
International Journal of Computer Applications Technology and Research

Volume 5–Issue 1, 20-25, 2016, ISSN:2319–8656

www.ijcat.com 20

Proposing a new Job Scheduling Algorithm in Grid

Environment Using a Combination of Ant Colony

Optimization Algorithm (ACO) and Suffrage

Firoozeh Ghazipour

Department of Computer

Science and Research Branch

Islamic Azad University, Kish, Iran

Seyyed Javad Mirabedini

Department of Computer

Islamic Azad University

Central Tehran Branch, Iran

Ali Harounabadi

Department of Computer

Islamic Azad University

Central Tehran Branch,Iran

Abstract: Scheduling jobs to resources in grid computing is complicated due to the distributed and heterogeneous nature of the resources.

The purpose of job scheduling in grid environment is to achieve high system throughput and minimize the execution time of applications.

The complexity of scheduling problem increases with the size of the grid and becomes highly difficult to solve effectively.

To obtain a good and efficient method to solve scheduling problems in grid, a new area of research is implemented. In this paper, a job

scheduling algorithm is proposed to assign jobs to available resources in grid environment. The proposed algorithm is based on Ant

Colony Optimization (ACO) algorithm. This algorithm is combined with one of the best scheduling algorithm, Suffrage. This paper uses

the result of Suffrage in proposed ACO algorithm. The main contribution of this work is to minimize the makespan of a given set of

jobs. The experimental results show that the proposed algorithm can lead to significant performance in grid environment.

Keywords: jobs, scheduling, Grid environment, Ant Colony Optimization (ACO), Suffrage, makespan.

1. INTRODUCTION
Distributed systems consist of multiple computers that

communicate through computer networks. Research by [1]

defined that cluster and grid computing are the most suitable

ways for establishing distributed systems. Cluster computing

environment consists of several personal computers or

workstations that combined through local networks in order to

develop distributed applications. However, applications are

difficult to be flexible in cluster computing because they are

limited to a fixed area. Grid computing is proposed to overcome

this problem where various resources from different geographic

area are combined in order to develop a grid computing

environment. The study by [2] defined that grid computing is

based on large scale resources sharing in a widely connected

network such as the Internet.

The past technologies such as cluster and parallel computing do

not suit current scientific problems with a large amount of data

files [3]. Especially, processing and storing massive volumes of

data may take a very long time. Besides, we need to consider

about the other conditions such as network status and resources

status. If the network or resources are unstable, jobs would be

failed or the total computation time would be very large. So we

need an efficient job scheduling algorithm for these problems in

the grid environment.

How to schedule jobs efficiently in a grid environment is a main

issue. The purpose of job scheduling is to balance the entire

system load and minimize the completion time according to the

environment status. A good scheduler would adjust its

scheduling strategy according to the changing status of the entire

environment and types of jobs.

In grid computing environment, there exists more than one

resource to process jobs. One of the main challenges is to find

the best or optimal resources to process a particular job in term

of minimizing the job computational time. Computational time is

a measure of how long that resource takes to complete the job.

An effective job scheduling algorithm is needed to reduce the

computational time of each resource and also minimize the

makespan of the system. Therefore, an algorithm in job

scheduling such as Ant Colony Optimization (ACO) [4] is

appropriate for the problems mentioned above.

ACO is a heuristic algorithm with efficient local search for

combinatorial problems. ACO imitates the behavior of real ant

colonies in nature to search food from nest and interact with each

other by pheromone value which is laid on paths. Many

researches use ACO to solve NP-hard problems such as traveling

salesman problem [5], graph coloring problem [6], vehicle

routing problem [7], and so on.

One of the best scheduling algorithms which used to schedule

jobs in grid environment is Suffrage [8]. This paper combines the

ACO and Suffrage to schedule a given set of jobs in Grid

computing. We assume each job is an ant and the algorithm sends

the ants to search for resources. We also modify the global and

local pheromone update functions in ACO algorithm in order to

balance the load for each grid resource. Finally, we compare the

proposed combinatorial algorithm with Min-Min [9], Max-Min

[9] and the Suffrage itself [8]. According to the experimental

results, we can find out that our proposed ACO algorithm is

capable of achieving system load balance and decreasing the

makespan better than other job scheduling algorithms. The rest

of the paper is organized as follows. Section 2 explains the

background of ACO algorithm and scheduling problem and

Suffrage. Section 3 introduces some related work. Section 4

details the proposed ACO algorithm for job scheduling in grid

environment. Section 5 indicates the experimental results and

finally, Section 6 concludes this paper.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5–Issue 1, 20-25, 2016, ISSN:2319–8656

