
International Journal of Computer Applications Technology and Research

Volume 5–Issue 11, 721-724, 2016, ISSN:-2319–8656

www.ijcat.com 721

A Few Improvements for Selection Sort Algorithm

Prof. T.S.V. Mani S. Divyaa Devi Dr. S. Sakthivel

Abstract :

Sorting refers to arranging data in a particular format. In this paper three modifications for the selection sort algorithm are

presented. The modifications are mainly based on the programming methodologies used. In the first algorithm smallest and

biggest element are found out in a single loop and exchanging first element with the smallest and last element with the

biggest. This is repeated for all the elements. In the second algorithm first smallest and second smallest element are found out

in a single loop and these values are moved as the first two elements. This is repeated for the rest of the elements. In the third

algorithm first biggest and second biggest element are found out in a single loop and these are carried to the last positions.

This is repeated for the remaining elements. The advantages of the modifications are then analyzed.

Keywords: Selection Sort, Algorithm, Comparison, Exchange

1. INTRODUCTION

Ordering the data in an increasing or decreasing fashion

according to some data item is called sorting. Selection

sort is a simple sorting algorithm. Smallest element is

selected from the unsorted array and swapped with the

leftmost element and that element becomes part of

sorted array. This process continues moving unsorted

array boundary by one element to the right. The average

and worst case complexity are of O(n2) where n are no.

of items.

2. RELATED WORK
[1] Both ended Sorting Algorithm. The algorithm

comprises of two phases, in first phase, one element

from the front end and one element from rear end are

compared. If the front element is greater than rear

element, then swap the elements. In the second phase,

two consecutive elements from the front are taken and

compared. Replacing is done if required.

[2] Improving the performance of Selection sort. The

algorithm is developed by finding the smallest element

in the data list and replacing with first element is done

in one loop and finding the largest element in the data

list and replacing with last element is done in another

loop.

3. SELECTION SORT

Selection sort is a simple sorting algorithm. In this

sorting algorithm the list is divided into two parts,

sorted part at left end and unsorted part at right end.

Initially sorted part is empty and unsorted part is entire

list. Smallest element is selected from the unsorted array

and swapped with the leftmost element and that element

becomes part of sorted array.

3.1 Algorithm

Procedure Selection_Sort(K,N)

1. [Loop on Pass Index]

Repeat thru step 4 for Pass = 1,2,...,N-1

2. [Initialize Minimum Index]

MIN_INDEX ← Pass

3. [Make a Pass and obtain smallest element]

 Repeat for I = Pass+1, Pass+2,..., N

 If K[I] < K[MIN_INDEX]

 then MIN_INDEX ← I

4. [Exchange elements]

 If MIN_INDEX ≠ Pass

 then K[Pass] ‹—› K[MIN_INDEX]

5. [Finished]

 Return

This process continues moving unsorted array boundary

by one element to the right. This algorithm is not

suitable for large data sets as its average and worst case

complexity are of O(n2) where n are no. of items.

3.2 Pseudo Code

for (i = 0; i < count - 1; i++)

{

 minimum = i;

 for (j = i + 1; j < count; j++)

{

 if (data[minimum] > data[j])

 {

 minimum = j;

 }

}

 swap data[i] and data[minimum]

}

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5–Issue 11, 721-724, 2016, ISSN:-2319–8656

www.ijcat.com 722

4. FIRST SMALLEST FIRST

BIGGEST

This algorithm finds the first smallest and the first

biggest element in a single loop and exchanging first

element with the smallest and last element with the

biggest. This is repeated with other elements.

4.1 Algorithm

Procedure Sort1(K,N)

1. [Loop on Pass Index]

 Repeat thru step 5 for Pass = 1,2,...N

2. [Initialize Minimum & Maximum Index]

 MIN_INDEX ← K[Pass]

 MAX_INDEX ← K[N]

3.[Make a Pass and obtain Smallest and Biggest

element]

 Repeat for I = Pass+1, Pass+2....N

 If MIN_INDEX > K[I]

 then MIN_INDEX ← K[I]

 POS1 ← I

 If MAX_INDEX < K[I]

 then MAX_INDEX ← K[I]

 POS2 ← I

4. [Exchange elements]

 K[Pass] ‹—› POS1

 K[N] ‹—› POS2

5. [Decrement N]

 N ← N-1

6. [Finished]

 Return

4.2 Pseudo Code

for (p=1;p<=n;++p)

{

 s = a[p], b = a[n];

 for(j=p;j<=n;++j)

 {

 if (s > a[j])

 { s = a[j];

 x = j;

}

 else if (b < a[j])

 {

 b = a[j];

 y = j;

 }

Swap elements in position x and y with first and last

element

n = n-1;

}

4.3 Working

This algorithm first finds the smallest as well as biggest

number in a single loop. Once the smallest number is

found, its position in the list is stored in the variable x,

simultaneously the position of the biggest number is

stored in variable y. Swap the first element and the

element in position x and also swap the last element

with the element in position y. The above process is

continued until all the elements are attained its position.

The loop process is done in n/2 times where n is the

total no. of data elements in the list.

5. FIRST SMALLEST SECOND SMALLEST

This algorithm finds the first smallest and the second

smallest element in a single loop and exchanging first

element with the first smallest and the second element

with the second smallest element.

