
International Journal of Computer Applications Technology and Research

Volume 5–Issue 12, 733-747, 2016, ISSN:-2319–8656

www.ijcat.com 733

Empirical Investigation of Instant Messaging Security

in a Virtual Environment

Peter S. Nyakomitta

School of informatics and

Innovative systems

Jaramogi Oginga Odinga

University of Science and

Technology

Kenya

Dr. Solomon Ogara

School of informatics and

Innovative systems

Jaramogi Oginga Odinga

University of Science and

Technology

Kenya

Dr. Silvance Abeka

School of informatics and

Innovative systems

Jaramogi Oginga Odinga

University of Science and

Technology

Kenya

Abstract - Use of instant messaging services is becoming increasingly popular with Internet based

systems like America Online’s Instant Messaging (AIM), Microsoft’s MSN Messenger, Yahoo!

Messenger, WhatsApp, Viber, Kakaotalk, Skype and face book instant messenger. These tools support

any process where quick response and rapid problem solving are needed, and where faster communication

than emails or telephones is useful. More and more people are enjoying the convenience and simplicity

provided by the real-time messaging systems in their day-to-day life. Moreover, the instant messaging

services have also found applications in business. In this application domain, the instant messaging

services are employed for communicating with customers and partners, offering customer support,

receiving real-time alerts, as well as management and project coordination. Despite their heavy

utilization, public instant messaging systems have been criticized for having a number of security

weaknesses. These weaknesses originate from the facts that the instant messaging clients are always on,

those logs can contain sensitive information, and that the communication goes through an externally

controlled server. Most of the instant messaging services were never intended for secure communication

in the first place. The rapid growth in the number of public instant messaging users has therefore created a

new security concern for information technology managers. In this paper, a prototype instant messaging

was developed and employed to investigate some of the security challenges in instant messaging

applications. The results indicated that upon following the TCP stream, the instant messages were in plain

text in the sending and receiving communication devices interfaces and therefore prone to eavesdropping.

As such, the researchers propose a port-based algorithm that would scramble the data packets at the end

devices, requiring the users to input decryption keys for the data to be transformed into human readable

format.

Keywords: Instant Messaging (IM), Plain Text, prototype, Client, Server, Security

1. INTRODUCTION

The potential threats when using instant

messaging services include the spread of

malicious code, instant messaging software

vulnerabilities, leakage of sensitive

information, monitoring and retention

issues, and lack of accountability. In their

study, Weissbrot and Alison (2016) explain

that the enterprise usage of instant is

growing in both volume and importance.

The use of these tools benefit their users in

facilitating faster decision-making process,

higher productivity and lower

telecommunication costs. At the same time

as, the instant messaging threats such as

viruses are rapidly gaining attention as

attackers begin to shift their focus from

better-protected email systems to these

networks.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5–Issue 12, 733-747, 2016, ISSN:-2319–8656

www.ijcat.com 734

Moreover, Mark (2015) report that spam

messages can also be spread through the

instant messaging tools. The spam that a

user receives via these services is referred to

as spim. Popular instant messaging clients

have, just like any other software

application, have a history of common

security vulnerabilities. This means that

installing an instant messaging client has the

potential of introducing new vulnerabilities

to a computer system. Confidentiality,

which deals with the protection of

organizational data or government data from

illegal access, is a major concern when using

a public instant messaging service for

communication. This so according to Vinnie

and Belvin, (2012), because in public instant

messaging networks, communications

exchanged between users are normally

routed through instant messaging server

farms which are controlled by the service

providers themselves. In situations where

client instant messaging software has a peer-

to-peer capability, users can communicate

with each other without passing through

these servers.

Lin et al., (2016) note that no matter which

mode is being utilized for communication

purposes, this traffic is vulnerable to

eavesdropping because most public clients

do not possess any encryption capability.

The consequences are that it is possible for

sensitive information to be read or sniffed

by unauthorized users. The situation can be

even worse when public instant messaging

services are used to communicate with

individuals outside an organization. This

may lead to the leakage of sensitive

organizational classified data.

11. LITERATURE REVIEW

In this section, the researcher discuss on the

literature concerning the related work to the

research, which is empirical investigation of

instant messaging security in a virtual

environment.