www.ijcat.com 21

2. BACKGROUND

2.1 Features of ACO
Dorigo introduced the ant algorithm [10], which is a new

heuristic algorithm and based on the behavior of real ants. When

the blind insects, such as ants look for food, the moving ant lays

some pheromone on the ground, thus marking the path it

followed by a trail of this substance. While an isolated ant moves

essentially at random, an ant encountering a previously laid trail

can detect it and decide with high probability to follow it, thus

reinforcing the trail with its own pheromone. The collective

behavior that emerges means where the more are the ants

following a trail, the more that trail becomes attractive for being

followed. The process is thus characterized by a positive

feedback loop, where the probability with which an ant chooses

an optimum path increases with the number of ants that chose the

same path in the preceding steps. Above observations inspired a

new type of algorithm called ant algorithms or ant systems,

which is presented by Dorigo and Gambardella [11]. The ACO

algorithm uses a colony of artificial ants that behave as co-

operative agents in a mathematical space were they are allowed

to search and reinforce pathways (solutions) in order to find the

optimal ones. Solution that satisfies the constraints is feasible.

All ACO algorithms adopt specific algorithmic scheme which is

shown in Figure 1.

Figure 1. All ACO Algorithm scheme.

We utilize the characteristics of ant algorithms above mentioned

to schedule job. We can carry on new job scheduling by

experience depend on the result in the past job scheduling. It is

very helpful for being within the grid environment.

2.2 Scheduling Problem Formulation
The grid environment consists of a large number of resources and

jobs which should be assigned to the resources. The jobs cannot

divide into smaller parts and after assigning a job to a resource,

its executing cannot be stopped.

The main challenge in scheduling problems is time. Finding a

solution in these problems tries to decrease the time of executing

all jobs. In this case, the most popular criterion is makespan and

our purpose in this paper is reducing the makespan with the aid

of ACO.

In grid, we have a set of resources (Resources = {m1, m2, …,

mm}) and a set of jobs (Jobs = {t1, t2, …, tn}) which should be

assigned to the resources and executed on them. There is a matrix

ETC [Resources] [Jobs] (Figure 2) that represents the time of

executing (EX) ti on mj.

Figure 2. Matrix ETC

Suppose that Eij (i ϵ Jobs , j ϵ Resources) is the time of job i on resource

j and Wj (j ϵ Resources) is the time of executing jobs which are

assigned to resource j before. Then equation (1) shows the time

of executing all jobs which are allocated to mj.

∑ (𝐸𝑖𝑗 + 𝑊𝑗)∀ 𝐽𝑜𝑏 𝑖𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑜 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑗 (1)

We can find the value of makespan according to equation (2):

makespan = max {∑ (𝐸𝑖𝑗 +∀ 𝑗𝑜𝑏 𝑖𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑜 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑗

 𝑊𝑗)} , 𝑖 ∈ 𝐽𝑜𝑏𝑠 𝑎𝑛𝑑 𝑗 ∈ 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 (2)

With another look on these definitions, we can calculate the

completion time of resources with equation (3):

𝐶𝑇𝑖𝑗 = 𝐸𝑖𝑗 + 𝑊𝑗 (3)

There is a Scheduling List for all resources that shows the jobs

which are assigned to each resource. Each resource has a

completion time and according to equation (4), the value of

makespan is equal to the maximum completion time.

makespan = 𝑚𝑎𝑥 (𝑖,𝑗) ∈ 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔 𝐿𝑖𝑠𝑡 (𝐶𝑇𝑖𝑗) (4)

The makespan is a criterion to evaluate the grid system and the

main purpose of a scheduler is to minimize this criterion.

2.3 Suffrage
Suffrage is one of the job scheduling algorithms that schedules

the given set of jobs in grid environment. The idea behind

Suffrage [9] is that a resource is assigned to a job that would

"suffer" the most if that resource would not be assigned to it. The

suffrage value of a job (Differenceij) is defined by the difference

between its second best completion time (Second Minimum) and

its best completion time (First Minimum), equation 5:

Differenceij (ti) = [First Minimumij - Second Minimumij] (5)

The suffrage value (Differenceij) of all jobs in the given set of

jobs is calculated and stored in a Difference List. Then, a job is

possibly assigned to the resource that has the most suffrage value

(has the most Priority), equation 6:

