
International Journal of Computer Applications Technology and Research

Volume 4– Issue 9, 668 - 672, 2015, ISSN: 2319–8656

www.ijcat.com 668

Improved Strategy for Distributed Processing and

Network Application Development

Eke B. O.

Department of Computer Science,

University of Port Harcourt

Port Harcourt, Nigeria

Onuodu F. E.

Department of Computer Science,

 University of Port Harcourt

Port Harcourt, Nigeria

Abstract: The complexity of software development abstraction and the new development in multi-core computers have shifted the

burden of distributed software performance from network and chip designers to software architectures and developers. We need to

look at software development strategies that will integrate parallelization of code, concurrency factors, multithreading, distributed

resources allocation and distributed processing. In this paper, a new software development strategy that integrates these factors is

further experimented on parallelism. The strategy is multidimensional aligns distributed conceptualization along a path. This

development strategy mandates application developers to reason along usability, simplicity, resource distribution, parallelization of

code where necessary, processing time and cost factors realignment as well as security and concurrency issues in a balanced path from

the originating point of the network application to its retirement.

Keywords: Parallelization, EE-Path, Distribution, Usability, Concurrency

1. INTRODUCTION
The software strategy referred in this work proffers solution to

distributed software development by using the abstraction of

user requirements and design-time distribution of processes

across multi-core computer powers in multidimensional

visualization, network development, parallelism and

alignment of conceptualization along a path known as the EE-

Path [1]. The technique uses ideas in computational geometry

in trying to resolve a given network, parallelism and

distributed software engineering problem. It is common to see

software specified from the view point of the owners and from

the ideas of similar existing application. It can also be seen

from the point of cost and benefit as well as processing time

and computer resources in a combined or peered manner.

 Multi-core computers have shifted the burden of software

performance from chip designers to software architects and

developers. In order to gain the full benefits of this new

hardware, we need to parallelize our code [2]. Parallelization,

therefore, need a design strategy that can guide the software

development process in a distributed system from the

inception to the deployment of the software.

The goal of this paper is to use a development strategy (EE-

Path) that aligns parallelization, usability, distribution, user

requirement abstraction along a balance path during software

development. Since we must overcome software complexity

paradox to achieve the level of simplicity demanded by users

we must think not just along the specified requirements of the

user as classical strategy demand but also on the unspecified

requirements and machine commitment which belong to the

other dimensions in the EE-path. The weakness in the other

strategies is their inability to distribute software design and

development load across processes and processors as well as

the unspecified requirements into the software building plan.

They often ignore or allow programmers to take distribution

and parallelism responsibility. Problems often arise where

programmers depend on the software plan in developing the

system.

2. PARALLELIZATION

Parallelism is a form of computation in which many

calculations are carried out simultaneously, operating on the

principle that large problems can often be divided into smaller

ones, which are then solved concurrently, or ‘in parallel’.

Parallelism is all about decomposing a single task into smaller

ones to enable concurrent execution [2]. Usually, processor

would execute instructions sequentially, which meant that the

vast majority of software was typically written for serial

computation. While we were able to improve the speed of our

processors by increasing the frequency and transistor count, it

was only when computer scientists realized that they had

reached the processor frequency limitation that they started to

explore new methods for improving processor performance

[3]. They explored the use of the germanium in place of

silicon, co-locating many low frequency and power

consuming cores together, adding specialized cores, 3D

transistors, and others. In this era of multi-core processors

exploiting large-scale parallel hardware will be essential for

improving application performance and its capabilities in

terms of executing speed.

Multithreading can be on a single-processor machine, but

parallelism can only occur on a multi-processor machine.