2.1. RELATED WORK

In his research work, Wendell (2013) found out

that the protocols employed by public instant

messaging services are often considered rogue

protocols. This because they were specifically

designed to evade standard security controls.

The consequences are that not only can instant

messaging clients be configured to connect

through SOCKS or web proxy servers, but as

Green (2014) point out, the protocols are also

capable of finding their way out through the

firewall on their own. They can do this by

determining an open port such as transmission

control protocol (TCP) port 80, or by tunneling

their traffic inside the hypertext transfer protocol

(HTTP) requests. These practices make these

traffic unrecognizable from standard web traffic.

Additionally, the scripting and file transfer

capabilities of instant messaging systems might

expose an organization to leaks of sensitive

information.

According to Andreas and Buchenscheit (2014),

most of the productive features provided by the

instant messaging applications are only one side

of the coin. This is because these applications

have vulnerabilities that related to the

underlying instant messaging technology.

Consequently, these vulnerabilities expose user

communications to a number of security threats.

Therefore, communication via these applications

is regarded insecure. To start with, Jagwani

(2016) note that all of the messages and

connection information are retained on the

application providers’ servers. This means that

the information communicated across the

network is controlled by the provider of the

instant messaging utility.

Another serious challenge with instant

messaging connections is that the messaging

process normally happens in plain text (Frosch

et al., 2016). Consequently, this renders them

susceptible to eavesdropping. Additionally,

instant messaging client software quite often

requires the user to expose their open user

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5–Issue 12, 733-747, 2016, ISSN:-2319–8656

www.ijcat.com 735

datagram ports. This gives rise to the threat

posed by potential security vulnerabilities of

user datagram protocol (UDP) ports. As Smith

(2013) points out, UDP is vulnerable to spoofing

and denial of service attacks. On the other hand,

it is not feasible to spoof an address across the

internet using transmission control protocol

(TCP). This is because the three way handshake

will never complete. Moreover, there are

features of instant messaging applications that

are threats to security. Such features include

presence and status broadcasting,

interoperability with others, maintaining a lists

of all desired contacts, use of third party servers

to provide chat functionality to messenger

clients and keeping a log of messages and other

events/ activities (Fahrnberger, 2014).

111. RESEARCH METHODOLOGY

This section presents the way the study was

carried out. It involves the various steps that the

researcher adopted in studying the research

problem as well the logic behind those steps

which include the research prototyping approach

and the procedure is provided as outlined below.

3.1 Prototyping Approach

In this paper, a model that could help

demonstrate the security challenges in instant

messaging applications in a virtualized

environment was developed. The hypervisor was

chosen to be Oracle VM Virtual box. This

hypervisor is a cross-platform virtualization

application, meaning that it installs on the

existing Intel or AMD-based computers,. It

supports operating systems such as Windows,

Mac, Linux or Solaris. It serves to extend the

capabilities of the existing computer so that it

can run multiple operating systems inside

multiple virtual machines at the same time.

Using this hypervisor, one can install and run as

many virtual machines as he likes. The only

practical limiting factors are disk space and

memory. Moreover, it is very simple to use and

very powerful. This is because it can run on any

platform, ranging from small embedded systems

or desktop class machines to datacenter

deployments and even Cloud environments. This

made it the best choice for this paper. Figure 1

shows the interface for VirtualBox hypervisor.

Figure 1: VirtualBox Interface

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5–Issue 12, 733-747, 2016, ISSN:-2319–8656

www.ijcat.com 736

3.2 Procedure

After the installation of the VirtualBox

hypervisor, a client operating system was

installed inside this hypervisor. This client was

chosen to be Windows Professional, 32 bit.

Figure 2: Client Operating System

The 32 – bit client was selected to avoid bus

speed mismatch because the underlying host

operating system ran 32 –bit. After this, Wamp

server was installed inside this client operating

system. This was meant to provide a respository

for the instant messages through its

PhPMyadmin feature as shown in Figure 3.

Figure 3: Wamp Server Installation

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5–Issue 12, 733-747, 2016, ISSN:-2319–8656

www.ijcat.com 737

All the PhP coding was done and saved in the

www folder of wamp server. The same wamp

server was also installed on another machine that

was required to achieve a two way instant

messaging exchange. An Ethernet cable was

then connected between the machines that

required exchanging the instant messages and

appropriate internet protocol (IP) addresses were

assigned using class C subnet. Figure 4 show the

typical set up that was employed.