Priority = 𝑚𝑎𝑥(𝑖,𝑗) ∈ 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑙𝑖𝑠𝑡 (𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑖𝑗 (𝑡𝑗)) (6)

If another job was previously assigned to the resource, the

suffrage values of the job previously assigned and of the new

job are compared. The job would be executed that has the

greater suffrage value and the other one would be assigned

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5–Issue 1, 20-25, 2016, ISSN:2319–8656

www.ijcat.com 22

later. Every time a job finishes, all jobs that have not started yet

are unscheduled and the algorithm is invoked again, using

current values of suffrage. Consequently, the algorithm runs

again and schedules the remaining jobs, but this time with the

new load of the resources. This scheme is repeated until all jobs

are assigned to the available resources and completed [12].

3. RELATED WORK
Jobs submitted to a grid computing system need to be processed

by the available resources.

Best resources are categorized as optimal resources. In a research

by [13], Ant Colony Optimization (ACO) has been used as an

effective algorithm in solving the scheduling problem in grid

computing.

The study by [14] proposed a bio-inspired adaptive job

scheduling mechanism in grid computing. The purpose of this

research is to minimize the execution time of the computational

jobs by effectively taking advantage of the large amount of

distributed resource. Various software ant agents were designed

with simple functionalities. The pheromone value of each

resource depends on their execution time. Resource with high

execution time will receive a large number of pheromone. In this

research, the comparison was also performed between the bio

inspired adaptive scheduling with the random mechanism and

heuristic mechanism. Experimental results showed that a bio-

inspired adaptive job scheduling has good adaptability and

robustness in a dynamic computational grid.

Stutzle, T. proposes Max-Min Ant System (MMAS) [15] to limit

the pheromone range to be greater than or equal to the low bound

value (Min) and smaller than or equal to the upper bound value

(Max) to avoid ants to converge too soon in some ranges.

M. Dorigo et al propose Fast Ant System (FANT) [16]. It uses

one ant at each iteration and gets the solution of the ant to do a

local search. FANT works without evaporation rule and it

updates pheromone after each iteration. In order to avoid the sub-

optimal solution, it applies the reset pheromone function.

Hui Yan et al [17] apply the basic idea of ACO, but change the

pheromone update function by adding encouragement,

punishment coefficient and local balancing factor. The initial

pheromone value of each resource is based on its status. For

example, the number of CPU, CPU speed and bandwidth will

take into account on the initial pheromone value. They assign job

to the resource with the maximum pheromone value and the

pheromone of each resource will be update by update function.

The encouragement and punishment and local balancing factor

coefficient are defined by users and are used to update

pheromone values of resources. If a resource completed a job

successfully, it will be added more pheromone by the

encouragement coefficient in order to be selected for next job

execution. If a resource failed to complete a job, it will be

punished by adding less pheromone value. They take the load of

each resource into account and also apply the balancing factor to

change the pheromone value of each resource.

Kwang Mong Sim et al. [18] use multiple kinds of ant to find

multiple optimal paths for network routing. The idea can be

applied to find multiple available resources to balance resources

utilization in job scheduling. The key of the idea is each different

kinds of ant can only sense their own kind of pheromone so that

it can find much different paths including the shortest-path by

different kinds of ant. Its main problem is that if all kinds of ant

find the same path, it will do nothing like using one kind of ant.

And how to compare their performance of each kind of ant

creates another problem. Furthermore, one solution from this

algorithm may work efficiently in an environment, but it may

work inefficiently in another one.

J. Heinonen et al. [19] apply the hybrid ACO algorithm with

different visibility to job-shop scheduling problem. The hybrid

ACO algorithm consists of two ideas. One idea is the basic ACO

algorithm, and the other idea uses the post-processing algorithm

in the part of local search in ACO algorithm. When the ACO

algorithm finished, all ants complete its own tour which can be

decomposed into blocks. The block for swap must contain more

than two operations. Then the post processing algorithm uses the

swap operation on the blocks. If the swap reforms the makespan,

the new path is accepted; otherwise the swap is invalid and the

swapped block recovers to previous status.

Balanced job assignment based on ant algorithm for computing

grids called BACO was proposed by [3]. The research aims to

minimize the computation time of job executing in Taiwan

UniGrid environment which focused on load balancing factors of

each resource. By considering the resource status and the size of

the given job, BACO algorithm chooses optimal resources to

process the submitted jobs by applying the local and global

pheromone update technique to balance the system load. Local

pheromone update function updates the status of the selected

resource after job has been assigned and the job scheduler

depends on the newest information of the selected resource for

the next job submission. Global pheromone update function

updates the status of each resource for all jobs after the

completion of the jobs. By using these two update techniques, the

job scheduler will get the newest information of all resources for

the next job submission. From the experimental result, BACO is

capable of balancing the entire system load regardless of the size

of the jobs. However, BACO was only tested in Taiwan UniGrid

environment.