Multiple running threads can be referred to as being concurrent

but not parallel. Concurrency is often used in servers that

operate multiple threads to process requests. However,

parallelism is about decomposing a single task into smaller

ones to enable execution on multiple processors in a

collaborative manner to complete one task. Distributed systems

are a form of parallel computing; however, in distributed

computing, a program is split up into parts that run

simultaneously on multiple computers communicating and

sharing data over a network. By their very nature, distributed

systems must deal with heterogeneous environments, network

links of varying latencies, and unpredictable failures in the

network and the computers.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 4– Issue 9, 668 - 672, 2015, ISSN: 2319–8656

www.ijcat.com 669

3. THE SOFTWARE DEVELOPMENT

STRATEGY

The EE-Path software development technique aims at

resolving the software development complexity resulting from

improper or lack of provision for the Unknown network,

parallelism and user requirements at the time of the software

specification. An architectural pattern understanding is

complex in terms of the three quality attributes: modifiability,

performance, and availability. Software architects on the other

hand think in terms of architectural patterns [4]. However,

what the architecture needs is a global characterization of

architectural patterns in terms of the factors that affect quality

attribute behaviour so that a software design can be

understood in terms of those quality attributes. Software

engineers must not shay away from complexities of seemingly

intractable parallelism concerns in specifying software

requirement analysis and design.

The quality attributes of architectural patterns are the design

primitives of the software and they are system independent. In

designing software architecture for a product line, the long life

and the flexibility of the software must be of paramount

importance. The full set of requirements of the system is

sparsely known. When the actual products are created there

still remain the Unknowns or better still the unknowable in the

product line. New users may emerge, newer needs may arise

and working environments may change such as operating

system, databases, server changes and machine speed

improvements, multi-core processor changes. These changes

will drive the entire system to reflect the realities of the trend,

creating the need for rapid response to such changes. Our

software development strategy provides a solution to this need

by making architectural provision for the Unknown and also a

room for the Unknown in the entire life cycle of the software.

In areas where parallelism is previously envisaged dummy

checks can be deployed to recover from drawbacks such as

system slowdown, thread race conditions and unforeseen

dependencies.

The Unknown implies all the unspecified requirements of the

software at inception. It also includes all the unforeseen user

need that could give rise to the deployment of parallelism

such as video and heavy image inclusions in software. It

seems that irrespective of the software development method

used, it is the user or software client that specifies what the

software is to do. Irrespective of the way it was specified or

the way the information is collected the target of the software

will depend largely on what the users or software clients

actually want whether they know what they want or not. It is

also true that in most cases the users do not know how to

specify the details of what they want even when they are well

consulted. Some of their specifications are capable of

compromising speed, multi-core processor efficiency and

concurrency. Clients may not be software gurus and may not

specify the software requirement to the extent that all

requirements are covered. Even where all requirements are

covered, external environmental factors such as operating

system changes, network expansion or upgrades and database

upgrades, introduction of new data for processing, new

formulas as well as security loop holes may make the software

vulnerable, and the need to update the software based on the

new requirements may arises. These unforeseen requirements

we generally refer to as the Unknown.

The capturing of the Unknown involves software abstraction

embedded in the conceptual architecture of the system. The

conceptual architecture is one of four different architectures

identified by Hofmeister, Nord and Soni [5]. It describes the

system(s) being designed in terms of the major design

elements and the relationships among them. The EE-Path

strategy determines the balance of the known architectural

drivers, the known environmental factors, the known

parallelism conditions, the known user simplicity factors as

well as all other hidden factors-(Unknown). The software is

then built along this path at least conceptually. A model of the

EE-Path strategy is illustrated in figure 1.

The architectural drivers are the combination of business,

quality and functional requirements that “shape” the

architecture. The known architecture drivers are represented

in the y-axis while the unknown architectural drivers are

represented in its shadow as Architectural drivers 2. Similarly,

other well known parallelism requirement specification are

represented in the z-axis while their unknown is also

represented using its envisaged shadow as Others RS 2. In

analysis, design and construction the EE-Path takes all the

axis into consideration as providing the necessary balance it

requires to remain on its path of move as the software tends to

retirement. The EE-Path will terminate at a point when the

software peters out, but the issue of when this will take place

also throws up another unknown.

