
International Journal of Computer Applications Technology and Research 

Volume 5– Issue 1, 26 - 33, 2016, ISSN:- 2319–8656 

www.ijcat.com   26 

GRID SEARCHING 

Novel way of Searching 2D Array 

 

 Rehan Guha 

Institute of Engineering & Management 

Kolkata, India 

 

Abstract: Linear/Sequential searching is the basic search algorithm used in data structures. Linear search is used to find a 

particular element in a 2D array. It is not compulsory to arrange an array in any order (Ascending or Descending) as in 

case of 2D binary search. In this paper, I present a unique searching algorithm named Grid Search, which helps to search 

an unsorted 2D Array/Matrix with least time complexity and iteration. We also have compared the Grid searching algorithm 

with Linear Search Algorithm. We used C++ for implementation and analysis of CPU time taken by both the algorithms. 

Results have shown that Grid Searching Algorithm is working well for all input values and it takes lesser time than 

Sequential Searching in all aspects. 
 

Keywords: Matrix Searching algorithms; 2D Array Searching algorithms; 2D Array Linear Searching; 2D Array Grid 

Searching; Complexity Analysis; Algorithms; Searching Algorithms; 

 

1. INTRODUCTION 

2D Array or Matrix searching algorithm is a widely used 

and known searching algorithm. Though it is a primitive 

and basic searching technique, but it is widely used in 

different fields even today. Fields include Bio-medical 

image processing, Rasterization techniques, Electro-

optical displays, Pixel tracing and many more. 

In this paper I have developed a new searching technique 

named Grid Searching, based on the existing limitations 

of the 2D array linear/sequential search algorithm. 

In 2D array searching an iterator1 traverses sequentially 

from left to right (row major) or top to down (column 

major). When it encounters an element which is equal to 

the key2 the search stops and the index of the element is 

returned, but if the key is not present in the 2D array the 

function will return 0, implying that the key is not found. 

Sequential search or linear search is the basic search 

algorithm used in data structures for 2D array[1] with 

unsorted data. 

 

 

                                                           
1 It is a variable which acts as an counter variable and 

acts as an index for 2D array/matrix 
2 The element which is to be searched in the 2D 

array/matrix 

2. RELATED WORK 

Linear search is used to find a particular element in an 

array. It is not compulsory to arrange an array in any 

order3 as in the case of binary search. Linear search starts 

by sequentially scanning the elements in the 2D array 

(Row major wise or Column major wise) and if the 

element has been found, it will display the particular 

element’s index value in the 2D array/matrix, else it will 

display not found[2][3]. 

If we declare a 2D array of order (n X n) i.e. size of array 

is n2 then we initialize the array with the value (either 

static or dynamic declaration of values)[4]. In that if we 

mention the particular element to be identified, the linear 

search will start to search the array from the index 0, 0. 

If the value is not found, then the iterator will increment 

the index value by 1 in the column/row index becoming 

(0, 1) / (1, 0) and then it will check the element in that 

index again. This process continues till the element has 

been identified in the 2D Array/Matrix. 

 

 

 

3 Ascending,  Descending or any other sequence/series 

http://ijcat.com/


International Journal of Computer Applications Technology and Research 

Volume 5– Issue 1, 26 - 33, 2016, ISSN:- 2319–8656 

www.ijcat.com   27 

 

Algorithm(s): 

 LINEAR_SEARCH (M, NUM, n) 

Input: 

 2D array/matrix M 

 NUM is the key which is to be searched in M 

 n is the order of the 2D array/matrix M (n X n) 

 i & j are the iterators and works as index of the 

2D array/matrix. 

Pseudo Code: where, n= 1,2,3,4,5,6,7 … 

LINEAR_SEARCH (M, NUM, n) 

1. Flag  0 

2. for i 0 to n-1 

3.  for j0 to n-1 

4.   if (M[i][j] == NUM) then 

5.    Flag1 

6.    return (i, j) 

7.   end if 

8.  next j 

9. next i 

10. if (Flag == 0) then 

11.  return 0 

12. end if 

 

Flag –Checks whether the element is present or not. 

