
International Journal of Computer Applications Technology and Research

Volume 5– Issue 7, 422 - 432, 2016, ISSN:- 2319–8656

www.ijcat.com 422

Program Aging and Service Crash

Shahanawaj Ahamad, Ph.D.

Dept. of Computer Sc. & Software

Engineering, College of Computer

Science & Engineering,

University of Ha’il,

Ha’il, K.S.A.

Abstract: Program aging is a degradation of performance or functionality caused by resource depletion. The aging affects the cloud

services which provide access to big data bank and computing resources. This suffers large budget and delays of defect removal, which

requires other related solutions including renewal in the form of controlled restarts. Collection of various runtime metrics are more

significant source for further study of detection and analysis of aging issues. This study highlights the method for detecting aging

immediately after their introduction by runtime comparisons of different development scenarios. The study focuses on aging of

program and service crash as a consequence.

Keywords: Program; Aging; Cloud service; Renewal, Metrics.

1. INTRODUCTION
Aging occurrence comprises in expansion of crash rate or

performance deprivation of computers as it implements,

which is due to the collection of faults in computers state and

depletion of resources, for example, physical space [1] [2].

This occurrence is known to experts since quite a while. Early

indications of software aging were found in 1960s [3]. As

programming is growing in size and difficulty, program aging

is perceived in expanding number of long-running computers,

together with communications. Program aging is accredited to

indirect computer program bugs. Researches in early 1990s on

telecom computers [6] emphasized high occurrence of viruses

and bugs which, when activated, don’t instantly bring about

program crash, however show themselves as space spillage,

lock of unreleased files, corrupted data and accumulation of

numerical fault, slowly degrading computers performance and

finally to failure. Sometimes such viruses and bugs are too

subtle or too expensive, making it impossible to be expelled

during improvement. Studies at AT&T Bell laboratories on

error enduring program recognized as program renewal as

economical solution to counter program Aging [1] [7] [3].

Program renewal is a positive method to prevent performance

deprivation and crashes from program aging. It comprises

incidental or periodical tidy up of aging impacts (which are

accomplished by computer program restart, or by more

difficult procedures), so as to delay crashes and reinstate

performance. Program renewal represents a unique type of

defensive program support contrasted with different types of

defensive program upkeep [8], which were centered on to

install updates so as to avert field crashes [9] or redesign a

package, to adapt to outdated quality [10].

Accuracy of Aging Oriented Crash (AOC) detection

approaches is largely determined by aging indicators. A well-

designed aging indicator can precisely indicate AOC. If

subsequent renewals are always conducted at real crash-prone

state, renewal cost will tend to be optimal and significant with

optimum schedule. But unfortunately, prior detection

approaches based upon explicit aging indicators [11] [12],

[13], [14], [15] [16], [17]. These approaches don’t function

well especially in face of dynamic workloads. Mostly they

miss some crashes which lead to a low recall. Insufficiency of

previous indicators motivates to seek novel indicators. There

are some motivational aspects as follows.

1.1 Insufficiency of Explicit Aging

Indicators
To distinguish normal state and crash-prone state, a threshold

should be present on aging indicator. Once aging indicator

exceeds threshold, a crash occurs. Traditionally, a threshold is

set on explicit aging indicators. For instance, if CPU

utilization exceeds 90%, a crash occurs. However, it’s not

always case to happen. External observations do not always

reveal accurately internal states. Here internal states are

referred to as some normal events (e.g. a file reading, a packet

sending) or abnormal events (e.g. a file open exception, a

round-off error) generated in computers. Abnormal events are

more concerned here. CPU utilization is observed as real

number in range 0%, 100% while abnormal events are very

limited. Therefore an abnormal event correlates with multiple

observations. When a crash-prone event happens, CPU

utilization is 99%, 80% or even 10%. Therefore explicit aging

indicator cannot signify AOC sufficiently and accurately; and

if computers fluctuation is taken into account, situation gets

even worse. This is also a reason why it’s so difficult to set an

optimal threshold on explicit aging indicators in order to

obtain an accurate crash detection result.

1.2 Entropy Increase in VoD Computers
As explicit aging indicators fall short in detecting AOC,

turning to implicit aging indicators is helpful. Some insights

are attained from [18] and [15]. Both of them treated program

aging as a complex process. With their motivation it is

believed that entropy can be a measurement of complexity,

which has a potential to be an implicit aging indicator. VoD

system entropy increases with the degree of program aging.

VoD systems run for 52 days until a crash occurs. By

manually investigating reason of crash, it is assured to be an

AOC. Entropy value of CPU utilization every day is

calculated. It’s apparent to see entropy values of last four

days are much larger than ones of first four days nearly at all

scales. Especially, entropy value of day 52 when computers

ailed is different significantly from others. However raw CPU

utilization at crash state seems normal which means crash

cannot be detected if using this metric as an aging indicator.

Therefore, it can be a potential aging indicator in this practice.

1.3 Conjecture
According to above observation, it provides a high level

abstraction of properties that an ideal aging indicator should

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5– Issue 7, 422 - 432, 2016, ISSN:- 2319–8656

www.ijcat.com 423

satisfy. Monotonicity; since program aging is a gradual

deterioration process, aging indicator should also change

consistently with degree of aging, namely increase or decrease

monotonically. As most essential property, monotonicity

provides a foundation to detect Aging Oriented Crash

accurately. Stability; indicator is capable of tolerating noise or

disturbance involved in runtime performance metrics.

Integration; as program aging is a complex process affected

by multiple factors, indicator should cover se influence from

multiple data sources, which means it is integration of

multiple runtime metrics.

In cloud computing most of PMs are converted to VMs [19].

With constant use of simulated machine and VMM causes

program aging. As VMM is concept level between hardware

and operating computers, many functions are running over it

and are not boot up regularly.

2. LITERATURE SURVEY
Numerous studies have been carried out on program aging

and renewal. Program aging is an old topic but it lacks

research owing to which safety critical functions face program

aging. However, some research on program aging is done in

simulated setting.

Rivalino Matias et al. [20] conducted research on space

associated program aging problems which produces aging and

associated crashes. They concentrated on space leakage

glitches. They conferred disadvantages of utilizing renowned

computers wide and function-specific aging indicators and

suggest effective results for their circumstances. Space-

associated aging impacts are produced by space leakage and

space disintegration issues. Space leakage is a computer

program fault which is caused by improper utilization of

space organization practices. Space leakage happens when a

function process assigns space blockages and do not discharge

them back to operating computers in course of its runtime.