An ant colony optimization for dynamic job scheduling in grid

environment was proposed by [20] which aimed to minimize the

total job tardiness time. The initial pheromone value of each

resource is based on expected execution time and actual

execution time of each job. The process to update the pheromone

value on each resource is based on local update and global update

rules as in ACS. In that study, ACO algorithm performed the best

when compared to First Come First Serve, Minimal Tardiness

Earliest Due Date and Minimal Tardiness Earliest Release Date

techniques.

4. THE PROPOSED ALGORITHM
Real ants foraging for food lay down quantities of pheromone

(chemical substance) marking the path that they follow. An

isolated ant moves randomly but an ant encountering a

previously laid pheromone will detect it and decide to follow it

with high probability and thereby reinforce the path with a further

quantity of pheromone. The repetition of the above mechanism

represents the auto catalytic behavior of real ant colony where

the more the ants follow a trail, the more attractive that trail

becomes [13].

The ACO algorithm uses a colony of artificial ants that behave

as co-operative agents in a mathematical space were they are

allowed to search and reinforce pathways (solutions) in order to

find the optimal ones. Solution that satisfies the constraints is

feasible. After initialization of the pheromone trails, ants

construct feasible solutions, starting from random nodes, and

then the pheromone trails are updated. At each step ants compute

a set of feasible moves and select the best one (according to some

probabilistic rules) to carry out the rest of the tour. The transition

probability is based on the heuristic information and pheromone

trail level of the move. The higher value of the pheromone and

the heuristic information, the more profitable it is to select this

move and resume the search.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5–Issue 1, 20-25, 2016, ISSN:2319–8656

www.ijcat.com 23

4.1 Initialize Pheromone and Probability List
At the beginning, a population of ants is generated and they start

their own search from one of the resource (the ants assigned to

resources randomly). The initial Pheromone and Probability List

is set to a small positive value t0 and then ants update this value

after completing the construction stage. In the nature there is not

any pheromone on the ground at the beginning, or the initial

pheromone in the nature is t0 = 0. If in ACO algorithm the initial

Pheromone is zero, then the probability to choose the next state

will be zero and the search process will stop from the beginning.

Thus it is important to set the initial Pheromone and Probability

List to a positive value. The value of t0 is calculated with

equation (7):

𝑡0 =
1

𝐽𝑜𝑏𝑠 × 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠
 (7)

4.2 Local Pheromone Update
Moving from a state to another means that a job is assigned to a

resource. After choosing next node by ants, the pheromone trail

should be updated. This update is local pheromone update and

the equation (8) shows how it happens:

Pheromone𝑖𝑗
𝑘 = ((1 − 𝜀) × (Pheromone𝑖𝑗

𝑘)) + (𝜀 × 𝜃) (8)

In local pheromone update equation, θ is a coefficient which

obtains its value from equation (9):

𝜃 =
𝑡0

𝐶𝑇𝑖𝑗(𝐴𝑛𝑡𝑘)
 (9)

The less value of CTij, the more value of θ. In fact, if the value of

θ is larger, the more pheromone value will be deposited.

Therefore, the chance of choosing resource j in next assigning is

more than other resources.

4.3 Probability List Update
In addition to update Pheromone, the Probability List should be

updated, too. The ants choose the next states based on heuristic

information, equation (10):

Heuristic 𝑖𝑗
𝑘 =

1

(𝑊𝑗) × (𝐸𝑇𝐶𝑖𝑗)
 (10)

With the heuristic information, we can update the Probability

List, equation (11):

Probability List𝑖𝑗
𝑘 = (Pheromone𝑖𝑗

𝑘) × (Heuristic 𝑖𝑗
𝑘)𝛽 (11)

4.4 Global Pheromone Update
In the nature, some pheromone value on the trails evaporates. At

the end of each iteration in the proposed algorithm, when all ants

finish the search process, the all ants’ value of pheromone will

be reduced by evaporation rule, equation (12):

Pheromone𝑖𝑗
𝑘 = (Pheromone𝑖𝑗

𝑘) × (1 − 𝜌) (12)