If function LINEAR_SEARCH finds a match with the key 

then it returns the index of the element(s) (there might be 

multiple match of elements in the 2D array/matrix). Else 

it returns 0 which signifies element not found. 

 

3. MODIFIED ALGORITHM (GRID 

SEARCHING) 

If we declare and initialize a 2D array of order (n X n) 

i.e. size of the array is n2 and if we mention the particular 

element to be identified, then the grid search will start 

searching the array from the index 1, 1. Now considering 

the index, it will search its boundary like a Grid. If the 

element is not found in the boundary then it will search 

the next set of Grids according to the order of matrix. 

This process continues till the element has been 

identified. 

 

 

Algorithm(s): 

 GRID_SEARCH(M, n, NUM),  

 CHECK (M, n, i, j, NUM), 

 RANGE (n) 

Input: 

 2D array/matrix M 

 NUM is the key which is to be searched in M 

 n is the order of the 2D array/matrix M (n X n) 

 i & j are the iterators and works as index of the 

2D array/matrix. 

Pseudo Code: where, n= 1,2,3,4,5,6,7 … 

RANGE (n) 

1. if (n MOD 3 == 1) then 

2.  T (n+2) / 3 

3. else if (n MOD 3 == 2) then 

4.  T (n+1) / 3 

5. else 

6.  T (n) / 3 

7. end if 

8. return ( T * T ) 

 

CHECK (M, n, i, j, NUM) 

1. if ( ((i>=0) AND (i<n)) AND ((j>=0) AND 

(j<n)) AND M[i][j] == NUM ) then 

2.  return 1 

3. end if 

4. return 0 

 

GRID_SEARCH (M, n, NUM) 

1. Flag  0 

2. T RANGE(n) 

3. for i1 to T 

4.  for j1 to T 

5.   if (CHECK(M, n, i-1, j-1, 

NUM)) then 

6.    Flag  1 

7.    return(i-1, j-1) 

8.  end if 

http://ijcat.com/


International Journal of Computer Applications Technology and Research 

Volume 5– Issue 1, 26 - 33, 2016, ISSN:- 2319–8656 

www.ijcat.com   28 

9.   if (CHECK(M, n, i-1, j, 

NUM)) then 

10.    Flag  1 

11.    return(i-1, j) 

12.   end if 

13.   if (CHECK(M, n, i, j-1, 

NUM)) then 

14.    Flag  1 

15.    return(i, j-1) 

16.   end if 

17.   if (CHECK(M, n, i-1, j+1, 

NUM)) then 

18.    Flag  1 

19.    return 1 

20.   end if 

21.   if (CHECK(M, n, i, j, NUM)) 

then 

22.    Flag  1 

23.    return(i, j) 

24.   end if 

25.   if (CHECK(M, n, i, j+1, 

NUM)) then 

26.    Flag  1 

27.    return (i, j+1) 

28.   End if 

29.   if (CHECK(M, n, i+1, j-1, 

NUM)) then 

30.    Flag  1 

31.    return(i+1, j-1) 

32.   End if 

33.   if (CHECK(M, n, i+1, j, 

NUM)) then 

34.    Flag  1 

35.    return(i+1, j) 

36.   end if 

37.   if (CHECK(M, n, i+1, j+1, 

NUM)) then 

38.    Flag  1 

39.    return(i+1, j+1) 

40.   end if 

41.  next (j+3) 

42. next (i+3) 

43. if (Flag == 0) then 

44.  return 0 

45. end if 

NOTE: Here the order of nested If-Else condition is 

important and cannot be changed. If it is changed the 

result of the algorithm may vary. 

                                                           
4 refer to Grid Searching algorithm under Section 3 

Example: If array M has 1 element only i.e. order of the 

array is 1(i.e. 1 X 1) and now if we search the array and 

the element is found then the total number of searches 

will equal to 1. But if the order of the nested If-Else 

condition is changed then the total number searches will 

be greater than 1 thus in turn increases the complexity of 

the algorithm. 

Flag –Checks whether the element is present or not. 

T –Holds the returned value from the function RANGE(n). 

