
International Journal of Computer Applications Technology and Research

Volume 5– Issue 6, 364 - 367, 2016, ISSN:- 2319–8656

www.ijcat.com 364

A Review of Storage Specific Solutions for Providing

Quality of Service in Storage Area Networks

Joseph Kithinji

Department Computer Science and Information Technology,

School of Information Technology and Engineering,

Meru University of Science and Technology,

Meru, Kenya

Abstract: Predictable storage performance is a vital requirement for promising performance of the applications utilizing it and it is the

systems administrators’ job to ensure that storage performance meets the requirements of the applications. Most storage solutions are

able to virtualize the amount of storage presented to the host in a flexible way, but the same storage devices have no QOS features

.Storage level agreements provided by storage devices do not provide predictability in service delivery due to the absence of

prioritization (QOS) mechanisms in storage devices. This paper reviews some of the storage specific solutions developed to implement

quality of service in storage area networks.

Keywords: Starvation, latency, burst handling, quanta, performance isolation.

1. INTRODUCTION

Storage area networks play a key role in business continuity,

enterprise wide storage consolidation and disaster recovery

strategies in which storage resources are most often

distributed over many distant data centers[10].Future storage

systems are required to scale to large sizes due to the amount

of information that is being generated. In a SAN large

numbers of magnetic disks are attached to a network through

custom storage controllers or general purpose pcs and provide

storage to application servers [6].

In a SAN, a single host request may flood the resources of a

storage pool causing poor performance of all hosts utilizing

that particular pool [5]. Hence, the performance of a given

host utilizing a shared pool resource is unpredictable by the

nature of resource sharing. To address this problem a

mechanism of providing QOS based on some policy is

required. Storage service level agreements provide for

predictability in service delivery which is not effective due to

the absence of QOS mechanisms in storage devices [5].

QOS is essential in the mixed environment where various

users with different levels of priorities and preferences are

accessing the storage systems simultaneously. For example in

an enterprise network, web hosting, data analysis and data

editing may be running at the same time[10].Providing QOS

to SANs has been a challenge which has led to the design of

many approaches.

2. STORAGE SPECIFIC QUALITY OF

SERVICE SOLUTIONS

2.1 Stonehenge

QOS is essential in mixed environment where various users

with different levels of priorities and preferences are

accessing the storage systems simultaneously.it is important to

ensure that critical tasks get satisfying performance given

limited resources.[8] Developed Stonehenge to solve the

issues of storage scalability, manageability and quality of

service. Stonehenge is built on IP networks IDE hard drives,

IDE controllers and off-the shelf low end personal computers.

To implement QOS Stonehenge dedicates a set of storage

servers to manage disk arrays and single personal computers

to perform the controlling functions such as storage

reservation and run-time management [7].

[1]Developed pClock based on arrival curves that capture the

bandwidth and burst requirements of applications. When

implemented pClock showed efficient performance isolation

and burst handling.it also showed an ability to allocate spare

capacity to either speed up some applications. When a request

arrives the pClock algorithm performs three functions;

updating the number of tokens, checking and adjusting tags

and computing the tags. The update number of tokens

function updates the arrival upper bound function for the

present arrival time while the check adjust tags is used to-

resynchronize flows to avoid starvation and the compute tags

assigns start and finish tags. The pClock algorithm allows

multiple workloads to share storage, with each workload

receiving the level of service it requires. PClock allows each

workload to specify its throughput, burst size and desired

latency [1] [8].

The pClock algorithm is as follows:-

Request arrival:

Let t be arrival time of request r from fi;

Update Numtokens();

CheckandAdjustTags();

ComputeTags();

Request scheduling:

Choose the request w with minimum finish tag fjw and

dispatch to the server

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5– Issue 6, 364 - 367, 2016, ISSN:- 2319–8656

www.ijcat.com 365

Let the chosen request be from flow fk with start tag swk;

Minsk=sk; [5].

2.2.1 updateTokens

In order to assign tags the arrival upper bound function Uia()

to the current time t.it maintains a variable numtokens for

each flow fi.

This means that the difference Uia(t)-Ri(0,t) is the difference

between AUB at time t and the cumulative number of arrivals

up to that time. The value obtained indicates the number of

requests that can be made by fi at t without violating the

arrival constraints.

Hence when [9];

 Uia(t)-Ri(0,t)<1, means that a well

behaved flow cannot make any request at t.

2.2.2 computeTags

This function assigns start and finish tags (Sir + Fir) to the

request r from fi arriving at time t.The value assigned to the

start tag Sir depends on whether the request is within the AUB

or exceeds it.When numtokensi>=1, Sir is set to the current

time t.If the total number of requests made by fi through time

t exceeds AUB(numtokensi<1),the start tag will be assigned a

future time greater than t.In particular the start tag is set to the

time it would have taken a well behaved flow to send a

number of requests[2].

