
International Journal of Computer Applications Technology and Research

Volume 5–Issue 10, 641-647, 2016, ISSN:-2319–8656

www.ijcat.com 641

Proposing a New Job Scheduling Algorithm in Grid
Environment Using a Combination of Imperialist

Competition Algorithm (ICA) and Gravitational Emulation
Local Search (GELS)

Arman Alizadeh

 Department of Computer

Science and Research Branch

Islamic Azad University, Kish, Iran

Ali Harounabadi

Department of Computer

Islamic Azad University

 Central Tehran Branch

Mehdi Sadeghzadeh

 Department of Computer

 Islamic Azad University

 Mahshahr,Iran

Abstract: Grid computing is a hardware and software infrastructure and provides affordable, sustainable, and reliable access. Its aim is

to create a supercomputer using free resources. One of the challenges to the Grid computing is scheduling problem which is regarded

as a tough issue. Since scheduling problem is a non-deterministic issue in the Grid, deterministic algorithms cannot be used to improve

scheduling. In this paper, a combination of imperialist competition algorithm (ICA) and gravitational attraction is used for to address the

problem of independent task scheduling in a grid environment, with the aim of reducing the makespan and energy. Experimental results

compare ICA with other algorithms and illustrate that ICA finds a shorter makespan and energy relative to the others. Moreover, it

converges quickly, finding its optimum solution in less time than the other algorithms.

Keywords: Grid computing, scheduling, artificial intelligence algorithm, imperialist competition algorithm (ICA), Local search

algorithm following the gravitational attraction

1. INTRODUCTION
Application of a new technology, or scientific evolution,

requires scientific proof and practical implementation. Because

it is time-consuming to implement practical research and

mistakes can arise because of in attention to problems in

theoretical subjects, there is a need to use simulations in some

contexts instead of real implementations. The computations that

are needed to simulate and study all aspects of scientific research

projects require a significant amount of computational power

that a single computer would take too much time to provide.

Superscalar computers, vector processors, and pipeline

processing were proposed to address this problem. Although

they provide more computational power and greater speed than

a single computer, technological limitations related to speed and

the high cost of their design and manufacture make them

available only to users with no financial limitations. Grid

computations, which are based on distributed systems, were

proposed to solve such problems. Grid systems have been

proposed as a solution overcoming the limitations of hardware

availability and computer locations, so that unused computers

and their computational power can be exploited [1]. Grid

computing systems are well-known for solving complicated

large-scale problems in science, engineering, and finance [2],

and have provided a wide range of heterogeneous and

distributed resources for data-intensive computations [3].

In recent years, grid computing has been the subject of much

research and has been used in commercial environments [4]. A

resource management system (RMS) is the most important

component of grid computing; it has a significant role in

controlling and supervising the usage of resources. The most

important function of an RMS is to schedule incoming tasks,

assigning them to available compatible resources [5]. However,

the heterogeneous and dynamic state of resources in grid

systems poses difficulties, particularly when combined with

complex task scheduling. Deterministic algorithms don’t have

the necessary efficiency to solve these scheduling problems, so

a considerable amount of research has been devoted to using

heuristic algorithms such as genetic algorithms (GAs) [6],

simulated annealing (SA)[7], particle swarm optimization (PSO)

[8], ant colony optimization (ACO) [9], Queen-Bee Algorithm

[10], tabu search (TS) [11], and various combinations of these

[12, 13, 14, 15, 16] to produce better results in reasonable time.

The heuristic ICA [17], proposed in 2007, was inspired by the

sociopolitical evolution of imperial phenomena and has been

used for solving many optimization problems in continuous

space. This paper proposes a discrete version of ICA for solving

the independent task scheduling problem in grid computing

systems. The present paper converts ICA from a continuous state

algorithm to a discrete state algorithm by changing the

assimilation stage. The resulting algorithm is compared with GA

and other heuristic algorithms and is shown to produce better

results than these. This algorithm simultaneously considers

makespan and completion time and energy by using appropriate

weights in the mean total cost function.