Researchers tried to discover space leakages both in user level

and kernel level by utilizing aging indicators. Aging

indicators detects errors in a computer in working state.

Computers wide aging indicators provide information on sub

computers constituents. They conducted experimentations

with help of computers wide aging indicators free/used

physical space and swap space. However these indicators

indicate false signal regarding space usage. So aging free

baseline are utilized to compare space usage with it for

improved outcome. Function particular aging indicators give

particular information about individual function process. For

identifying space leakages, utilization of process resident set

size (RSS) as aging indicator is suggested. Checking RSS in

combination with procedure simulated size is an improved

approach than utilizing only RSS which alone can't uncover

right space.

Domenico Cotroneo et al. [21] concentrated on program aging

phenomenon associated with integer runoffs. Integer runoffs

are neglected issues in review of literature. Arithmetical aging

related bugs signify problems for numerous long-run program

functions, for example control of industrial computers and

signal handling. It is difficult to evade and fix mathematical

bugs, dearth of prominence for computer mathematical and

program development languages by developers. Researchers

presented some examples of integer overflow that causes

aging. They highlighted about mathematical aging related

bugs. Integer associated bugs happens when computers

analyst put infinite mathematical integers to finite range. They

examined and debated on various instances of numerical

aging related bugs in MYSQL open source DBMS to provide

physical world issues. But owing to lack of interest for integer

runoffs problems, such particular renewal techniques were not

developed or than restarting DBMS server. Program renewal

techniques mitigate impact of program aging because of

integer runoff, it lacks forecast about aging. So periodically

sampling integer variables to approximate expected time to

runoff for variables at run time and activate renewal methods

in relation to estimated value. For future studies, performance

appraisal and optimization of approach, to use method to or

type of computers, and to include floating-point faults.

Autran Macedo et.al [22] suggested space related aging

effects. Researchers explained, what means space

management functions inward functions process, focus on two

space issues that bring about program aging; disintegration

and leakage. They described procedure of space-related

program aging concentrating on actual and extensively

accepted space allocator and offered a tentative study which

shows by what means space break-up and leakage take place

and by what method they accumulate over time so as to bring

about computers aging-related crashes. For exploratory study,

test lab consist of Intel Pentium Octa Core, 3GHz, 2GB RAM,

operating on Linux with glibc 2.10.1.y formed 2

programs(Mfrag and Mleakage) to device test cases identified

with space discontinuity and space spill. Though total free

space in heap is bigger than amount asked for, another space

is asked for in light of fact that stack is experiencing external

space break-up. Asking for another block to OS infers ingoing

in kernel mode, which presents an additional overhead which

punishes procedure performance. Space leakage inside OS

kernel influences whole computers and not a particular

process, whose impacts stay until operating computers

restart/reboot. In future studies, concentration is on

experimenting space related impacts in simulated setting and

not vulnerable to space breakup.

Lei Cui et al. [23] concentrated on in simulated setting for

program aging shortcoming. Aging rate is perceived by

critical experimentations on physical and VMs and recognize

contrasts around two, and recommend a component code-

based practice for crash foresight through computers call, then

perform a model in VM official level to foresee crash time

and revive. They led four experiments to recognize aging

event in physical machines (PM) and VMs, and figure rate of

aging for assessment. For investigation, three sorts of

computers resources were gathered for measurements that

demonstrate program aging Space resources; (1) Free Space

and Active Space; (2) Processor resources containing User

and Computers Time; (3) IO resources for instance, Block

Read or Write Count and IO Waiting Time. Amid measurable

examination, declining of free space size was found. Relating

aging rate between PM and VM, aging rate is more prominent

in VM in contrast with PM. Scholars proposed code-based

strategy to expect renewal time bring up highlight models

through computers calls.

Kehua Su et al. [24] proposed a work on program renewal in

simulated setting (SRVE) to manage program aging marvel of

VM screen and VM, and to make them enhance execution.

Program running in VM computers is not boot up every now

and again, so aging issues exist in VMM and VMs. So

creators proposed some renewal computers for it. Methods

give renewal of VMM and VMs, however it can't give zero

idle time of administrations.

Kenichi Kourai et al. [25] proposed another method for quick

renewal of VMM known as warm VM reboot. As VMM is

basic program for running VMs, its execution debasement

influences all VMs that rely upon it. So creator here proposed

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5– Issue 7, 422 - 432, 2016, ISSN:- 2319–8656

www.ijcat.com 424

another program renewal procedure that recoveries both idle

time cost and time. Warm-VM reboot empowers effectively

rebooting a VMM by suspending and continuing VM. They

created two components: on-space suspend/resume of VMs

and snappy reload of a VMM. At the point when a VMM is

restored by computers reboot working computers running on

VMs based on top of a VMM likewise are boot up when

VMM is revived. This expands idle time of managements by

working computers. Here they contrasted warm VM renewal

and VM movement. In this paper they clarified issue of

program renewal of VMM. They executed their examination

in view of Xen and performed a few experiments. They

thought about various renewal strategies like computers

reboot, icy VM, warm VM and VM relocation. Contrasted

and an ordinary reboot, warm VM reboot decreased idle time

by 75% at most. Warm VM reboot accomplished higher

aggregate output than computers utilizing VM relocation and

a typical reboot.

Fumio Machida et al [26] exhibited issues of ability of

performance administration in a simulated information center

(VDC) that has numerous administrations utilizing

virtualization. Performance ability is an idea of a blended

metric of execution and accessibility. Clients of a VDC

demand a specific level of function execution in a service

level agreement (SLA). VDC suppliers choose an ideal server

design and administration operations for ensuring function

execution and increasing accessibility. They concentrated on

position algorithm of simulated machines and renewal plans

for VMs and VMM in a VDC. VM positions, which allocate

VMs to functions, are chosen for fulfilling execution

prerequisites under predetermined number of physical servers.

Renewal timetable are chosen for VMs and VMMs for

expanding general computers accessibility in a VDC. Amid

down time of a VM, number of accessible function

occurrences declines and execution of function administration

go down. Amid down time of a VMM, VMs and functions

running on same physical server are down too. Objective of

performance ability administration in a VDC is to find an

ideal VM arrangement with ideal renewal plans for VMs and

VMMs. ideal VM position and timetables enhance general

accessibility and execution of VDC under restraints of

execution levels of functions determined in SLAs.