Figure 4: Prototyping Setup

In this paper, the Host operating system refers to

the operating system of the physical computer

on which VirtualBox was installed. On the other

hand, the guest operating system was the

operating system that is running inside the

virtual machine. Virtual machine (VM) refers to

the special environment that VirtualBox creates

for the guest operating system while it is

running. In other words, the guest operating

system is run in a virtual machine. Basically, a

virtual machine could be shown as a window on

the computer’s desktop, but depending on which

of the various frontends of VirtualBox is in use,

it can be displayed in full screen mode or

remotely on another computer.

Technically, VirtualBox regards a virtual

machine as a set of parameters that determine its

behavior. They include hardware settings (how

much memory the virtual machine should have,

what hard disks VirtualBox should virtualize

through which container files, or what CDs are

mounted) as well as state information (whether

the virtual machine is currently running, saved,

or its snapshots).

Figure 4 shows that the hypervisor was hosted in

address 192.168.1.30. This hypervisor in turn

hosted a client of IP address 192.168.1.10. In

order for the guest operating system to

communicate with the host operating system, a

bridged adapter was employed as shown in

Figure 4. In bridged networking, VirtualBox

utilizes a device driver on the host system that

filters data from the physical network adapter.

Host: 192.168.1.30

Host Environment

VirtualBox Virtualization

Bridged Adapter

Peer: 192.168.1.20

Switch

 Server

Guest: 192.168.1.10

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5–Issue 12, 733-747, 2016, ISSN:-2319–8656

www.ijcat.com 738

For this reason, this driver is called a net filter

driver.

This permits VirtualBox to capture data from the

physical network and inject data into it. The

effect of this is the creation of a new network

interface in software. Ideally, when the guest

operating system is utilizing such a new

software interface, it looks to the host system as

though the guest were physically connected to

the interface using a network cable. Effectively,

the host can send data to the guest through that

interface and receive data from it. This means

that one can set up routing or bridging between

the guest and the rest of your network.

To enable bridged networking, the Settings

dialog of a virtual machine was opened; from

there navigation was done to the Network page.

Finally, the selection of Bridged network was

accomplished in the drop down list for the

Attached to field as shown in Figure 5.

Figure 5: VirtualBox Network Setting

To finish the configuration, the desired host

interface was selected from the list at the bottom

of the page, which contains the physical network

interfaces of the systems. As Figure 6

demonstrates, two network interfaces were

detected: RealTek PCIe FE Family Controller

and Qualcom Atheros QCA9565802.11b/n Wifi

Adapter. Howver, since the latter adapter was

for the wireless connections, the former interface

RealTek PCIe FE Family Controller was

selected.

Figure 6: Bridged Host-Client Connections

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5–Issue 12, 733-747, 2016, ISSN:-2319–8656

www.ijcat.com 739

To test the effectiveness of these configurations,

the internet control message protocol (ICMP)

code number 8, called packet internet groper

(PING) utility was employed. Figure 7 shows

the results of the PING utility against IP address

of the guest running in Oracle VirtualBox VM.

Figure 7: Connectivity Testing

As this figure shows, there was successful

communication from the peer instant messaging

machine to the virtualized instant messaging

guest peer. This meant that all was set for the

actual instant message communication between

the virtualized guest and the non-virtualized

peer.

1V. RESULTS AND DISCUSSION

This section presents and discusses the results

from the empirical investigation of Instant

Messaging security in a virtualized environment

as explained below.

4.1 Client-Server Interface

Each of the instant message communicating

entity had the hyperlinks shown in Figure 8.

This consisted of the post Chat, View Incoming

Chat and View Outgoing Chat hyperlinks. The

Post Chat link was utilized to send an instant

message to the receiver while the View Incoming

Chat was employed to retrieve the instant

message directed towards the user. Finally, the

View Outgoing Chat link was used to retrieve

the instant messages that the user has sent.

Figure 8: Main Chat Interface

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5–Issue 12, 733-747, 2016, ISSN:-2319–8656

www.ijcat.com 740

To post a chat, one clicks the ‘Post Chat’ link

that then load the interface shown in Figure 9.