2. BACKGROUND

2.1 Scheduling Method
The scheduling task issue is considered as a tough challenge

which is composed of n tasks and m resources. Each task must

be processed by a machine and does not top until the end of the

performance. We used ETC matrix model described in [18]. The

system assumes that the expected execution time for each task i,

on every resource j is predetermined and is located in the matrix

ETC, ETC [i, j]. Here, makespan is regarded as the maximum

completion time in CompleteT [i, j], calculated in the following

equation (1) [19]:

Makespan = Max (completeT [i,j]) 1 ≤I≤ N, 1 ≤j≤ M (1)

In the above equation, CompleteT[i, j] is equal to the time when

the task i on the source j is completed and it is calculated in

equation (2):

completeT [i,j] = Ready [M] + ETC [i,j] (2)

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5–Issue 10, 641-647, 2016, ISSN:-2319–8656

www.ijcat.com 642

2.2 Imperialist Competition Algorithm
The imperialist competition algorithm (ICA) proposed by

(Atashpaz -Gargari and Lucas 2007) is a mathematical modeling

of imperialist competitions. Similar to other evolutionary

algorithms, the ICA algorithm begins with a number of initial

random populations. Each random population is called a

country. The possible solutions for ICA are called countries. A

number of the best elements of the population are selected as

imperialists, others which are governed by Imperialists are

called colonies. By applying an assimilation policy in the

direction of various optimization axes, imperialists gain the

favor of their colonies. The total power of each empire is

modeled as the sum of the imperialist power and a percentage of

the mean power of its colonies. After the initial formation of

empires, imperialistic competition starts among them. Any

empire that has no success in the imperialistic competition with

nothing to add to its power is eliminated from the competition.

So the survival of an empire depends on its power to assimilate

competitor’s colonies. As a result, the power of greater empires

is gradually increased in imperialistic competitions and weaker

empires will be eliminated. Empires have to make

improvements in their colonies in order to increase their power.

For this reason, colonies will eventually become like empires

from the point of view of power, and we will see a kind of

convergence. The stopping condition of the algorithm is having

a single empire in the world.

2.3 Local Search Algorithms Following

Gravitational Attraction
In 1995, Voudouris and his colleagues [20] suggested GLS

algorithm for searching in a searching space and NP-hard

solution for the first time. In 2004, Vebster [21] presented it as

a strong algorithm and called it GELS algorithm. This algorithm

is based on gravitational attraction and it imitates the process of

nature for searching within a searching space. Each response has

different neighbors which can categorize based on a criteria

which is depended on the problem. Obtained neighbors in each

group are called neighbors in that dimension. For each

dimension, a primary velocity was defined which each

dimension has much primary velocity has more appropriate

response for problem. GELS algorithm calculated gravitation

force within responses in a searching space in two ways. In the

first method, a response is selected from local neighbor space of

current response and the gravitation force between these two

responses was calculated. In the second method, the gravitation

force among all of the neighbor responses in a neighbor space of

current response was calculated and it is not limited to one

response. In the movement into searching space, GELS

algorithm implements in two methods: the first method is

allowed movement from current response to in local neighbor

spaces of current response, the second method is allowed

movement to the responses out of local neighbor spaces of

current response in addition to allowed neighbor responses of

current response. Each of these transference methods can be

applied with each accounting methods gravitation force, thus,

four models are created for GELS algorithm.

2.3.1 Parameters Used in GELS Algorithm
(a) Max velocity: Defines the maximum value that any element

within the velocity vector can have used to prevent velocities

that became too large to use.

(b) Radius: Sets the radius value in the gravitational force

formula; used to determine how quickly the gravitational force

can increase (or) decrease.

(c) Iterations: Defines a number of iterations of the algorithm

that will be allowed to complete before it is automatically

terminated (used to ensure that the algorithm will terminate).

(d) Pointer: It is used to identify the direction of movement of

the elements in the vectors.

2.3.2 Gravitational Force (GF)
GELS algorithm uses the formula (3) for the gravitational force

between the two solutions as

𝐹 = 𝐺 +
(𝐶𝑈−𝐶𝐴)

𝑅2 (3)

Where

G = 6.672 (Universal constant of gravitation)

CU = objective function value of the current solution

CA = objective function value of the candidate solution

R = value of radius parameter

3. PREVIOUS RESEARCH
A large number of heuristic algorithms have been proposed for

grid scheduling. Most of them try to minimize the maximum

completion time of tasks, or makespan. Each task has its own

deadline, and we try to decrease the makespan in order to

prevent tasks from failing to execute because of their deadlines.