Kenichi Kourai et al. [27] proposed another procedure for

quick renewal for VMM called as warm VM reboot. When a

VMM is restored working computers running on VMs based

on top of a VMM additionally are boot up. This expands idle

time of administrations contributed by working computers. It

requires long investment to reboot numerous working

computers in parallel when VMM is boot up.

Aye Myat Paing et al. [29] concentrated on renewal of VMMs

effectively without influencing VMs. They joined renewal

procedures with Live VM movement innovation for better

advancement of resources utilization. By utilization of

stochastic Petri nets they gave a model utilizing time based

renewal for VMM. To assess model they gave numerical

examination.

Thandar et al. [30] introduced a Markov model for

investigating accessibility for long running functions which

experience the ill effects of program aging. In that model they

demonstrated accessibility, idle time and idle time budget

amid renewal.

3. PROGRAM AGING CONCEPT
Program aging is not a new phenomenon but it was existing

years before and suffering the systems and services. The

concept was highlighted in year 1994 [10] after that several

research studies have been undertaken to explore the issues,

domain and develop corresponding solutions as for servers,

applications, services and virtual machines.

3.1 Causes of Program Aging
There are two, entirely unmistakable, sorts of program aging.

Initially, is brought about by crash of item's owners to adjust it

to address evolving issues; second is consequence of changes

that are made. This "one-two punch” prompts fast decrease in

estimation of a program item.

3.1.1 Lack of development
Over three decades, assumptions about program have changed

significantly. When interactive programming introduced,

mysterious charge dialects were utilized. Nowadays,

everybody tackles line access, "moment" reaction, and menu-

driven interfaces conceded. Program is old despite the fact

that no one has touched it. Clients in mid-60 were energetic

about item, today's clients expect more. Unless program is

often redesigned, it's client's will get to be disappointed and

they will change to another item when advantages exceed

expenses of retraining and changing over. They will allude to

that program as old and obsolete.

3.1.2 Lack of change
Despite the fact that it is crucial to redesign program to

anticipate aging, changing program causes an alternate type of

aging. Program designer had a straightforward idea when

composing. Program is big, understanding that idea permits

one to discover those segments of project, which are modified

when an update or redress is required. Understanding that idea

infers understanding interfaces utilized inside and amongst

computers and its surroundings. Changes are made by

individuals who don't comprehend unique configuration idea

quite often cause structure of computers to corrupt. Under

those circumstances, changes will be conflicting with unique

idea; indeed, they will discredit unique idea. Often harm is

less, but sometimes it is very serious. After those

developments, one must know both unique configuration

rules, and recently acquainted exemptions with principles, to

comprehend item. After numerous such changes, unique

planners no more comprehend item. Individual who rolled out

improvements, never did. At the end, no one comprehends

adjusted items. Changes take longer and will probably present

new "bugs". Change incited aging is frequently exacerbated

by the certainty, maintainers feel they don't have sufficient

time to redesign documentation. Documentation turns out to

be progressively incorrect in this manner rolling out future

improvements much more troublesome.

3.1.3 Lack of space allocation
Aging is computers delay brought about by crash to discharge

dispensed space. Documents develop and require pruning. At

time space distribution routine do not discharge all space that

is assigned. Gradually, swap and document space are reduced

and execution corrupts. This issue is frequently a

configuration crash and is aftereffect of absence of progress or

worsened by changing use designs. A clean up procedure

mediates and clean up record computers and space, enhanced

schedules make clean up happen quickly and computer

program is considered totally "cured".

4. AGING IMPACT ANALYSIS
Examination of aging impacts (i.e., sort of invalid states

brought on by aging) and aging markers in this area

demonstrates how aging is showing difficulty in program

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5– Issue 7, 422 - 432, 2016, ISSN:- 2319–8656

www.ijcat.com 425

computers. Aging markers are a critical zone of study, since

they are instrumental for identifying when computers state is

inclined to aging crashes, by observing them amid computers

execution. Aging markers are pointers of resources utilization

and execution markers.

Space utilization: Empirical confirmation demonstrated free

space shows most brief Time to Exhaustion (TTE) among

computers resources [31], and space administration faults are

a noteworthy reason for crashes [32]. Therefore, numerous

studies on aging and renewal analyses program aging

phenomena influencing free space, by measuring quantity of

free physical space and swap space [33], and a few estimation

based methodologies apply time arrangement and measurable

models to these variables.

Execution debasement: SAR reported execution corruption in

program computers influenced by aging. A reason for

execution corruption is exhaustion of computers resources: for

example, utilization of physical space builds time required by

space distribution methods and waste gathering instruments,

since their computational intricacy is an element of measure

of space regions that apportioned [34] [35]. An expanding

demand reaction time and a diminishing output accounted for

web functions, web servers [2], and CORBA-based functions

[36]. Renewal are activated when nature of administration

(e.g., as far as reaction time or throughput) is underneath a

given edge.

Resources utilization: Program aging effects few sort of

resources. Other than space-related resources (e.g., physical

space, simulated space, swap space, cache space), studied

papers manage these kinds of resources:

 File computers-related resources, for example, stream

descriptors and record handles [31] [37] [38];

 Capacity, whose space is consumed by awful

administration [39];

 Computers related resources, for example, attachment

descriptors [37] ;

 Concurrency related resources, for example, bolts,

strings and procedures [31] [38];

 Function particular resources, for example, DBMS

shared pool locks [40] and OSGi references [41].

In a few studies, methodology proposed is not constrained to a

particular resource, but concentrated on distinguishing

inaccurate API use and wrong exemption handlers which

bring about a resources spillage. Working example, [38]

presents a methodology which mines resources utilization

designs by checking API calls, and gives an exploratory

assessment on open source programs in light of Java I/O and

concurrent APIs. A normal sort of resources spillage in Java

projects is characterized by outlets and record handles,

because of defective exemption handlers that don't discharge

these resources [37] [38]. Resources likewise are influenced

by program aging depending on sort of computers, for

example, free disk space in DBMS computers [39]. Some

works investigate a more extensive arrangement of resources.