On this interface, the user authenticates himself

by entering a valid user name and password.

Afterwards, he clicks the ‘OK’ button to load the

next interface.

4.2. Authentication Interface

The design represent an interface used by the.

users to authenticate themselves when they log

into the system.

Figure 9: Authentication Interface

The username and password are analogous to the

password or the unique pattern that the user

draws to unlock the phone so as to access the

instant messaging interface. Upon the entry of

the correct credentials, the user is presented with

the interface shown in Figure 10.

4.3. Composing Interface

In order to compose a message that will be processing, figure 10 represents the design.

instantly posted from the peers to the server for

Figure 10: Chat Posting Interface

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5–Issue 12, 733-747, 2016, ISSN:-2319–8656

www.ijcat.com 741

In this interface, the user types his instant chat

message and clicks the ‘OK’ command button.

This will in turn load the interface shown in

Figure 11.

4.4. Posting Response

This serves to inform the user that indeed the

chat he posted has been delivered to the

recipient, otherwise an error message will be

displayed. To retrieve the incoming instant

messages, one simply clicks on “View Incoming

Chats” link of Figure 8. Upon doing this, the

interface on Figure 12 will be displayed.

Figure 11: Instant Message Posting Successful

4.5. Incoming Message

This process clearly depicts what happens with normal instant chat message retrieval

applications.

Figure 12: Incoming Chats

Typically, one clicks on the sender’s contact,

which then loads the chat interface from which

the incoming chats can be read and post

messages. To retrieve the chats sent, one clicks

the “View Outgoing Chats” and this displays the

information shown in Figure 13.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5–Issue 12, 733-747, 2016, ISSN:-2319–8656

www.ijcat.com 742

4.6. Outgoing Message

The design demonstrate the content of the

outgoing messages. On both Figure12 and

Figure 13, the name of the sender and receiver

are displayed on the “Username” column. The

actual chat is displayed under the “Chat

Content” column.

Figure 13: Outgoing Chat Retrieval

Clearly, these instant message communications

are in plain text, raising the susceptibility to

eavesdropping. Further traffic analysis using the

Wireshark software was conducted to determine

whether the instant message communication can

be intercepted. The results obtained are as

shown in Figure 14.

4.7 TCP Three Way Handshake communication

The figure illustrates the synchronization

process of the device during communication

which describes a Three-way handshake. The

TCP allows one side to establish a connection as

a client and the other side to accept the

connection or reject it as a serve. It shows that

there was a TCP communication between the

peer (IP address 192.168.1.20) and the

virtualized guest (IP address 192.168.1.10).

Figure 14: Instant Message Communication Interception

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5–Issue 12, 733-747, 2016, ISSN:-2319–8656

www.ijcat.com 743

The sequence number of the initial packet was 0.

The guest then respondent by acknowledging the

request for connection, with ACK=1. The peer

and the virtualized guest then proceeded to

exchange data using the hypertext transfer

protocol (HTTP).

To demonstrate that the instant messages were in

plain text in both sending and transmitting

devices, the TCP stream was followed as shown

in Figure 15.

4.8 Transmission Control Protocol Stream

It’s a window that details the “request” sent and

the “response” received. This process was done

for both the server and the client. The idea was

to capture the live packet as it was being

transmitted from the client to the server and

from the server to the client. Since the address of

the client was 192.168.1.20 and that of the

server was 192.168.1.10, the following

communication shown in Figure 16 was

intercepted and live capture carried out.

Figure 15: TCP Stream Following

4.9 HTTP Client-Sarver Communication

The figure depict response packet capture from the server through hypertext transfer protocol.

Figure 16: Client – Server Communication Interception

Server

Response

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5–Issue 12, 733-747, 2016, ISSN:-2319–8656

www.ijcat.com 744

Upon following this TCP stream, valuable

information related to this packet was obtained

as demonstrated by Figure 17.

4.10 Plaintext Client-Server Communication

This figure shows the TCP packet in pain text.

Note that Figure 17 essentially displays the

contents of the table in Figure 12. To do so, it

uses the HTML tags for table creation

(<table>), table rows (<tr>), table data (<td>).

Figure 17: Plaintext Client-Server Communication

Towards the end of this TCP stream, the uniform

resource locator (URL) of the machine towards

which this request is directed to is given:

http://192.168.1.20/client/home.php , which was

the address of the client machine connecting to

the server.