That is, decreasing the makespan results in the ability to execute

more tasks in the network. It also helps to provide efficient

resource allocation and energy utilization.

The hierarchic genetic strategy (HGS) algorithm was proposed

in [22] for scheduling independent tasks in a grid system and is

implemented in dynamic grid environments in batch mode. This

algorithm simultaneously considers optimization of flow time

and makespan. The authors generate root nodes based on two

other algorithms: longest job to fastest resource and shortest job

to fastest resource (LJFR-SJFR) [23] and minimum completion

time (MCT) [24], and they generate the rest of the population

stochastically. In LJFR-SJFR, initially, the highest workload

tasks are assigned to machines that are available. Then the

remaining unassigned tasks are assigned to the fastest available

machines. In MCT [24], tasks are assigned to machines that will

yield the earliest completion time.

Balanced job assignment based on ant algorithm for computing

grids called BACO was proposed by [25]. The research aims to

minimize the computation time of job executing in Taiwan

UniGrid environment which focused on load balancing factors

of each resource. By considering the resource status and the size

of the given job, BACO algorithm chooses optimal resources to

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5–Issue 10, 641-647, 2016, ISSN:-2319–8656

www.ijcat.com 643

process the submitted jobs by applying the local and global

pheromone update technique to balance the system load. Local

pheromone update function updates the status of the selected

resource after job has been assigned and the job scheduler

depends on the newest information of the selected resource for

the next job submission. Global pheromone update function

updates the status of each resource for all jobs after the

completion of the jobs. By using these two update techniques,

the job scheduler will get the newest information of all resources

for the next job submission. From the experimental result,

BACO is capable of balancing the entire system load regardless

of the size of the jobs. However, BACO was only tested in

Taiwan UniGrid environment.

4. THE PROPOSED ALGORITHM
The proposed algorithm for task scheduling is a combination of

ICA and GELS which is used for scheduling of independent

tasks in computational grid environment. According to ICA’s

high performance in scheduling problems, a simple method for

country representation is taken into consideration firstly. Natural

numbers are used to encrypt countries. The value in each country

is resource number ranging from 1 to M, where M is the number

of all resources. Fig.1 illustrates an example of countries

representation where 9 tasks are assigned to 3 resources. As

Figure depicts, for example task 4 (T4) is running on resource

1(R1).

Fig. 1. Country representation in ICA-GELS Algorithm.

Fig. 2. The amount of consumed energy for each task time unit.

Pj,i is considered as a 1*M array where M is the number of

resources. The value in each entry represents the amount of

consumed energy for executing a task. Fig 2 shows a sample

matrix where the consumed energy per each task time unit in

second resource (R2) is 250 J. The initial population of countries

in the ICA is generated randomly. A random number between 1

and M is generated which is the resource number and the

intended task will be execute on it. The independent task

scheduling problem includes M tasks and M machines. Each

task should be processed by one of the machines in way that

makespan get minimum. Proposed algorithm takes two QoS

parameters such as energy and time limitation into

consideration. Each task can be execute on one resource and will

not stop until execution is completed. Our algorithm applies

ETC matrix model. Considering that proposed scheduling

algorithm is static, it is assumed that expected execution time is

determined for each task on each resource at prior and it is stored

in ETC [i, j]. Also, Ready time [M] determines the time that

machine M completes the previous assigned task. Makespan is

considered as maximum completion time (completeT(i, j)),

which is computed using equation (4).

Makespan = Max (completeT [i, j]) (4)

completion _time [i, j] is the time when task i completes on

resource j and it is computed using equation (5) and TransferC

and wait (i, j) are respectively the data transfer time and waiting

execution time.

completeT (i, j) = ETC [i, j] + TransferC + wait (i, j) (5)

The objective of scheduling in the proposed algorithm is to map

each task to each resource in way that makespan and total loosed

tasks get minimum. For example, ETC matrix (table (1))

presents 9 tasks and 3 resources.

