂ 
    ̂

 
           ̂     ̂

 
   

                                                         

Since we are dealing with only the triplet pair; we can ignore 

the singlet correlation. 

The equation of motion for correlation in RHS of (57) is 

written as: 
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This can be rewritten, after solving the commutation relation 

and removing the singlet pair. 

From eq.(58) and (59), we will get; 
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With help of eq.(60) and eq.(57): 

            
 

     
  ̂ 

    ̂
 
      

    

     
      

This can be written as: 
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Applying nesting condition         ,          and use 

approximation,       ; eq.(62) becomes: 
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Using the expression        eq.(29) and Matsubara’s 

frequency, we can write eq. (63) as: 
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By taking an approximation over the superconducting order 

parameter, such that it is independent of wave vector, finally 

we get: 
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 √  

       
  

    

 √  
       

 

                      

We now consider the equations of motion for SDW, we can 

write, 

   ̂ 
    ̂        [ ̂ 

    ]  ̂ 
              

Doing a lot as we did in the above, we finally get: 

  ̂ 
    ̂       

  

         
      

              

So, 

   ∑  

 

    
 √     

     

    

 √     
    

                      

 

Figure. 1  Co-existence of superconductivity and spin 

density wave (SDW) in NaFe1-xCoxAs. 

6. RESULTS AND CONCLUSION  
             In Fig. 1 we have presented the theoretical curve of 

the magnetic order parameter M as a function of the 

superconducting temperature TC. For this purpose, we have 

used (45) which have been numerically solved using the 

relevant parameters for NaFe1-xCoxAs. In the same figure, we 
have also plotted the curve of M as a function of TSDW, using 

(52). This curve is found to be almost linear up to the 

experimental value of TSDW=18k for NaFe1-xCoxAs. 

            From Fig. 1 we observe that TC decreases with 

increase in M, whereas TSDW increases with increase in M. 

The superconducting phases and spin density wave, therefore, 
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resist each other. However, the present work shows that there 

is a small region of temperature, where both the phases may 

be in existence together which is indicated by (SC+SDW) in 

the Figure. Thus using a model Hamiltonian consisting of spin 

density wave and superconducting part and applying Green’s 

function formalism it is possible to derive an expression 

which shows the relation of the two order parameters and their 

variation with temperature. This has been done both for 

singlet and triplet phases of superconductivity coexisting with 

spin density wave. In the absence of spin density wave the 

expression for both singlet and triplet cases reduces to the 

well known BCS result. Our study explicitly shows that 

superconductivity and spin density wave truly coexist in 

NaFe1-xCoxAs. 
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