In [31], a system of UNIX workstations was checked to

distinguish aging patterns in utilization of a few resources

(identified with simulated space, OS portion, file computers,

disk, and organize), and critical aging pattern was seen in

procedure table size and in document table size (despite the

fact that their TTE is lower than TTE of free space).

Anyhow aging impacts mentioned above, re-exist other sort of

aging impacts focused in late works. A field in which program

renewal is studied is identified with security assaults, that is,

presence of pernicious clients to access unapproved resources

or to make computers inaccessible. Security assaults occur

and continuously trade off a computers over a drawn out

stretch of time (e.g., PIN phishing through brute force

speculating, or flood assaults which trigger program aging

wonders), which are lessened by intermittently reviving a

computers, for example, by changing cryptographic keys, by

restarting negotiated procedures, and by randomizing area of

information and guidelines in space [1] [42] [43] [44] [45]

[46]. A challenge in sending program renewal for security

reasons for existing is to characterize exact aging pointers

which are identified with security assaults. At present, aging

rate are accepted at outline time [42] [47] or have to be

founded on flawed assault/interference indicators which could

raise false cautions and miss assaults [48] [49].

Another sort of aging impacts examined in a couple of recent

works, which are alluded as other aging impacts, are

identified with amassing of numerical faults [2] and space

discontinuity [50] [51]. These sort of aging impacts are not

inexorably brought about by bugs in program, but rather are

identified with nature of floating-point mathematics and space

allotment calculations, separately. An occurrence of numerical

mistakes, such things in writing aging markers ready to gauge

degree of faults in computers state were not found.

Finally, numerous studies propose models and methodologies

for managing aging paying little attention to which particular

sort of resource exhaustion or aging impact is experienced,

which is normally instance of model-based studies.

The greater part of past studies concentrated on program

aging impacts are identified with space utilization [31], [52],

[53], performance corruption [54], [55] or both [2], [36], [34],

[52]. These two perspectives are most regular issues

happening in non-safety-critical computers and they are

considered by an expanding number of SAR studies. These

issues are less persistent for safety-critical systems. For

example, an occurrence of program which experiences a

safety confirmation process, dynamic space administration is

avoided to achieve stringent safety integrity levels. In

contrast, none of investigated research handled math issues,

for example, collection of round-off faults. These faults are

more applicable in safety-critical settings, with the fact that

computer program is in charge of controlling physical

actuators and mistaken outputs have extreme results. A surely

understood case of aging crash identified with numerical

faults happened in patriot rocket computers, which was

created by a round-off mistake in change of aggregate

execution time from a whole number to a floating-point

number [33].

5. CONSEQUENCES OF PROGRAM

AGING

Indications of program aging reflect those of human aging: (1)

proprietors of aging program discover it difficult to stay up

with business sector and lose clients to more up to date items,

(2) aging program debases in its space/time execution as an

after effect of slow collapsing structure, (3) aging program

frequently gets to be "buggy" on account of faults presented

when changes are made. Each of these results are expensive to

proprietor.

5.1 Crash
As programs get aged, it becomes greater risk for crash. This

"weight increase" is an aftereffect that an easy approach

include an element, includes new code. Adjusting existing

code to handle new circumstances is troublesome in light of

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5– Issue 7, 422 - 432, 2016, ISSN:- 2319–8656

www.ijcat.com 426

the fact that code is neither surely understood nor well

documented. At first, there is more code to change, a change

that is made in a couple parts of unique project, now requires

alternate many segments of code. Second, it is hard to

discover schedules that are changed. Subsequently,

proprietors can't include new components quickly. Clients

change to a more youthful item to get those components.

Organization encounters an eminent drop in income; when

they draw out another version, it is important to a decreasing

client base. They endeavor to stay aware of business sector,

by expanding their work power, expanded expenses of

changes, and delays, leads to further loss of clients.

5.2 Decreased Performance
As size of project develops, it puts more stress on PC space,

and more defers as code are swapped in from mass storage.

Program reacts slowly; clients must upgrade their PCs to get

good response. Performance likewise diminishes as a result of

poor configuration. Program is no more useful and changes

unfavorably influence execution. The new items, whose

unique configuration reflected requirement for newly

presented elements will run quicker or utilize less space.

5.3 Declining Consistency
As program is kept up, mistakes are inevitable. In early years

of industry, eyewitnesses record circumstances in which every

mistake adjusted presented (all things considered) more than

one fault. Every time an endeavor was made to reduce crash

rate of computers, it deteriorated. Only decision was to

forsake item or quit repairing bugs.

6. CLOUD SERIVCES AND CRASH
Principle thought behind cloud computing is highlighted in

1960, John McCarthy envisioned, general people would get

computing services like a utility. Term "cloud" is utilized in

many milieus, e.g., in 1990, delineating broad ATM networks.

Later Google's CEO Eric Schmidt utilized word to portray

business model for enabling services across over Internet in

2006, which began to pick up popularity. The term cloud

computing is utilized for most part as a marketing term in

various situations depict extensive thoughts. But lack of

standard meaning of cloud computing has created market

build-ups, as well as lot of doubt and perplexity.

Consequently, as of late there are work on institutionalizing

meaning of cloud computing. As an illustration, work in

looked at more than 20 unique definitions from an assortment

of sources to affirm a standard definition. This study embrace

meaning of cloud computing gave by National Institute of

Standards and Technology (NIST) [56].

NIST meaning of cloud computing "Cloud computing is a

model for empowering advantageous, on-demand network

access to a shared pool of configurable computing resources

(e.g., networks, servers, storages, functions, and services)

which are quickly provisioned and discharged with negligible

management effort or service provider interaction."

Principle purpose behind presence of various impression of

cloud computing is that cloud computing is quite an old

technology, yet rather a new operations model which unites

present technologies to run business in an unexpected way.

The vast majority of advances utilized by cloud computing,

for example, virtualization and utility-based estimation, are

not new. Rather, cloud computing influences these existing

innovations to meet mechanical and economic necessities of

today's demand for IT.

Cloud service failure can happen once or frequently. There

causes for it but aging of program are also one of them, which

is propagated with the program bugs. When disaster does

strike, there’s no physical data center you can visit to

investigate the problem. Below are given some reasons for

cloud service crash [63].

6.1 Cloud Provider Downtime
This is because of service provider who provides the cloud

infrastructure management and hosting service. It the proper

back is done and distributed computing in adopted then risk

can be reduced and prevent downtime.