Table 1. ETC matrix

Task/Resource P1 P2 P3

T1 2 3 1

T2 2 5 3

T3 1 3 4

T4 4 5 6

T5 8 5 6

T6 3 5 4

T7 4 2 4

T8 4 6 7

T9 2 3 1

4.1 The objective and fitness function in

proposed algorithm
The main idea behind task scheduling is to minimize the

makespan, which is the total execution time for all tasks. To

solve task scheduling by ICA, a country is more suitable that

minimize makespan and total consumed energy for all tasks.

Equation (6) describes the first fitness function for each country.

Also, equation (7) and (8) compute the energy consumption for

each solution.

Fitness1 (Ci) = α ×
1

FTime (Ci)
+ (1 − α) ×

1

E (Ci)
 (6)

E (Ci) = ∑ ∑ Ei,j
N
i=1

M
j=1 (7)

Ei,j = (Pj,i−Ij)ETC [i , j] (8)

Where E is the total consumed energy to execute all tasks in

country i and Pj,i is the consumed energy for executing task i on

resource j. Also Ij is the consumed energy of resource i when the

resource is ideal. It can be concluded from equation (6) that

when the consumed enregy and makespan are minimzied, the

fitness function is maxmized and shows the more suitable

solution to the problem. Also the coeffiction α determines the

impact of each parameter on fitness value. For example Fig. 3

illustrates a solution to the scheduling problem. Considering the

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5–Issue 10, 641-647, 2016, ISSN:-2319–8656

www.ijcat.com 644

ETC matrix in table (1), the makespan equals to 12. Fig. 3 shows

the total scheduling length for countries.

Fig. 3. Total scheduling length for countries

4.2 Second fitness function
As stated before, the main objective of task scheduling is to

minimize the makespan. It is possible to have several countries

with similar total scheduling time but with different workload

on their resources. Therefore, second fitness function takes this

factor into consideration. Such that, after achieving solutions

with minimum makespan, second fitness function will be

applied to them aiming at acquiring balanced solution in terms

of workload. To gain maximum balanced workload, the fitness

value should be computed for resources. To achieve the value of

balanced workload we are have to compute sum of standard

deviation. It is clear that we should compute the fitness for

resources firstly. Equation (9) shows the second fitness function

for balanced workload computing.

Fitness2(Counteryi) =
1

RUi
 (9)

At fires maximum exaction time is specified using equation (10).

E = Max {Tij + τij} (10)

To compute E’s value in highest path, we use Tij and τij which

are equal to data transmission time RMS and processing time,

respectively. If we use ui to represent fitness value of resource i

for execting task j, we have:

ui =
Tij+τij

E
 (11)

To compute fitness value for each resource we use the equation

process which is used for computing E value. In other words, the

value of E is specified firstly, then using equation (10) the fitness

value for each resource is computed. To compute standard

deviation, we are have to compute total fitness value at first.

Consider the two solutions for task scheduling in Fig. 2 and Fig.

3, the scheduling total time for this solutions is equal to 12.

Fig. 4. Total scheduling time with respect to load balancing.

4.3 The assimilation and revolution

operations in our proposed algorithm (ICA-

GELS)

4.3.1 Assimilation operator
Historically, the assimilation policy was developed with the

purpose of moving the culture and social

structure of colonies toward the culture of the central

government. In the proposed algorithm some cells

approximately 40% (Duki, et al. 2010) of the Imperialist array

are randomly selected (cells 1, 4, 8, and 9 in the Fig. 5 are

imperialist and others are colony).

Fig. 5. Assimilation operator representation

4.3.2 Revolution operator
To perform this operation, two cells are first selected in the

colony in a random manner and their values are exchanged. This

stages (random exchange or revolution operation) is repeated

based on the percentage of the total number of tasks. If the new

colony is better than the old one, it replaces the old colony;

otherwise, this procedure is repeated. This operation is

illustrated in Fig. 6.

Fig. 6. Revolution operator representation

4.3.3 Local search algorithm parameters

imitating the gravitational attraction
In the last execution step of ICA, due to the poor performance

of the algorithm in local search, the solutions which are similar

in scheduling length are given to the GELS algorithm to generate

a neighbor solution (response) for them.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5–Issue 10, 641-647, 2016, ISSN:-2319–8656

www.ijcat.com 645

4.3.3.1 Solution dimensions (space)
Unlike other algorithms, GELS algorithm does not perform fully

randomly to obtain neighbor solution from the current solution.