If function GRID_SEARCH finds a match with the key 

then it returns the index of the element(s) (there might be 

multiple match of elements in the 2D Array/Matrix). Else 

it returns 0 which signifies element is not found. 

 

4. PROOF OF CORRECTNESS FOR GRID 

SEARCHING 

To prove that an algorithm is correct, we need to show 

two things: (1) that the algorithm terminates, and (2) that 

it produces the correct output [5] [6]. 

 

4.1 Algorithm Grid Searching terminates after a 

finite number of steps 

The variable T4 holds a finite number according to the 

function RANGE(n) (refer Section 3) and the iterator 

variable starts from 1 and ends at T with increment of 3. 

If the iteration variable is greater than equal to T then the 

loop terminates and does not go into an infinite loop.  

 

4.2 Algorithm Grid Searching produces correct 

output 

If the element is found then the function GRID_SEARCH 

returns the index value of the found element(s) as well as 

sets the value of Flag3 to 1 and if the value is NOT 

FOUND then the function GRID_SEARCH returns 0 

indicating that the element is not present in the 2D 

array/matrix, thus resulting to a correct output. 

 

http://ijcat.com/


International Journal of Computer Applications Technology and Research 

Volume 5– Issue 1, 26 - 33, 2016, ISSN:- 2319–8656 

www.ijcat.com   29 

5. PERFORMANCE ANALYSIS AND 

COMPARISON 

Both the searching algorithm (Sequential Searching and 

Grid Searching) were implemented in C++ using GNU 

G++ Compiler. Both the searching algorithm was 

executed on machine with:- 

32-bit Operating System having Intel® Core™ i3-4005U 

CPU @ 1.70GHz, 1.70GHz and installed memory 

(RAM) 4.00GB. 

5.1 Analysis of the Function of both the algorithms 

Function of Linear/Sequential searching f(x): 

f(x) = x2 + x + 1  …..(i) 

Function of Grid searching g(x): 

g(x) = x2/9 + 18x + 5 …..(ii) 

The functions are derived from their respective 

algorithms (refer Section 2 & 3). The function has taken 

the for loop(s), if-else condition(s) into consideration. 

The condition below is true for all the values of x greater 

than equal to 20 (x >= 20) according to the equation (i) 

and (ii), where x= 1, 2, 3, 4 … 

g(x)>f(x)  …..(iii) 

Table 1: Analysis of Functions 

N Grid Searching 

(Proposed Algorithm ) 

Function 

Sequential 

Searching 

Function 

0 5 1 

3 60 13 

6 117 43 

9 176 91 

12 237 157 

15 300 241 

18 365 343 

21 432 463 

24 501 601 

27 572 757 

30 645 931 

33 720 1123 

36 797 1333 

39 876 1561 

42 957 1807 

… … … 

 

 

Figure 1 

From the above graph (Fig. 1) we may come to a 

conclusion that Grid Searching function (g(x)) is highly 

effective with respect to Linear/Sequential searching 

(f(x)) when x >= 20 where x=1, 2, 3, 4, ... 

 

5.2 Analysis of Worst-case iteration complexity 

Worst-case iteration complexity measures the resources 

(e.g. running time, memory) that an algorithm requires in 

the worst-case. It gives an upper bound on the resources 

required by the algorithm. Thus the worst-case of an 

algorithm is the total number of iteration(s) required for 

searching an element which is not present in the 2D 

array/matrix, thus shows the total no. of iteration 

required for fulfilling a NOT FOUND condition. 