6.2 Security Attacks
If security requirements and concerns are not taking in

advance attention than most probably system can be weak and

major risk to attack.

6.3 Storage Failures
This can be a top level risk to cloud service crash and system

down. Storage failure is serious cause of service crash and

unavailability.

6.4 Human Error
This is the mal practice done by the professional who manage

the cloud application and service manager. Level of expertise

and experience must be as good as possible.

6.5 Demand fluctuation
Sometimes the demand of cloud service are more sometime

less. In this type of situation it is managed by system to

extend and shrink the infrastructural context to manage the

increased and decreased demand of service.

6.6 Third Party Service Failures
The incorporated application and services provided by the

third party have to be continuously monitor to proper function

of cloud service. Many times the third party application are

down on which the current service depends also crash.

6.7 Quality of Service
Poor quality if service , which may have many parameters like

network, speed of response, system performance , quality of

streaming etc. can also affect the operation the cloud service.

6.8 Poor crash recovery procedures
Every cloud based organizations have to manage the strong

recovery system procedure for service crash. The application

should include the recovery mechanism and procedure for

effective and timely practice.

6.9 Application Bugs
There can be certain types of bugs found in application at run

time or even at deployment time which can lead to a service

crash and system failure.

7. PERFORMANCE ANALYSIS OF

SERVICE DEGRADATION
A significant consideration is dedicated to empirical

investigation of program aging from original computers.

Since, marvel shows itself as performance corruption and/or

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5– Issue 7, 422 - 432, 2016, ISSN:- 2319–8656

www.ijcat.com 427

resources utilization specialists concentrated on

methodologies for extracting estimations from computers [1].

To evaluate job load of computers, number of jobs succumbed

to computers every day, on the basis of their start time is

considered. To measure performance, normal length of jobs

every day, that is, by calculating mean estimation of term of

jobs finished every day, on basis of their completion time and

submission time. Irrespective of the fact that these

measurements give a halfway sign of job load and of

performance, these measurements are effectively figured from

dataset that was accessible, and empower a preparatory

examination of performance debasements.

Study of performance of computers in general (i.e., without

part information by node/line and by utilization period) did

not point out any diminishing patterns of performance. Rather,

some performance debasement patterns on a little subset of

nodes and lines in supercomputer was discovered. This

recommends program aging wonders are limited in a

particular piece of computers for particular sorts of job load.

Assumption is generated because of (i) program aging

problems (e.g., resources leakages) that are present in

program of influenced nodes or lines, and/or (ii) particular

sorts of jobs which generate these problems. The investigation

on nodes displayed a performance debasement pattern (i.e., a

huge increment in normal span of jobs).

Granger causality test pointed out that these performance

debasement patterns appear not to be identified with

variations in job load. This outcome gives some certainty that

patterns are not identified with random varieties of job load,

and it is worth to investigate these drifts more carefully. If the

normal job accomplishment time is expanding, job load

showed comparable varieties, in this manner providing reason

to feel ambiguous about presence of a program aging marvel

behind that performance pattern.

8. PARAMETERS OF SERVICES

PERFORMANCE DECLINATION
More extensive scope of cloud service, which related to

programs, gets ineffective. Aside from security issues, for

example, securing innumerable bits of individual information

scattered in cloud or conceivable protection infringement,

countermeasure arrangements are set up to control computer

program weakness. An issue suffered by one occupant raise to

another occupant in the event that they share same service.

Overcoming dangers connected to vulnerabilities and giving

more dependable, higher quality service than contenders are

greatest achievement component. Program weakness has not

been altogether taken care of in best practices for conventional

program improvement yet, so technology is not developing

enough to manage shortcomings in cloud service. Weakness

control of cloud service requires comparing counter measures

for anticipated weakness issues when scope of service clients

is not constrained.

It gives information and markers of performance, where that

performance level influences reception of cloud services by

clients. Performance is among points of interest that ought to

be accessible in cloud services since performance affects

clients and service providers. To assess performance, consider

a few criteria to assess components that influence

performance of cloud services, including normal reaction per

unit time and normal holding up time per unit time and others

in properties of performance measures of cloud [57].

• SaaS - Evaluation is made by clients specifically relying

upon performance measures, velocity of reaction,

dependability of specialized services and accessibility.

• Pass - Evaluation is made by clients specifically or by

implication relying upon performance measures in light of

detail, efficiency, dependability, specialized service and

middleware capacity.

• IaSS - Performance measures are resolved relying upon

framework performance, limit, unwavering quality,

accessibility, and versatility.

Performance and assessment are measured relying upon

responsive time, efficiency, and timing in executing jobs, viz.,

and handling activities in suitable period. The SLA,

agreement confines clients and cloud service providers.

Levels of service or quality of service (QOS) are considered.

Service performance is portrayed by reaction time,

profitability, accessibility, and security. Quality of Service

(QoS) in cloud shows level of performance and dependability,

regardless of the fact that attributes of quality of service got

consideration before development of cloud, performance,

homogeneity as well as principles [58].

To perform an operation at which capacity and security are

accomplished, viz., any service ability to guarantee

classification of a bit of information worked with, traded or

put away, confidentiality of correspondences, legitimacy and

safety of traded or put away information, and protection of

client and his correspondence implies against any sort of

danger, notwithstanding or characteristics of exactness,

unwavering quality, adaptability and convenience [59]. There

are a few dangers and confronting clients when they utilize

cloud services. They are expanding, that when service

providers or resources exist outside local extension, viz., they

are under various laws. In connection to appropriation of

cloud in advanced education, there are some difficulties, for

example, security, performance, proficiency and control [31].

Security element influence performance through security

sway on network framework, for instance, is case with DDoS

assaults which broadly affect network performance. This

danger or any dangers that undermine cloud environment, it

will be a noteworthy matter for clients and suppliers [60].

These assaults are hurtful to computing. Protecting SQL

assault permits assailant access to database. Likewise, in flood

assaults assailant sends a solicitation for resources to cloud so

rapidly that he exploits capacity of any remote resources by

normal clients and here numerous assaults which incapacitate

security of cloud happen [61]. Security is a vital need to cloud

clients. Decision is to make utilization of cloud services

founded on level of secrecy, honesty, adaptability, and

security services accessible, and this is a sign to rivalry among

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5– Issue 7, 422 - 432, 2016, ISSN:- 2319–8656

www.ijcat.com 428

service providers which prompts advancement of cloud

computing [30]. There are a few issues confronting cloud

computing clients, as far as access to information through

Internet; any shortcoming in level of security in cloud is

debilitating secrecy of clients information stored. In addition,

quality of association influences level of performance in

conveyance of services, high cost of private automated

computing contrasted and open and blended segments, at cost

of quality, performance and security [40].