5.1 Algorithm

Procedure Sort2(K,N)

1. [Loop on Pass Index]

 Repeat thru step 4 for Pass = 1,2,...N

2. [Initialize First & Second Smallest Index]

 SMALL1 ← K[Pass]

 SMALL2 ← K[Pass+1]

3.[Make a Pass and obtain First Smallest and Second

Smallest element]

 Repeat for I = Pass+1, Pass+2....N

 If SMALL1 > K[I]

 then SMALL2 ← SMALL1

 SMALL1 ← K[I]

 POS1 ← I

 ElseIf SMALL2 < K[I]

 then SMALL2 ← K[I]

 POS2 ← I

4. [Exchange elements]

 K[Pass] ‹—› POS1

 K[Pass+1] ‹—› POS2

5. [Finished]

 Return

5.2 Pseudo Code

for (p=1;p<=n;++p)

{

small1=a[p]; small2 = a[p+1];

for(j=p+1;j<=n;++j)

{

 if (small1 > a[j])

{

small2 = small1;

small1 = a[j];

y = x;

x = j;

}

else if (small2 > a[j])

{ small2 = a[j];

y = j;

}

}

Swap elements in position x & y with p and p+1

++p;

}

5.3 Working

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5–Issue 11, 721-724, 2016, ISSN:-2319–8656

www.ijcat.com 723

This algorithm first finds the first smallest as well as

second smallest numbers in a single loop. Once the first

smallest number is found, its position in the list is stored

in the variable x, simultaneously the position of the

second smallest number is stored in variable y. Swap

the first element and the element in position x and also

swap the second element with the element in position y.

The above process is continued until all the elements are

attained its position. The loop process is done in n/2

times where n is the total no. of data elements in the list.

6. FIRST BIGGEST SECOND

BIGGEST

This algorithm finds the first biggest and the second

biggest element in a single loop and exchanging the first

element with the first biggest and the second element
with the second biggest.

6.1 Algorithm

Procedure Sort3(K,N)

1. [Loop on Pass Index]

 Repeat thru step 4 for Pass = 1,2,...N

2. [Initialize First & Second Biggest Index]

 BIG1 ← K[Pass]

 BIG2 ← K[Pass+1]

3.[Make a Pass and obtain First Biggest and Second

Biggest element]

 Repeat for I = Pass+1, Pass+2....N

 If BIG1 > K[I]

 then BIG2 ← BIG1

 BIG1 ← K[I]

 POS1 ← I

 ElseIf BIG2 < K[I]

 then BIG2 ← K[I]

 POS2 ← I

4. [Exchange elements]

 K[Pass] ‹—› POS1

 K[Pass+1] ‹—› POS2

5. [Finished]

 Return

6.2 Pseudo Code

for (p=1;p<=n;++p)

{

x = 0; y = 0; big1= a[p]; big2 = a[p+1];

for(j=p+1;j<=n;++j)

{

 if (big1 < a[j])

{ big2 = big1;

 big1 = a[j];

 y = x;

 x = j;

}

else if (big2 < a[j])

{ big2 = a[j];

 y = j;

}

}

Swap elements in position x & y with p and p+1

++p;

}

6.3 Working

This algorithm first finds the first biggest as well as

second biggest numbers in a single loop. Once the first

biggest number is found, its position in the list is stored

in the variable x, simultaneously the position of the

second biggest number is stored in variable y. Swap the

first element and the element in position x and also

swap the second element with the element in position y.

The above process is continued until all the elements are

attained its position. The loop process is done in n/2

times where n is the total no. of data elements in the list.

7. COMPARISON

7.1 Comparison Table

No. of

Elements

A B C D

50 1275 1236 1180 1177

100 5050 5027 4834 4810

150 11325 11257 10986 10985

200 20100 19959 19591 19618

300 45150 44896 44386 44320

A → Selection Sort

B → First Smallest First Biggest

C → First Smallest Second Smallest

D → First Biggest Second Biggest

Above programs were executed with sample input data

of 50, 100, 150, 200, 300 and no. of comparisons (IF

conditions) are calculated.

8. CONCLUSION

From the comparisons table it is found that the new

algorithms (First Smallest & First Biggest, First

Smallest & Second Smallest, First Biggest & Second

Biggest) the no. of comparisons made is lesser than the

no. of comparisons made in selection sort.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5–Issue 11, 721-724, 2016, ISSN:-2319–8656

www.ijcat.com 724

9. REFERENCES

[1] Anuradha Brijwal, Both Ended Sorting Algorithm &

Performance comparison With Existing Algorithm,

IJIEASR, Vol 3, No.6, June 2014.

[2] Surendra Lakra, Divya, Improving the performance

of selection sort using a modified double ended

selection sorting, IJAIEM, Vol2, Issue 5, May 2013.

[3] Jean Paul Tremblay, Paul G. Sorenson, An

Introduction to Data Structures with Applications,

Second Edition, Tata McGraw Hill Publishing Company

Limited, 1991.

[4] Byron Gottfried, Jitender Kumar Chhabra,

Programming with C, Third Edition, Schaum’s

Outlines Series, 2011.

http://www.ijcat.com/