Each solution has many neighbors which are computed by a

variable type in the current solution. All achieved neighbors are

based on this variable type. The proposed approach assumes that

solution dimensions and countries features are equal (solution

dimensions are solution neighbors which are achieved by

changing the current solution). Solution dimensions are equal to

the size of input tasks.

4.3.3.2 Initial velocity vector
The number of initial velocity vectors elements are equal to

number of solution dimensions. Initial velocity vector elements

will be initialized to random numbers ranging from 1 to

maximum initial velocity.

4.3.3.3 Neighborhood
Neighbor solution of the current solution is equivalent to

solution which assigned task is changed. The value is between 1

and maximum initial velocity. A feature from country which has

a maximum velocity is chosen, then its value changes randomly

(from 1 to M). For example Fig. 7 presents a solution in which

the property with maximum velocity is chosen and a neighbor

solution is generated for it.

Fig. 7. Representing a neighbor solution.

4.3.3.4 Calculating gravitational force in

ICA-GELS algorithm
After acquiring neighbor solution for current solution, the fitness

for neighbor solution is computed using equation (3). If the

neighbor solution is better than the current solution, then it will

be replaced its parent country in the new population; otherwise

it is not copied in the new population. The amount of force

between neighbor solution and current solution is computed

using equation (12) and its value will be added to the initial

velocity vector from which the neighbor solution is acquired to

updated the initial velocity vector (it is possible to have negative

gravitational forces). It is worth to noting that if the value of

elements in initial velocity vector exceeds the specified ranges;

their values is tuned to a number within the range.

F = G ×
Fitness1 (Candidate_C𝑖)−Fitness2 (Current_Ci)

R2 (12)

Candidate_C and Current_C in above equation are neighbor

solution and current solution, respectively. The value for G is

fixed and it is equal to 6.672 and R is the neighbor radius for to

objects in searching space which is fixed as so. The algorithm

ends when it reaches the maximum specified threshold. The

Pseudo-code of the proposed algorithm is shown below.

Step 1 : Initialization

Step 2 : 2.1. Generate the k number of random country with

length n

 2.2. Speed_vector[1..n] = The initial velocity for

each dimension

 2.3. Location_vector[1..n] = The value of the

initial position of each particle

 2.4.Setting the Maximum: Maximum-Time (Mt)

 and Maximum-energy (Me) according to the

user’s requirement.

Step 3 : 3.1. Create initial empires.

Steo 4 : 4.1. Assimilation & Revolution

 4.2. Assimilation: Colonies move towards

imperialist.

 4.3. Revolution: Random change occur in the

characteristics of some countries.

Step 5 : Position exchange between a colony and imperialist

Step 6 : Compute Makespan and energy for all country

Step 7 : 7.1. Imperialistic Competition

 7.2. Eliminate the powerless empires. Weak

empires lose their power their power gradually

and they will finally be eliminated.

Step 8 : The best country from the imperialist competitive

algorithm as a solution to it current GELS will be

producing a neighboring country

Step 9 :

 9.1. Direction = max (speed_vector [...])

 9.2. change the velocity_vector[index] of

current_solution with random integer between 1

and Max Velocity.

 9.3. Fitness of the neighboring country by

equation (3) is calculated and saving the worst fitness

 9.4. if direct country < neighbor country

 Neighbor country is selected as the best solution

Step 10:

 10.1. Calculated the mass of each particle with using

formula (22)

 10.2. Calculate Acceleration for 'k' factors.

 Step 11 :

 11.1. Update Velocity_Vector for each dimension by

gravitational force of country.

Figure 8. Pseudo-code of the proposed algorithm.

5. DISCUSSION
In this section, aiming at evaluating performance of the proposed

work, the simulation results will be presented. Our simulations

are conducted on OPNET Modeler simulator (Modeler 2009).