9. RELATIONSHIP OF SERVICE

PERFORMANCE WITH AGING

PARAMETER
When computing resources almost depleted, variety of

resources variable will bring about or resources variables to

change. Three imperative resources variables change clearly.

An inquiry is the way to recognize which resources variable is

main driver of harming steadiness of resources dissemination

of PC. The underlying driver of program aging is buffer

expand, unmoved CPU reduction and cache diminish separate

in three times of simulation, and test where output of the

model fit perceptions.

Particularly, input of real estimation of one parameter and

starting estimation of or two parameters into model, and

figure estimation of or two parameters with time. For

instance, the real estimation of buffer and introductory

estimations of inactive CPU and cache as input parameters.

The inactive CPU and cache of dynamic model is figured out

at next interim by repeat, with real estimation of buffer as

input value. Further, the cache or inactive CPU as input

parameters individually and ascertain other two parameters.

Results are not recorded on the grounds that output of element

model can't fit observations.

Buffer use increment causes change of other parameters, will

output comparable dynamics as exploratory perceptions.

There are a few reasons: (1) this model utilizes three

variables, so bond between three variables is not precisely

depicted; (2) buffer utilization increment is the reason of other

two variables, numerous auxiliary elements are excluded in

this model; (3) More higher request of polynomials will bring

higher exactness, while utilizing quadratic polynomials. In

spite of substantial mistakes, this model is compelling, on the

grounds that the item in simulation is to investigate which

resources variable is underlying driver of program aging,

rather than precisely gauging estimation of cache or accessible

CPU. This examination helps to comprehend conduct of

computer program when it slowly ages.

10. RESULTS AND DISCUSSIONS
To distinguish a relationship amongst measurements and

aging, the initial step is to assess connection with individual

measurements. Pearson connection coefficient between every

metric and aging patterns were evaluated; this coefficient are

utilized to test a direct connection between two variables [1].

Measurements with a measurably noteworthy relationship (p-

esteem < 0:05) are observed. All measurements identified

with computers size are connected with program aging. This

affirms assumption that there occurs an association between

program aging and program multifaceted nature. Few

measurements don't show direct connection with numerical

implications. It is included in resulting investigation; there is a

non-linear relationship (alone or in blend with or

measurements) not found by this preparatory test.

Statistical regression models were adopted to acquire a

quantitative relationship between program measurements and

aging. Since a direct relationship with a few measurements

was watched, various straight relapse models were assessed.

To make this model, common relationship among

measurements, e.g., a program with high LOC will have a

high number of capacity affirmations, needs to be managed;

this connection prompts an instable model, since little change

in information bring about expansive change in model.

Therefore, stepwise strategy to manufacture model, viz.,

particular variables are presented or expelled from model and

a statistical significance test is performed to choose top

model. This technique created a linear model with one

variable.

The model is described by high standard deviation of

residuals (1:3185 MB/h). This high fluctuation influences

expectation for program modules with a low aging pattern (1

MB/h), prompting a high normal relative mistake (1:686

106%). In addition, free variables are portrayed by a high inter

correlation, since one variable is brought into model by

stepwise technique.

To get an exact model, Principal Component Analysis (PCA)

strategy was adopted, which changes dependant variables in a

small number of uncorrelated variables [62]; yet, this

methodology did not enhance model. An exponential and a

logarithmic model was assessed, however they were not ready

to give better accuracy. Absence of basic and exact model is

because of heterogeneity of program modules. A perceptible

element of dataset is expansive scope of qualities in aging

patterns, they vary by a few order of magnitude. Therefore,

dataset was isolated into two disjoint clusters, in particular

Big Aging and Little Aging, which were exclusively broke

down. Two gatherings were considered because of low

number of program modules. Subsequently breaking dataset,

stepwise technique to gatherings was connected. Substantially

exact model in both cases were acquired. Both models fulfil

hypotheses of residuals' homoscedasticity, typicality, and un-

correlation with autonomous variables. Specifically, model for

little aging gathering is portrayed by a low standard deviation

and a satisfactory normal relative fault (around 11%).

Dependant variables incorporated into this model, Ratio

Comment To Code and Count Line Inactive, don't have all the

representative of program complexity; nonetheless, given high

relationship between dependant variables, it is inferred that

aging pattern of program of this gathering is identified with

project size, both dependant variables have a place with this

sort of measurements. Although model for Big Aging

gathering is superior to opening model, it is described by a

high mistake. It is suspected that mistake was because of

presence of trace module in gathering, since it is described by

a low intricacy and high aging patterns. Therefore, this

example is an anomaly and expelled it from gathering;

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5– Issue 7, 422 - 432, 2016, ISSN:- 2319–8656

www.ijcat.com 429

resultant model was much more precise, with a low normal

relative error, around 8%. This outcome was because of

immaturity of trace module, which was influenced by extreme

aging-related bugs irrespective of the fact that it was a

moderately basic module. In this gathering, aging is identified

with size of modules (LOC); model represents complex

quality of code (Volume). At last, to clarify contrast between

two gatherings, and to apply right model to another program,

i.e., excluded in dataset, it was assessed on the possibility to

characterized modules into gatherings utilizing program

measurements. To choose best components, i.e.,

measurements, to use in classifier, feature choice computers

was applied, in particular independent features methodology

[62]. This technique performs a statistical test for each

individual component, showing that distinction is unrealistic

to be random variation; if contrast is sig times lower than

standard mistake, then highlight is not regarded valuable for

ordering. The test is performed by assessing

se (A-B)= (1)

 (2)

Where A and B are same component measured for two

divisions, and nA and nB number of samples in classes. Many

components were considered utilizing diverse estimations of

sig. Adequacy of every arrangement of components utilizing

leave- one out strategy: n-1 samples are utilized for preparing

a classifier, and rest of the example is utilized for testing

classifier; the rest of the samples are utilized for various

splitting of dataset. For classification, two-class SVM

classifiers were adopted.