Pclock guarantees that the well behaved flows are not missed

and the requests of the background jobs are done in batches,

which can lead to better disk utilization since many

background jobs tend to be sequential [8]. The algorithm has

the ability to allocate spare capacity to the workloads or to the

background jobs. The algorithm is also lightweight to

implement and efficient to execute. However it does not offer

control of how QOS mechanisms interact with storage devices

[7].

2.3 Argon

The argon storage server explicitly manages its resources to

bind the inefficiency arising from interservice disk and cache

interference in traditional systems. The goal is to provide each

service with at least a configured fraction of the throughput it

achieves when the storage server to itself. Argon uses

automatically configured prefetch/write back sizes to insulate

streaming efficiency from disk seeks introduced by competing

workloads. Argon uses prefetching and write back

aggregation as a tool for performance insulation [4] [6].

Argon adapts, extends and applies some existing mechanisms

to provide performance insulation for shared storage servers.

Many operating systems such as eclipse operating system use

time slicing of disk head time to achieve performance

insulation. Argon goes beyond this approach by automatically

determining the lengths of time slices required and by adding

appropriate and automatically configured cache partitioning

and prefetch/write back [8].

Argon uses QOS aware disk scheduler in place of strict time

slicing, for workloads whose access patterns would not

interfere when combined.to implement fairness or weighted

fair sharing between workloads argon uses amortization cache

partitioning and quanta based scheduling. Assumes that

network bandwidth and CPU time has no effect on efficiency

[9]. To achieve complete isolation argon does not allow

requests from different workloads to be mixed, instead it uses

a strict quanta based scheduling .This ensures that each client

gets exclusive access to the disk during a scheduling quantum

which avoids starvation because active clients quanta are

scheduled in a round robin manner[5].

Traditional disk and cache management allow interference

among services access patterns to significantly reduce

efficiency [7]. Argon combines and automatically configures

prefetch/write back cache partitioning and quanta based disk

time scheduling to provide each service with a configurable

fraction of efficiency it would receive without competition.

This increases both efficiency and predictability when

services share storage server [4]

However as with all other storage specific solutions Argon

runs on the storage device itself which requires multiple

instances of it to be implemented in all the devices. This

increases overhead and CPU time. Again since there is no

centralized management of QOS when the storage data is in

transit from the source to destination QOS is not taken care of.

The argon design also assumes that bandwidth is not a factor

in QOS however with IP SANs bandwidth management is

very important since the storage data will be moving from

source to destination via IP network [6].

2.4 Facade

[3]Developed Façade as a dynamic storage controller for

controlling multiple input/output streams going to a shared

storage device and to ensure that each of the input/output

streams receives a performance specified by its service level

objective. Façade provides performance guarantees in highly

volatile scenario. To achieve QOS Façade is implemented as a

virtual store controller that sits between hosts and storage

devices in the network, and throttles individual input/output

requests from multiple clients so that devices do not saturate

[2].

Figure: Facade structure [3]

The capacity planner allocates storage for each workload on

the storage device and ensures that the device has adequate

Capacity

planning

Façade

Storage devices

Overload

alarm

I/Os

SLO storage

allocation

Allo

cate

stor

es

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5– Issue 6, 364 - 367, 2016, ISSN:- 2319–8656

www.ijcat.com 366

capacity and bandwidth to meet the aggregate demands of the

workloads assigned to it.The allocation is adjusted depending

on the workload. Requests arriving at façade are queued in per

workload input queues.to determine which requests are

admitted to the storage devices façade relies on three

components that is the I/O scheduler, statistics monitor and

controller [8].

The I/O scheduler maintains a target queue depth value and

per workload latency target which it tries to meet using

earliest deadline first (EDF) scheduling. The deadline for a

request from a workload WK is arrivalTime (WK) +

latenctyTarget (Wk), where arrivalTime (WK) is its

arrivalTime and latencyTarget (WK) is a target supplied for

WK by the controller. Requests are admitted into the devices

in two cases; if the device queue depth is now less than the

current queue length target or if the deadline for any workload

is already past. The intent of controlling queue depth is to

allow workloads with low latency requirements to satisfy their

SLOs [3].

2.4.1 Statistics monitor

This receives I/O arrivals and completions.it reports the

completions to the I/O scheduler and also computes the

average latency and read and write request arrival rates for

active workloads every P seconds and reports them to the

controller [10].

2.4.2 Controller

The controller adjusts the target workload latencies and the

target device queue length. Target workload latencies must be

adjusted because the workload request rates vary and

therefore it is necessary to give those requests a different

latency based on the workload SLO.The device queue depth

must also be adjusted to meet the varying workload

requirements[8] .The controller tries to keep the queue as full

as possible to enhance device utilization. However this

increases the latency. This means when any.