Figure 1: The EE-Path Software Strategy Model

Newer upgrades are more likely to surface with additions of

parallelism requirements that were hitherto unknown at the

earlier versions when the software first hit the market. In

integrating parallelism, two types of data parallelism are

considered:

 Explicitly Data Parallelism

 Implicitly Data Parallelism

 In Explicitly Data Parallelism one just plans a loop that

executes in parallel. This can be done by adding OpenMP

Software

Environment

 (Known)

EE-Path

Architectural Drivers

(Known)

Architectural Drivers 2

(UnKnown)

Software

Environment 2

(UnKnown)

Others RS 2

(UnKnown)

Parallelism (Known)

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 4– Issue 9, 668 - 672, 2015, ISSN: 2319–8656

www.ijcat.com 670

pragmas around the loop code, or using a parallel algorithm

from Intel® Threading Building Blocks (TBB), from other

source or by developing one.

In Implicitly Data Parallelism one just call some method that

manipulates the data and the infrastructure (i.e. a compiler, a

framework, or the runtime) that is responsible for parallelizing

the work. For instance, the .NET platform provides LINQ

(Language Integrated Query) that allows the use of the

extension methods, and lambda expressions to manipulate the

data like dynamic languages. The following example

demonstrates implicit data manipulation and parallelism:

C# implicit data manipulation using LINQ

string[] students = { “Bartho”,“Yuntho”, “Barry”,”Friday”};

var student = students.Where(p => p.startsWith(“B”));

C# parallel implicit data manipulation using LINQ (Note the

AsParallel method)

string[] students = { “Bartho”, “Yuntho”, “Barry”,”Friday”};

var student = students.AsParallel().Where(p => p.startsWith(“B”));

In language and compiler-based parallelism, the compiler

understands some special keywords to parallelize part of the

code; for example, in OpenMP you can write the following to

parallelize a loop in C++ [6]:

#pragma omp parallelfor

for (int j = 0; j< max; j++)

{

 Num[j] = 1.0;

}

Language and compiler-based parallelism is easy to use

because the majority of the work falls on the compiler. In

library-based parallelism, the programmer should call the

exposed parallel APIs. For example, if one want to parallelize

a for loop in .NET 4 (C#, or VB) a call on For method from

the System.Thread.Parallel class will suffice in C#:

 Parallel.For(0,max,j =>

{

 Num[j] = 1.0;

});

This method accepts two integers (from, to) and delegates to

the loop body.

4. EE-PATH IN THE APPLICATION

LIFE CYCLE

The EE-Path is a very flexible strategy. It is suited for

complex; highly interactive applications, where very high

integration is required providing good utilization of

underlying hardware within the network and within the multi-

core machine. The strategy promotes reusability of application

components and possibly performance since design

components planned as unknown is reused when the

requirement gets clear. Software requirements have functional

both abstract and concrete, quality and business constraints.

The abstract requirements are used to generate the software

design while the concrete requirements are used to validate

the decisions made as a result of the abstract requirements [7].

The EE-Path remains a guiding path which the requirements

need to follow during the specification. The path is not

introducing any requirement but it provides a structure and a

reference point in the specification of the software

requirements. The use case has the functionality in the system

that gives a user a result of value and captures the functional

requirements [7]. The use case therefore needs to be projected

along the EE-Path to be able to reflect both the known and the

unknown requirements.

Klain [9] believes that the choice of architectural style is

based on the architectural drivers for the design elements that

fit the need at hand. We however believe that architectural

style should not just be based on the need at hand but also on

envisaged need and the unknown future needs. These

unknown needs should be represented using any appropriate

representation in the architecture. Design consideration also

must take into account the specified unknown so that the

unknown can be well specified at least at the abstract

component design level where commitment is yet to be made

to actual software components. The unknown is therefore well

represented in the modular design and aggregated in the

object-oriented class abstraction even if the abstraction is at

worst a dummy. The class abstraction has an inert effect at

making sure some force is exerted to keep the software

development effort on the EE-Path. In the path, the logical,

process, implementation and deployment views are realigned

with the parallelism views even when the software is targeted

at a standalone machine. The standalone can be multi-core

and can equally migrate easily to multi-user when new

requirements surface. This path alignment boosts the

modifiability of the software even when it is already

deployed.