NOT FOUND condition is checked for the order of 

matrices (n X n) where n = 3, 6, 9, 12… 

According to equations (i) and (ii) from Section 5.1 

f(x) = x2 + x + 1  …..(i) (refer Section 5.1) 

Function of Linear/Sequential searching is f(x) 

And, 

g(x) = x2/9 + 18x + 5 …..(ii) (refer Section 5.1) 

Function of Grid searching is g(x) 

http://ijcat.com/


International Journal of Computer Applications Technology and Research 

Volume 5– Issue 1, 26 - 33, 2016, ISSN:- 2319–8656 

www.ijcat.com   30 

The highest degree of both the equations is as follows: 

f(x) = g(x) = x2  ….. (iii) 

Thus from equation (iii) we can conclude, 

The Orders of Complexity of both the equations are 

O(n2) 

Therefore, 

Orders of complexity of both the algorithms are 

O(Grid Searching) = O(Sequential Searching) = O(n2) 

But, 

According to the equation (i) and (ii) considering the 

highest degree of the equation with constants, 

We can say, 

x2 >> x2/9   ….. (iv) 

x=1, 2, 3, 4 … 

(x2 is much greater than x2/9) 

Precisely, we can also say 

O(Grid Searching) = O(n2/9) 

O(Sequential Searching) = O(n2) 

Finally, 

Grid searching has complexity of O(n2/9) 

And Sequential searching has a complexity of O(n2). 

The condition below is true for all the values of n where 

n = 1, 2, 3, 4… 

O(n2/9)  <<  O(n2) 

Table 2: Iteration Complexity 

n Order Grid Searching 

(Proposed 

Algorithm) 

Sequential 

Searching 

1 3 1 9 

2 6 4 36 

3 9 9 81 

4 12 16 144 

5 15 25 225 

6 18 36 324 

7 21 49 441 

8 24 64 576 

9 27 81 729 

10 30 100 900 

11 33 121 1089 

12 36 144 1296 

… … … … 

 

 

Figure 2 

From the above graph (Fig. 2) we may conclude that Grid 

Searching is highly efficient with an increase in the order 

of matrix with respect to Linear/Sequential searching. 

 

5.3 Analysis of Worst-case Time complexity 

The worst-case time complexity indicates the longest 

running time performed by an algorithm given any input 

of size n (if the algorithm satisfies NOT FOUND 

condition then that is the longest running time of the 

algorithm), and thus this guarantees that the algorithm 

finishes on time and gives us the total worst-case time 

complexity. 

Moreover, the order of growth of the worst-case 

complexity is used to compare the efficiency of two 

algorithms. 

All the readings shown below are an average of 10 

reading of a single NOT FOUND condition. Time is 

represented in msec, and NOT FOUND condition is 

checked for the order of matrices (n X n) where n = 3, 6, 

9, 12… 

 

http://ijcat.com/


International Journal of Computer Applications Technology and Research 

Volume 5– Issue 1, 26 - 33, 2016, ISSN:- 2319–8656 

www.ijcat.com   31 

Table 3: Time Complexity 

N Order Grid Searching 

(Proposed 

Algorithm) 

Sequential 

Searching 

1 3 0.31287 0.32967 

2 6 0.384615 0.494505 

3 9 0.32967 0.384615 

4 12 0.32967 0.43956 

5 15 0.384615 0.49456 

6 18 0.494505 0.512563 

7 21 0.43956 0.549451 

8 24 0.494505 0.549451 

9 27 0.549451 0.494505 

10 30 0.494505 0.494505 

11 33 0.43956 0.494505 

12 36 0.32967 0.549451 

… … … … 

 

 

Figure 3 

From the graph (Fig. 3) we obtain the logarithm values 

of the trend-line which is automatically generated by the 

Graph Analyzer from Table 3. 

The logarithm trend-line for linear/sequential searching 

f(x) is as follows:- 

f(x) = 0.0722 ln(x) + 0.2824 .....(i) 

 The logarithm trend-line for Grid searching g(x) is as 

follows:- 

g(x) = 0.0541 ln(x) + 0.2636 …..(ii) 

The condition below is true for all values of x (1, 2, 3…) 

according to the equation (i) and (ii), 

g(x)<f(x)   …..(iii) 

Therefore, from equation (iii) we can conclude that Grid 

Searching is more efficient than Sequential Searching in 

case of Worst-case time complexity. 

 

5.4 Analysis of Condition checking 

Condition checking is the number of conditions required 

to find a particular element in the matrix irrespective of 

the presence of the element in the matrix. 