When all ants construct a solution, it means that the ants moves

from the nest to the food resource and finish the search process

(all the jobs are assigned to the resources in grid). In the proposed

algorithm, the best solution and the best ant which construct that

solution will be found. The global pheromone update is just for

the ant that finds the best solution. This ant is the best ant of

iteration. At this stage, the value of Pheromone should be

updated, equation (13):

Pheromone𝑖𝑗
𝐵𝑒𝑠𝑡 𝐴𝑛𝑡 = Pheromone𝑖𝑗

𝐵𝑒𝑠𝑡 𝐴𝑛𝑡 + ((𝜌) × (∆)) +

𝜀

𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 (𝐵𝑒𝑠𝑡 𝐴𝑛𝑡)
 (13)

In global pheromone update, ρ is the elitism coefficient and Δ is

calculated by equation (14):

∆=
1

𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 (𝐵𝑒𝑠𝑡 𝐴𝑛𝑡)
 (14)

The pseudo-code of the proposed algorithm is presented in

Figure 3.

Figure 3. Pseudo-code of the proposed algorithm.

5. EXPERIMENTAL RESULTS
The results of the evaluation of the proposed algorithm with the

three algorithms of Min-Min and Max-Min [9] and Suffrage [8]

for scheduling independent jobs in grid environment are

presented in this section.

All experiments have been done on a system running Windows

7 Professional operating system with configuration of 2 GHz

CPU and 2GB of RAM.

Table 1 indicates the amounts of parameters which are used in

executing the proposed algorithm.

Table 1. Parameters of the proposed algorithm.

A real heterogeneous computational system such as grid is a

combination of hardware and software elements and a

comparison of the scheduling techniques is often complicated in

this environment. To solve this problem, Braun et al. [21],

proposed a simulation model. They defined a grid environment

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5–Issue 1, 20-25, 2016, ISSN:2319–8656

www.ijcat.com 24

which consists of a set of resources and a set of independent jobs.

The scheduling algorithms aim to minimize the makespan. All

scheduling algorithms need to know the completion time of each

job on each resource. The model consists of 12 different kinds of

examples: u_c_hihi, u_c_hilo, u_c_lohi, u_c_lolo, u_i_hihi,

u_i_hilo, u_i_lohi, u_i_lolo, u_s_hihi, u_s_hilo, u_s_lohi,

u_s_lolo; that any of them can be shown in a matrix. This model

uses a matrix ETC which illustrates the estimated times of

completion (Figure 2).

In this paper, the same model is used to evaluate the proposed

algorithm and the three scheduling algorithms, Suffrage, Min-

Min and Max-Min. After executing these four algorithms,

different amounts of makespan are obtained which are shown in

Table 2.

Table 2. Comparison of four algorithms’ makespans.

The Results of experiment are shown as charts in Figure 4, 5, 6

and 7.

Figure 4. Algorithms’ makespans based on u-*-hihi.

Figure 5. Algorithms’ makespans based on u-*-hilo.

Figure 6. Algorithms’ makespans based on u-*-lohi.

Figure 7. Algorithms’ makespans based on u-*-lolo.

The three scheduling algorithms, Suffrage, Min-Min and Max-

Min, are three best algorithms among other scheduling

algorithms but the results of the experiment (Table 2) indicate

that the proposed algorithm has higher performance and lower

amount of makespan than the other three scheduling algorithms.

6. CONCLUSIONS
In this paper, a new ACO algorithm is proposed to choose

suitable resources to execute jobs according to the completion

times of resources and the size of given job in the grid

environment. The proposed algorithm is a combination of ACO

and Suffrage; which means that the result of Suffrage is used in

proposed ACO. One ant as an elite one is set to Suffrage’

solution. The local and global pheromone update functions are

changed to do balance the system load. Local pheromone update

function updates the status of the selected resource after jobs

assignment. Global pheromone update function updates the

status of scheduling list of best solution. The purpose of this

paper is to minimize the makespan and the experimental results

states that the proposed combinatorial algorithm is capable of

minimizing the makespan better than other three scheduling

algorithms.

7. REFERENCES
[1] Yan, K. Q., Wang, S. S., Wang, S. C., Chang, C. P., “Towards

a hybrid load balancing policy in grid computing system”, Expert

Systems with Applications, Vol. 36, pp. 12054-12064, 2009.