5. DISCUSSION OF EE-PATH BENEFITS

AND PARALLELISM

The EE-Path strategy increases the usability of software since

aggregation is encouraged by patterning one or more actions

on more than one object, even when the object is unknown. It

also makes the system, rather than the user, responsible for

iteration. Furthermore, it is very easy to recover from failure

since the unknown is taking into consideration right from the

architectural stage of the software. Recovery could easily be

based on the unknown functionality of the environment, such

as OS failure and machine failures and even unknown

dependency conditions in parallelized system implementation.

In order to take advantage of the EE-Path in software

development specification for multi-core machines, programs

must be parallelized. Multiple paths of execution have to work

together to complete the tasks the program has to perform,

and that needs to happen concurrently, wherever possible and

in an integrated manner with other requirements. Only then is

it possible to speed up the program . Amdahl’s law expresses

this as [10]:

http://www.ijcat.com/
http://library.dzone.com/assets/request/sponsored_link/11287

International Journal of Computer Applications Technology and Research

Volume 4– Issue 9, 668 - 672, 2015, ISSN: 2319–8656

www.ijcat.com 671

Figure 2 : Illustrating Speedup and Number of processors

where S is the speed-up of the program (as a factor of its

original sequential runtime), and P is the fraction that is

parallelizable.

Determining when and where in the software to inject

parallelism is a challenge and if wrongly decided could have

retrogressive consequences hence most of decision could be

provided as unknown at certain stage of the system. The good

thing in the EE-Path is that strong provision is made for its

implementation at worst as a dummy implementation. This

will help developers to plan ahead even when it is not feasible

to implement it at the earlier releases of the software. One

probably do not need to parallelize if the application is really

simple and the code is running fast enough already. But we

know that a simple application today may turn to a complex

application with time and a fast code could slow down when

new users use it in a network or when newer features are

added hence the need to plan for the unknown via the EE-

Path. Network applications use shared data, hence

dependency issues can be planned using the EE-Path to take

other factors into considerations to avoid pitfalls of delays as a

result of dependency and thread locks. Decisions when made

at the planning stage guides developers in the choice of

parallel frameworks and APIs to use during the application

implementation. These will help in leveraging the power of all

the extra cores on developers and users machines. The EE-

Path strategy encourages developers to leverage their

knowledge and also to develop systems in relatively

unfamiliar parallelized contexts as offered by distributed

application environments. The unknown is not fixed but it

remains the unknown as long as it has not been unraveled and

since no human can have full and final insight of any matter at

any given time, progressive development is encouraged by

our strategy.

6. OUR CONTRIBUTIONS.

 In this paper, we incorporate a new software strategy which is

able to implement a multidimensional requirement

visualization of three or more lines of simultaneous

requirement alignment. It inculcates the unspecified

requirement that we see as forming the core of modern system

design and allow parallelism requirement analysis and design

to varying level of implementation. When the requirement is

not needed at the moment we postulate it can be allowed to be

implemented as an abstract class in the system without any

derivation or with dummy derivation. Some of the

requirement issues to be considered include security,

concurrency, interoperability, reusability and the Unknown.

The Unknown class can be specified with all possible

abstraction that can be modified in the future when the need

for the Unknown requirement arises. This design technique

takes care of the Unknown making the system to be

extendible without the need to redesign the system. This

design technique takes care of the light-speed changes in

requirements resulting in the development of newer versions

of software within very short period of time ranging from few

days to few months. It breaks parallelism conditions in the

software requirement to determine where it can be

implemented to maximize speed. It also articulates pitfalls to

avoid deployment of parallelism to those areas where

parallelism could lead to processing slow-down or incorrect

generation of result. There are many parallelism frameworks,

and debugging tools aimed at simplifying the task of parallel

programming, such as:

Intel Parallel Studio, Microsoft CCR and DSS, MS PPL -

Microsoft Parallel Pattern Library (was released in 2009 Q4),

MS .NET 4 - Microsoft .NET Framework 4 (will released in

2009 Q4), Java 7 (will release in 2009), PRL - Parallel

Runtime Library (Beta 1 released in June 2009) [2]. Software

engineers need to integrate this entire requirement in system

development early in the system life-cycle while making

provision for the unknown.