Workload demands a low latency, the controller reduces the

target queue depth. The controller uses the I/O statistics it

receives from the monitor every P seconds to compute a new

latency target based on the SLO for each workload as follows;

Let the SLO for WK be

((r,tr1,tw1),(r2,tr2,tw2),…,(rn,trn,twn)) with a window w and

the fraction of reads reported is fr.

Let r0=0, rn+1=∞, trn+1=twn+1=∞ then latencyTarget (WK)

=trifn+twi (1-fr)

If ri-1<=readRate (WK) + writeRate (WK) <ri [7].

Facade is able to efficiently utilize resources and balance the

load among multiple backend devices while satisfying the

performance requirement of many different client

applications. Facade is also able to adopt to workloads whose

performance requirements change overtime. However façade

cannot handle large workloads. This is because multiple

instance of façade that are in every storage device cannot be

able to cooperate in order to handle large workloads [3].

2.5 PARDA

PARDA enforces proportional share fairness among

distributed hosts accessing a storage array without assuming

any support from the array itself.PARDA uses latency

measurements to detect overload and adjust issue queue

lengths to provide fairness [7]. Numerous algorithms for

network QOS have been proposed, including many variants of

fair queueing.However these approaches are suitable only in

centralized setting where a single controller manages all

requests for resources [2].

3. Discussion and Conclusion

 PARDA enforces proportional fairness among distributed

hosts accessing a storage array, without assuming any support

from the array itself. PARDA uses latency measurements to

detect overload and adjust issue queue lengths to provide

fairness. However these technique require each storage

device to run an instance of the algorithm which results in

overhead caused by running the algorithm. Facade provides

performance guarantees by throttling individual input/output

requests from multiple clients so that devices do not saturate.

Facade provides performance isolation in that the

performance experienced by the workload from a given

customer must not suffer because of variations on the

workloads from other customers. Façade is able to use

resources much more efficiently and to balance the load

among multiple back end devices while satisfying the

performance requirements of many different client

applications. However it cannot handle well large workloads.

It also requires multiple instances of the same algorithm to run

in all storage devices.

Stonehenge was developed as a technique for providing QOS

guarantees in storage area networks. All the above techniques

require that multiple instances of the same algorithm runs on

every storage device. These increases overhead which is

caused by the processing of the algorithms. These techniques

are implemented on the storage device and therefore so do not

provide service guarantees when storage traffic is traversing

the network which is important since with IP SAN storage

traffic will be interacting with other traffic in the network.

4. ACKNOWLEDGMENTS
My thanks goes to all my friends who have contributed

towards development of the paper.

5. REFERENCES

[1] Gulati, A., Merchant, A., & Varman, P. J. (2007). p

Clock : An Arrival Curve Based Approach For QoS

Guarantees In Shared Storage Systems. ACM.

[2] Gulati, A., & Waldspurger, C. A. (2007). PARDA :

Proportional Allocation of Resources for Distributed

Storage Access. In 7th USENIX Conference on File and

Storage Technologie (pp. 85–98).

[3] Lumb, C. R., Merchant, A., & Alvarez, G. A. (2003). Fac

¸ ade : virtual storage devices with performance

guarantees. In File and Storage Technologies (pp. 131–

144).

[4] Wachs, M., Abd-el-malek, M., Thereska, E., & Ganger,

G. R. (2007). Argon : performance insulation for shared

storage servers. In File and Storage Technologies (pp.

61–76).

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5– Issue 6, 364 - 367, 2016, ISSN:- 2319–8656

www.ijcat.com 367

[5] A. Gulati and I. Ahmad(2008). Towards distributed

storage resource management using flow control. ACM

SIGOPS Operating Systems Review, 42(6):pp 10–16.

[6] Bjørgeengen, J. (2010). Using TCP / IP traffic shaping to

achieve iSCSI service predictability. In Proceedings of

LISA ’10: 24th Large Installation System Administration

Conference (pp. 91–107).

[7] Traver, L, Tarin, C, Cardona, N.(2009)Bandwidth

Resource Management for Neural Signal Telemetry,

Information Technology in Biomedicine, IEEE , Vol.13,

no.6(December), pp.1083-1084.

[8] M.Wachs, M. Abd-El-Malek, E. Thereska, and G.R.

Ganger (2007). Argon: performance insulation for shared

storage servers. In Proceedings of the 5th USENIX

conference on File and Storage Technologies,pages 5–5.

USENIX Association.

[9] Van der Stok,P, D. Jarnikov,D,Kozlov, S,van

Hartskamp,M & Lukkien,J.J(2009)Hierarchical Resource

Allocation for Robust In-Home Video Streaming,

Journal of Systems and Software.Vol. 80, no.

7(February), pp. 951–961.

[10] Peter, M.O, and Babatunde, P.J. (2012) Software

Prototyping: A Strategy to Use When User Lacks Data

Processing Experience, ARPN Journal of Systems and

Software.Vol.2,No.6(June),pp 219-223

http://www.ijcat.com/