Table 1 shows results of put one out validation of best

classifier (sig = 3:4). This classifier is effective in 9 out of 10

cases; it is not exact in the event of trace module, which was

beforehand appeared to be an irregular example. Feature

choice and leave one out authentications were revised without

trace service, and best classifier accurately characterized

samples in all cases. This outcome bolsters utilization of

program measurements for characterizing program regarding

aging. Measurements of best classifier were Volume (mean),

Effort (mean), Volume (difference), N1 (change), N2

(fluctuation), Length (change).

Table 1: Leave-one-out validation (LA = Little Aging, BA

= Big Aging) for sig = 3:4.

Module Reference class Anticipated

class

Garbage

collector

BA BA

JIT Compiler BA BA

Trace BA LA

Common LA LA

Repository LA LA

Load balancing LA LA

Xerces LA LA

Httpd BA BA

11. CONCLUSION
Relationship between program measurements and program

aging on ten computer program functions were researched.

Program functions belong to two particular gatherings, in

which aging impacts are insignificant (Little Aging), and

program fundamentally influenced by program aging (Big

Aging). A basic model ready to foresee aging impacts of both

gatherings at same time were not found, in this manner they

are broke down independently. There exist two exact multiple

linear regression models for modeling two programs function

clusters. Aging patterns in Little Aging group appears to be

connected with program size, while difficulty of project as far

as operands and administrators, i.e., Halstead measurements,

are considered for Big Aging groups. It is probable to arrange

program functions in one of two gatherings by utilizing

program measurements. Halstead measurements ended up

being most appropriate for this reason. These results empower

utilization of program measurements for adapting to program

aging at advancement time. The classification, of another

program is made by recognizing its class (Little Aging or Big

Aging), and then applying a customized linear regression

model.

Clouds have developed as a definite worldview for managing

and assigning services over network. Rise of cloud computing

is rapidly shifting prospect of IT, and altering long-held

assurance of utility computing into a reality. In spite of

noteworthy advantages offered by cloud computing, current

advancements are not sufficiently developed to understand its

maximum capacity. Many problems in this field, counting

programmed resources provisioning, power administration

and safety administration, are getting consideration from

examination group. There is still enormous opportunity for

analysts to make noteworthy contributions in this field, and

convey huge effect to their advancement in industry.

Examination of aging impacts and aging pointers reports that

space and performance issues were most studied in literature.

In this paper, condition of specialty of cloud service

performance degradation have been highlighted based on one

parameter of program aging among various other parameters

and specific causes. The study have shown that a significantly

aged program is a high risk and performance failure, can lead

to permanent crash of services. Program renewal and SAR

have been identified some level of solution approaches but

still under investigation and further research to find out a

suitable solution of Aging Oriented Crash.

12. REFERENCES
[1] Huang, Y., Kintala, C., Kolettis, N., and Fulton, N. 1995.

Computer program renewal: analysis, module and

functions. In Fault-Tolerant Computing, 1995. FTCS-25.

Digest of Papers, Twenty-Fifth Int’l. Symp.

[2] Grottke, M., Matias, R., and Trivedi, K. 2008. The

fundamentals of computer program aging. In Computer

program Reliability Engineering Workshops, 2008. IEEE

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5– Issue 7, 422 - 432, 2016, ISSN:- 2319–8656

www.ijcat.com 430

Int’l. Conf.

[3] Bernstein, L. and Kintala, C. 2004. Computer program

renewal. CrossTalk 17, 8, 23–26.

[4] Avritzer, A. and Weyuker, E. 1997. Monitoring smoothly

degrading computerss for increased dependability.

Empirical Computer program Engineering 2, 1, 59–77.

[5] Marshall, E. 1992. Fatal error: how patriot overlooked a

scud. Science 255, 5050, 1347–1347.

[6] Bernstein, L. 1993. Innovative technologies for

preventing network outages. AT & T TECH J. 72, 4, 4–

10.

[7] Wang, Y.M., Huang, Y., Vo, K.P., Chung, P.Y., and

Kintala, C. 1995. Checkpointing and its functions In

Fault-Tolerant Computing, 1995. FTCS-25. Digest of

Papers., Twenty-Fifth Int’l. Symp.

[8] Kajko Mattsson, M. 2001. Can we learn anything from

hardware preventive maintenance? In Engineering of

Complex Computer Computerss, 2001. Proceedings.

Seventh IEEE International Conference on. IEEE, 106–

111.

[9] Adams, E. 1984. Optimizing preventive service of

computer program products. IBM Journal of Research

and Development 28, 1, 2–14.

[10] Parnas, D. 1994. Computer program aging. In

Proceedings of the 16th international conference on

Computer program engineering. IEEE Computer Society

Press, 279–287.

[11] K. Vaidyanathan and K. S. Trivedi, “A measurement-

based model for estimation of resource exhaustion in

operational computer program computerss,” in Computer

program Reliability Engineering, 1999. Proceedings.

10th International Symposium on. IEEE, 1999, pp. 84–

93.

[12] K. Vaidyanathan, R. E. Harper, S. W. Hunter, and K. S.

Trivedi “Analysis and implementation of computer

program renewal in cluster computerss,” in ACM

SIGMETRICS Performance Evaluation Review, vol. 29,

no. 1. ACM, 2001, pp. 62–71.

[13] M. Grottke, L. Li, K. Vaidyanathan, and K. S. Trivedi,

“Analysis of computer program aging in a web server,”

Reliability, IEEE Transactions on vol. 55, no. 3, pp. 411–

420, 2006.

[14] J. Alonso, J. Torres, J. L. Berral, and R. Gavalda,

“Adaptive online computer program aging prediction

based on machine learning,” in Dependable Conference

on. IEEE, 2010, pp. 507–516.

[15] Y. F. Jia, L. Zhao, and K.Y. Cai, “A nonlinear approach

to modeling of computer program aging in a web server,”

in Computer program Engineering Conference, 2008.

APSEC’08. 15th Asia-Pacific. IEEE, 2008, pp. 77–84.

[16] P. Zheng, Y. Qi, Y. Zhou, P. Chen, J. Zhan, and M. Lyu,

“An automatic framework for detecting and

characterizing performance degradation of computer

program computerss,” Reliability, IEEE Transactions on,

vol. 63, no. 4, pp. 927–943, 2014.

[17] S. Garg, A. van Moorsel, K. Vaidyanathan, and K. S.