[2] Yang, K., Guo, X., Galis, A., Yang, B., Liu, D., “Towards

efficient resource on-demand in Grid Computing”, ACM

SIGOPS Operating Systems Review, Vol. 37, Issue 2, pp. 37-43,

2003.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5–Issue 1, 20-25, 2016, ISSN:2319–8656

www.ijcat.com 25

[3] Chang, R. S., Chang, J. S., Lin, P. S., “Balanced Job

Assignment Based on Ant Algorithm for Computing Grids”, The

2nd IEEE Asia-Pacific Service Computing Conference, pp. 291-

295, 2007.

[4] Dorigo, M., Blum, C., “Ant colony optimization theory: A

survey”, Theoretical Computer Science, Vol. 344, Issue 2, pp.

243-278, 2005.

[5] Dorigo, M., Gambardella, L. M., “Ant colony system: a

cooperative learning approach to the traveling salesman

problem”, IEEE Transaction on Evolutionary Computation, Vol.

1, Issue 1, pp. 53-66, 1997.

[6] Salari, E., Eshghi, K., “An ACO algorithm for graph coloring

problem”, ICSC Congress on Computational Intelligence

Methods and Applications, 2005.

[7] Zhang, X., Tang, L., “CT-ACO-hybridizing ant colony

optimization with cyclic transfer search for the vehicle routing

problem”, ICSC Congress on Computational Intelligence

Methods and Applications, 2005.

[8] Casanova, H., Legrand, A., Zagorodnov, D., Berman, F.,

“Heuristics for scheduling parameter sweep applications in grid

environments”, Heterogeneous Computing Workshop, pp. 349-

363, 2000.

[9] Maheswaran, M., Ali, S., Siegel, H. J., Hensgen, D., Freund,

R. F., “Dynamic matching and scheduling of a class of

independent tasks onto heterogeneous computing systems”,

Journal of Parallel and Distributed Computing, pp. 107-131,

1999.

[10] Dorigo, M., Maniezzo, V., Colorni, A., “Ant system:

optimization by a colony of cooperating agents”, IEEE

Transactions on Systems, Man and Cybernetics - Part B, Vol. 26,

No. 1, pp. 1-13, 1996.

[11] Dorigo, M., Gambardella, L. M., “Ant colonies for the

traveling salesman problem”, Biosystems, Vol. 43, Issue 2, pp.

73-81, 1997.

[12] Maheswaran, M., Ali, S., Siegel, H. J., Hensgen, D., Freund,

R. F., “Dynamic matching and scheduling of a class of

independent tasks onto heterogeneous computing systems”,

Journal of Parallel and Distributed Computing, pp. 107-131,

1999.

[13] Fidanova, S., Durchova, M., “Ant Algorithm for Grid

Scheduling Problem”, Springer, pp. 405-412, 2006.

[14] Li, Y., “A bio-inspired adaptive job scheduling mechanism

on a computational grid”, International Journal of Science and

Network Security (IJCSNS), Vol. 6, Issue 3, pp. 1-7, 2006.

[15] Stutzle, T., “Max-Min Ant System for Quadratic

Assignment Problems”, Citeseer, 1997.

[16] Taillard, E. D., Gambardella, L. M., “Adaptive Memories

for the Quadratic Assignment Problem”, Citeseer, pp. 1-18,

1997.

[17] Yan, H., Shen, X. Q., Li, X., Wu, M. H., “An improved ant

algorithm for job scheduling in grid computing”, Proceedings of

the fourth International Conference on Machine Learning and

Cybernetics, Vol. 5, pp. 2957-2961, 2005.

[18] Sim, K. M., Sun, W. H., “Multiple ant-colony optimization

for network routing”, Proceedings of the First International

Symposium on Cyber Worlds, pp. 277-281, 2002.

[19] Heinonen, J., Pettersson, F., “Hybrid ant colony

optimization and visibility studies applied to a job-shop

scheduling problem”, Applied Mathematics and Computation,

Vol. 187, Issue 2, pp. 989-998, 2007.

[20] Lorpunmanee, S., Sap, M. N., Abdullah, A. H., Chompoo-

inwai, C., “An Ant Colony Optimization for Dynamic Job

Scheduling in Grid Environment”, Proceedings of World

Academy of Science, Engineering and Technology, Vol. 23, pp.

314-321, 2007.

[21] Braun, T. D., Siegel, H. J., Beck, N., “A Comparison of

Eleven static Heuristics for Mapping a Class of Independent

Tasks onto Heterogeneous Distributed Computing systems”,

Journal of Parallel and Distributed Computing, Vol. 61, pp. 810-

837, 2001.

http://www.ijcat.com/