7. CONCLUSION

The EE-Path software development strategy provides a means

of guiding developers and software architects in qualitative

measures of marginal building blocks in choosing and

developing architectural styles and in conceptualization of the

system at hand from the inception to the conclusion. Based on

the evaluation of software complexity and other models it can

be seen that if the EE-path is followed, a better preparation for

the unknown is made. Furthermore, it can be seen that for the

parallelization of network application the EE-Path model

offers variables for consideration and integration of other

factors and requirements in the development of software in a

hitherto different network platforms. These provide improved

standardization of development even at the architectural level

of software development. It can therefore be concluded that

developing network software using the EE-Path concept

results in building a software today with provision made for

change which itself appears to be a constant in the world of

software engineering.

8. REFERENCES

[1] Eke B. O. and Nwachukwu E. O. (2011), Software

 Engineering Process: Yaam Deployment in E-

 Bookshop Use Case Scenario, Journal of Theoretical

 and Applied Information Technology, Vol 30 No. 2

 August, 2011, JATIT and LLS, www.jatit.org E-

 ISSN:1817-3195, ISSN:1992-8645, Islamabad,Pakistan,

 http://www.jatit.org/volumes/Vol30No2/2Vol30No2.pdf

http://www.ijcat.com/
http://en.wikipedia.org/wiki/File:AmdahlsLaw.svg

International Journal of Computer Applications Technology and Research

Volume 4– Issue 9, 668 - 672, 2015, ISSN: 2319–8656

www.ijcat.com 672

[2] Fadeel, H. (2009) Getting Started with Parallel

 Programming, http://library.dzone.com/category/

 Accessed, June 2015.

[3] James Reinders (2009) Getting Started With Intel

Threading Building Blocks, http://library.dzone.com

Accessed July 2009

[4] Katzman, R.; Barbacci, M.; Carriere S. J.; and Woods, S.

J. (2014) Experience with Performing Architectural Styles,

Software Architecture Tradeoff Analysis. 54-63. Proceedings

of ICSE99. Los Angeles, CA, May 1999.

[5] Hofmeister, C.; Nord, R.; and Soni, P. (2000) Applied

Software Architecture. Reading MA: Addison Wesley.

[6] James P. C.; Jack W. D.; C++ Program Design An

Introduction to Programming and Object-Oriented Design

WCB McGraw-Hill USA

[7] Bass L.; Klein M.; Bachman F. (2000) Quality Attribute

Design Primitives (CMU/SEI-2000IN-2000-017). Pittsburgh,

PA: Software Engineering Institute, Carnegie Mellon

University.

[8] Jacobson, I.(1992); Object-Oriented Software

Engineering, Addison-Wesley, USA

[9] Klein M.; Kazman R.; Barbacci M.; Carriere S.;and

Lipson, H.(1999) Attribute-Based Architectural Styles,

Software Architecture. 225-243. Proceedings of the First

Working IFIP Conference on Software Architecture

(WICSA1), San Antonio, TX, February 1999.

[10] Wikipedia, Parallel computing,

www.en.wikipedia.org/wiki/parallel_computing accessed July

2014

7. ACKNOWLEDGMENTS
Our thanks to the Oyol Computer Consult Inc and Fonglo

Research Center for their contribution in typesetting and

towards development of the work.

8. ABOUT THE AUTHORS

Eke Bartholomew PhD, MCPN,

MACM, FIPMD is a Software

Engineering / Computer

Science Lecturer at the

University of Port Harcourt and

Mobile Application Developer

in Oyol Computer Consult Inc.

His research interest is in SE

Methodologies and Mobile IT

deployment.

Dr. Onuodu, Friday E. is a

Lecturer at the University of

Port Harcourt. His research

interest is in Data Mining and

Data Extraction using both

Mobile Devices and Desktops.

He also has interest in IT

deployment analysis. He has

many publication in learned

journals.

http://www.ijcat.com/
http://library.dzone.com/category/
http://library.dzone.com/
http://www.en.wikipedia.org/wiki/parallel_computing