We have conducted several simulations to verify the

effectiveness of our proposed algorithms. Our experiments are

conducted in a system equipped with 4 GB of RAM and 1600

MHz CPU which is run Windows Xp. The performance of the

proposed algorithm is compared with several task scheduling

algorithms considering the simulation parameters demonstrated

in table (2). The iteration parameter shows that to achieving the

application execution time using existing algorithms, 100

iteration are performed and the average of the values are

computed. Also the initial value for parameters which are used

in ICA and GELS and GA algorithms are shown in table (2),

respectively.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5–Issue 10, 641-647, 2016, ISSN:-2319–8656

www.ijcat.com 646

Table (2). Initial values for parameters for algorithms

ICA

Assimilation rate 2

Revolution rate 0.1

α rate 0.8

ICA-

GELS

Assimilation rate 2

Revolution rate 0.1

α rate 0.8

Initial velocity
Between 1 and

Max Velocity

Constant

Gravitation (G)
6.672

GA
P-Crossover 0.85

P-Mutation 0.02

Figure 9. Comparison of makespan of algorithms

Fig.10 compares the algorithms in terms of consumed

energy. As results show the consumed energy increases as

tasks passes. The consumed energy for our algorithm is

lower than other algorithms.

Fig. 10. Comparing consumed energy for task execution

5. CONCLUSIONS
In the proposed method, the researchers have combined

imperialist competitive algorithm with gravitational emulation

local search algorithm which has been used for scheduling in

grid environment. The proposed algorithm, in which a weighted

objective function is used considering the degree of importance

of time and energy of user’s projects, gives more freedom for

specifying the time and energy of users’ projects. In the use of

this algorithm, similar to the objective function, the time and the

energy, along with their weight, are considered based on the

user's perspective. The purposes of the proposed scheduling are

to minimize completion time and energy of implementation of

tasks for different tasks of users simultaneously.

The proposed scheduling is compared with two algorithms of

ICA and GA with regard to the parameters of time and energy.

The results are investigated based on cost and energy requests in

different charts. They show that if we have limited number of

resources as well as high number of duties, the proposed

scheduler has the best performance compared to the other three

schedulers in reducing the overall time and energy of

scheduling. The results of experiments show that the hybrid

imperialist competitive algorithm and the gravitational

attraction can reach a high performance regarding creation of a

balance between energy and tasks implementation scheduling.

Further research can be conducted with regard to the practice of

resource allocation to works in the proposed algorithm through

using an approach based on fuzzy logic and using of fuzzy

inference system.

6. REFERENCES

[1] L.Y. Tseng, Y.H. Chin and S.C. Wang, The anatomy study

of high performance task scheduling algorithm for grid

computing system, Computer Standards & Interfaces, Elsevier

31(4) (2009), 713–722.

[2]J.Kolodziej and F.Xhada, Meeting security and user

behavior requirements in grid scheduling, Simulation Modeling

Proactice and Theory 19 (2011), 213-226.

[3] S.K. Garg, R. Buyya and H.J. Siegel, Time and cost

tradeoff management for scheduling parallel applications on

utility grids, Future Generation Computer Systems 26(8)

(2010),1344–1355.

[4] B.T.B. Khoo and B. Veeravalli, Pro-active failure handling

mechanisms for scheduling in grid computing environments,

Journal of Parallel Distributed Computing 70 (2010),189-200.

[5] F.Xhafa and A.Abraham, Computational models and

heuristic methods for Grid Scheduling problems, Future

Generation Computer System 70(3)(2010),608-621.

 [6] J. Kołodziej and F. Xhafa, Integration of task abortion and

security requirements in GA-based meta-heuristics for inde

pendent batch grid scheduling, Computers &Mathematics

withApplications 63(2) (2012), 350–364.

[7]A.Kazem, A.M. Rahmani and H.H. Aghdam, A modified

simulated annealing algorithm for static scheduling in grid

computing, Proceedings of the 8th International Conference on

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5–Issue 10, 641-647, 2016, ISSN:-2319–8656

www.ijcat.com 647

Computer Science and Information Technology (2008),623-

627.

[8] Garcia-Galan, R.P. Prado and J.E.M. Exposito, Fuzzy

scheduling with swarm intelligence-based knowledge

acquisition for grid computing, Engineering Applications of

Artificial Intelligence 25(2) (2012), 359–375.