Obviously, this plain text packet reveals enough

information that may facilitate further attacks

such as spoofing attacks and denial of services

(DOS) since the IP addresses and the URLs are

evident from this capture. To investigate the

server-client communication, the packet in

Figure 18 was intercepted and followed.

Client-Server

Plaintext

http://www.ijcat.com/
http://192.168.1.20/client/home.php

International Journal of Computer Applications Technology and Research

Volume 5–Issue 12, 733-747, 2016, ISSN:-2319–8656

www.ijcat.com 745

4.11 Server - Client Communication Interception

To demonstrate the insecure request, the analysis 192.168.1.20 as shown in figure 18.

was done from one the peers under domain

Figure 18: Server - Client Communication Interception

Once again, upon TCP stream following of this packet, the information shown in Figure 19 was

obtained.

4.12 Plaintext Server-Client Communication

The information obtained showed that the

response was using the “GET” form submission

method as indicated by the first line. Note that

both the client and server request are marked as

being ‘Insecure-Request’ as demonstrated by

line 10, since the request are in plain text.

Figure 19: Plaintext Server-Client Communication

Peer

Packets

Insecure

Request

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5–Issue 12, 733-747, 2016, ISSN:-2319–8656

www.ijcat.com 746

4.13 Scrambled Instant Message Packet

The proposed port-based algorithm would

scramble the packets such that the interception

of this packet makes no sense to the intruder.

Figure 20 shows such kind of TCP packet

scrambling in a typical instant message.

Figure 20: Typical Scrambled Instant Message Packet

This figure confirms the fact that if instant

messages could be scrambled, then t its content

is meaningless to the human readers. In such a

case, a decryption key will be required to turn

this data into human readable format.

V. CONCLUSIONS

This paper sought to demonstrate the fact that

instant messaging applications have numerous

vulnerabilities, one of them being the

transmission of messages in plaintext. To

illustrate this, a prototype was developed in Java

programming language using its networking

sockets. The prototype was run in an Oracle

VirtualBox VM environment. The results that

were obtained demonstrate clearly that the

instant messages are in plaintext in both the

sending and receiving machines.

Moreover, data capture that was performed

using Wireshak further reveals that the instant

messages were not immune from interception

and remote monitoring. Therefore, the

researchers recommend secure protocols, strong

authentication and message encryption at both

the receiver and sender so that these messages

are in human unreadable format in both

terminals. In this way, eavesdropping and

remote monitoring of the communication can be

thwarted.

REFERENCES

SIMP

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5–Issue 12, 733-747, 2016, ISSN:-2319–8656

www.ijcat.com 747

1] Weissbrot & Alison (2016). Car Service APIs Are Everywhere, But What's In It For Partner

Apps? AdExchanger. ad exchanger.

2] Mark (2015). Private, Partner or Public: Which API Strategy Is Best For Business?.
Programmable Web.

3] Z. Vinnie & G. Belvin (2012). Silent circle instant messaging protocol.

4] S. Lin Z. Hao; X. Tao; L. Mingshu (2016). An Empirical Study on Evolution of API

Documentation. International Conference on Fundamental Approaches to Software

Engineering. Springer Berlin Heidelberg.

5] O. Wendell (2013). Cisco CCENT/ CCNA ICND1 100-101 Official Cert Guide. Pearson

Education. pp. Ch. 1

6] M. Green (2014). Noodling about IM protocols.

7] Andreas & Buchenscheit (2014). Privacy implications of presence sharing in mobile messaging

applications. Proceedings of the 13th International Conference on Mobile and Ubiquitous

Multimedia. ACM.

8] P. Jagwani (2016). Analyzing Instant Messaging Applications for Threats : WhatsApp Case

Study. Department of Computer Science, Aryabhatta College, University of Delhi, Delhi

(India).

9] T. Frosch C. Mainka, C. Bader, F. Bergsma, J. Schwenk, T. Holz (2016). How Secure is

TextSecure. Ruhr University Bochum.

10] B. Smith (2013). UDP vs TCP security

11] G. Fahrnberger (2014). SIMS: A Comprehensive Approach for a Secure Instant Messaging Sifter.

http://www.ijcat.com/