All the readings shown below are obtained from a matrix 

of order 165x165, where all the elements are arranged in 

an ascending order (but for both the algorithms elements 

may not be arranged in any particular order (Ascending 

or Descending)) and elements are searched in a cubic 

function  

f(n) = n3  …..(i) 

Where, 

 n = 1, 2, 3, 4… in the matrix of order 165 x 165. 

 

Table 4: Condition Checking 

n Element Grid Searching 

(Proposed 

Algorithm) 

Sequential 

Searching 

1 1 1 2 

2 8 20 9 

3 27 76 28 

4 64 190 65 

5 125 371 126 

6 216 141 217 

7 343 25 344 

8 512 524 513 

9 729 672 730 

10 1000 988 1001 

11 1331 1472 1332 

12 1728 1653 1729 

13 2197 2055 2198 

14 2744 2687 2745 

15 3375 3069 3376 

… … … … 

http://ijcat.com/


International Journal of Computer Applications Technology and Research 

Volume 5– Issue 1, 26 - 33, 2016, ISSN:- 2319–8656 

www.ijcat.com   32 

 

 

Figure 4 

From the above graph (Fig. 4) we can come to a 

conclusion that there is not much deviation in between 

the two algorithms. 

So, Condition checking complexity of both the 

algorithms is nearly same and does not affect the total 

time complexity. 

 

6. CONCLUSIONS 

Searching is the technique that is used to find a particular 

element in an array. In Grid searching and Sequential 

searching it is not compulsory to arrange an array in any 

order (Ascending or Descending) as in the case of binary 

search of 2D array. Result shows that Grid Searching 

Algorithm is working well for all input values and it is 

highly efficient than Sequential Searching in all of the 

following aspects: 

1. Analysis of Functions (f(x) & g(x)) of both the 

algorithms 

2. Worst-case iterations 

3. Worst-case Time complexity of both the 

algorithms 

4. Total no. of conditional checking 

Grid searching algorithm also satisfies both the proof of 

correctness.  

                                                           
5 Published in Patent journal issue no. 44/2014 on 
31/10/14. 6 Issue no. 39/2015 on 25/09/15. 

So for searching unordered set of data in square matrix 

Grid searching is more efficient than Sequential 

searching. 

7. FUTURE SCOPE 

Future scope of Grid searching Algorithm is as follows:- 

1. If it can be implemented for any order of matrix 

(non-square matrix) with unordered set of data 

present in it. 

2. Rasterization algorithm, Electro-optical display 

algorithm, Pixel tracing algorithm are some 

examples of algorithms which are derived from 

sequential searching and are widely used in 

different fields, but if the same algorithm can be 

built using Grid searching then the performance 

might increase. 

 

8. REFERENCES 

[1] E. Horowitz and S. Sahni, fundamental of Data 

Structure Rockville, MD: Computer Science Press, 1982. 

[2] Knuth, D.E. The Art of Computer 

Programming, Vol. 3: Sorting and Searching, 

Addison Wesley (1997), 3rd ed., 396-408. 

[3] Alfred V., Aho J., Horroroft, Jeffrey D.U. (2002) 

Data Structures and Algorithms. 

[4] Frank M.C. (2004) Data Abstraction and Problem 

Solving with C++. US: Pearson Education, Inc. 

[5] Cormen T.H., Leiserson C.E., Rivest R.L. and Stein 

C. (2003) Introduction to Algorithms MIT Press, 

Cambridge, MA, 2nd edition. 

[6] Seymour Lipschutz (2009) Data Structure with C, 

Schaum Series, Tata McGraw-Hill Education. 

 

9. ABOUT THE AUTHOR 

Rehan Guha is a student of Computer Application. He 

has already invented offline security software “Data 

Security- Multi-layer Folder Lock with Hiding”5. His 

other two major works include “Biometric Ticketing 

System”6 and “Biometric Voting Machine and System”. 

http://ijcat.com/


International Journal of Computer Applications Technology and Research 

Volume 5– Issue 1, 26 - 33, 2016, ISSN:- 2319–8656 

www.ijcat.com   33 

All works are under process for Patent by Intellectual 

Property India.  

http://ijcat.com/