[9] L. Wei, X. Zhang, Y. Li and Yu Li, An improved ant

algorithm for grid task scheduling strategy, Physics Procedia,

Elsevier 24 (2012), 1974–1981.

[10] Z. Pooranian, M. Shojafar, J.H. Abawajy and A.

Abraham,An efficient meta-heuristic algorithm for grid

computing,Journal of Combinatorial Optimization (JOCO)

(2013),doi:10.1007/s10878-013-9644-6.

[11] Z. Pooranian, A. Harounabadi, M. Shojafar and J.

Mirabedini, Hybrid PSO for independent task scheduling in grid

computing to decrease makespan, International Conference on

Future Information Technology IPCSIT 13,Singapore(2011),

435–439.

[12] S. Benedict and V. Vasudevan, Improving scheduling of

scientific workflows using Tabu search for computational grids,

Information Technology Journal 7(1) (2008), 91–97.

[13] R. Chen, D. Shiau and S. Lo, Combined discrete particle

swarm optimization and simulated annealing for grid computing

scheduling problem, Lecture Notes in Computer Science,

Springer 57 (2009), 242–251.

[14] M. Cruz-Chavez, A. Rodriguez-Leon, E. Avila-Melgar, F.

Juarez-Perez, M. Cruz-Rosales and R. Rivera-Lopez, Genetic-

annealing algorithm in grid environment for scheduling

problems, Security-Enriched Urban Computing and Smart Grid

Communications in Computer and Information Science,

Springer 78 (2010), 1–9.

[15] Z. Pooranian, A. Harounabadi, M. Shojafar and N. Hedayat,

New hybrid algorithm for task scheduling in grid computing to

decrease missed task, world academy of science, Engineering

and Technology 79 (2011), 924–928.

[16] F. Xhafa, J. Gonzalez, K. Dahal and A. Abraham, A

GA(TS) hybrid algorithm for scheduling in computational grids,

Hybrid Artificial Intelligence Systems Lecture Notes in

Computer Sci- ence, Springer 5572 (2009), 285–292.

[17] E. Atashpaz-Gargari and C. Lucas, Imperialist
competitive algorithm: An algorithm for optimization
inspired by imperialist competitive, IEEE Congress on
Evolutionary computation, Singapore (2007), 4661–4667.

[18] Braun, T. D., Siegel, H. J , A taxonomy for describing

matching and scheduling heuristics for mixed machine

heterogeneous computing systems, Proceedings of the 17th IEEE

Symposium on Reliable Distributed Systems, pp. 330335, 1998.

[19] Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.,"BGSA:

binary gravitational search algorithm". Nat. Comput. 9(3), 727–

745, 2010.

[20] Voudouris, chris, Edward Tsang, Guided Local

Search.Technical Report CSM-247, Department of

ComputerScience, University of Essex, UK, August 1995.

[21] Barry Lynn Webster, “Solving Combinatorial Optimization

Problems Using a New Algorithm Based on Gravitational

Attraction”, Ph.D. Thesis, Florida Institute of Technology

Melbourne, FL, USA, May 2004.DOI:

http://dx.doi.org/10.1109/T-C.1973.223690.

[22] J.Kolodziej and F.Xhafa, Enhancing the genetic-based

scheduling in computational grids by a structured hierarchical

population, Future Generation Computer Systems,Elsevier

27(8)(2011),1035-1046

[23] A.Abraham,R.Buyya and B.Nath,Nature's heurustics for

scheduling jobs on computational grids, Proceeding of the 8th

IEEE International Conference on Advanced Computing and

Communications, India(2008), 1-8.

[24] C.Weng and X.Lu, Heuristic scheduling for bag-of-tasks

applications in combination with QOS in the computational grid,

Future Generation Computer Systems 21(2)(2005),271-280.

[25] Chang, R. S., Chang, J. S., Lin, P. S., “Balanced Job

Assignment Based on Ant Algorithm for Computing Grids”,

The 2nd IEEE Asia-Pacific Service Computing Conference, pp.

291295,2007.

http://www.ijcat.com/
http://dx.doi.org/10.1109/T-C.1973.223690