Trivedi, “A methodology for detection and estimation of

computer program aging,” in Computer program

Reliability Engineering, 1998. Proceedings. The Ninth

International Symposium on. IEEE, 1998, pp. 283–292.

[18] M. Shereshevsky, J. Crowell, B. Cukic, V. Gandikota,

and Y. Liu “Computer program aging and multifractality

of space resources,” in 2003 33rd Annual IEEE/IFIP

International Conference on Dependable Computerss and

Networks (DSN). IEEE Computer Society, 2003, pp.721.

[19] J. Araujo, R. Matos, P. Maciel, R. Matias, and I. Beicker,

“Experimental evaluation of computer program aging

effects on the eucalyptus cloud computing

infrastructure,” in Proceedings of the Middleware 2011

Industry Track Workshop. ACM, 2011, p. 4.

[20] Rivalino Matias Jr., Bruno Evangelista Costa, and Autran

Macedo, "Monitoring Space-Related Computer program

Aging: An Exploratory Study" ,IEEE, 2012.

[21] Vols. Domenico Cotroneo, and Roberto Natella,

Monitoring of Aging Computer program Computerss

affected by Integer Overflows, IEEE, 2012.

[22] Autran Macêdo, Taís B. Ferreira, and Rivalino Matias Jr,

"The Mechanics of Space-Related Computer program

Aging," IEEE ,2011.

[23] Lei Cui, Bo Li, Jianxin Li, James Hardy, and Lu Liu,

"Computer program Aging in Simulated Environments:

Detection and Prediction," IEEE, 2012.

[24] Kehua Su, Hongbo Fu, Jie Li, and Dengyi Zhang,

"Computer program Renewal in Virtualization

Environment," IEEE, 2011.

[25] Kenichi Kourai, and Shigeru Chiba, "Fast Computer

program Renewal of Simulated Machine Monitors,"

IEEE, Vol 8, No 6, 2011.

[26] Fumio Machida, Dong Seong Kim, Jong Sou Park, and

Kishor S. Trivedi, " Toward Optimal Simulated Machine

Placement and Renewal Scheduling in a Simulated Data

Center," IEEE, 2008.

[27] Kenichi Kourai, and Shigeru Chiba, "A Fast Renewal

Technique for Server Consolidation with Simulated

Machines, " IEEE, 2007.

[28] Fumio Machida, Jianwen Xiang, Kumiko Tadano, and

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5– Issue 7, 422 - 432, 2016, ISSN:- 2319–8656

www.ijcat.com 431

Yoshiharu Maeno, "Combined Server Renewal in a

Simulated Data Center.

[29] Aye Myat Myat Paing, and Ni Lar Thein, " High

Availability Solution: Resource Usage Management In

Simulated Computer program Aging, Aye Myat Myat

Paing, and Ni Lar Thein, " High Availability Solution:

Resource Usage Management In Simulated Computer

program Aging.

[30] Thandar Thein, Sung-Do Chi, and Jong Sou Park,"

Availability Analysis and Improvement of Computer

program Renewal Using Virtualization," Economics and

Applied Informatics, Years XIII, 2007.

[31] Garg, S., Van Moorsel, A., Vaidyanathan, K., and

Trivedi, K. 1998b. A methodology for detection and

estimation of computer program aging. In Computer

program Reliability Engineering, 1998. Proc. Ninth Int’l.

Symp.

[32] Sullivan, M. and Chillarege, R. 1991. Computer program

Defects and Their Impact on Computers Availability—A

Study of Field Crashs in Operating Computerss. In Fault-

Tolerant Computing, 1991. FTCS-21. Digest of Papers.,

Twenty-First International Symposium. IEEE, 2–9.

[33] Grottke, M., Li, L., Vaidyanathan, K., and Trivedi, K.

2006. Analysis of computer program aging in a web

server. Reliability, IEEE Transactions on 55, 3.

[34] Carrozza, G., Cotroneo, D., Natella, R., Pecchia, A., and

Russo, S. 2010. Space leak analysis of mission-critical

middleware. Journal of Computerss and Computer

program 83, 9, 1556–1567.

[35] Cotroneo, D., Orlando, S., Pietrantuono, R., and Russo,

S. 2011b. A measurement-based ageing analysis of the

jvm. Computer program Testing Verification and

Reliability.

[36] Cotroneo, D., Natella, R., Pietrantuono, R., and Russo, S.

2010. Computer program aging analysis of the linux

operating computers. In Computer program Reliability

Engineering (ISSRE), 2010 IEEE 21st Int’l. Symp.

[37] Weimer, W. 2006. Exception-handling bugs in java and a

language extension to avoid them. Lecture Notes in

Computer Science 4119 LNCS, 22–41.

[38] Zhang, H., Wu, G., Chow, K., Yu, Z., and Xing, X. 2011.

Detecting resource leaks through dynamica mining of

resource usage patterns. In Dependable Computerss and

Networks Workshops (DSN-W), 2011 41st Int’l. Conf.

[39] Bobbio, A. and Sereno, M. 1998. Fine grained computer

program renewal models. In Computer Performance and

Dependability Symposium, 1998. IPDS’98. Proceedings.

IEEE International. IEEE, 4–12.

[40] Cassidy, K., Gross, K., and Malekpour, A. 2002.

Advanced pattern recognition for detection of complex

and Networks, 2002. Proc. Int’l. Conf.

[41] Gama, K. and Donsez, D. 2008. Service coroner: A

diagnostic tool for locating osgi stale references.

EUROMICRO 2008 - Proceedings of the 34th

EUROMICRO Conference on Computer program

Engineering and Advanced Functions, SEAA 2008, 108–

115.

[42] Sousa, P., Bessani, A., Correia, M., Neves, N., and

Verissimo, P. 2010. Highly available intrusion tolerant

on 21, 4, 452 –465.

[43] Tai, A., Tso, K., Sanders, W., and Chau, S. 2005. A

performability-oriented computer program renewal

framework for distributed functions. In Dependable

Computerss and Networks, 2005. Proc. Int’l. Conf.

[44] Valdes, A., Almgren, M., Cheung, S., Deswarte, Y.,

Dutertre, B., Levy, J., Saidi, H., Stavridou V., and Uribe,

T. 2003. An architecture for an adaptive intrusion-

tolerant server. Lecture Notes in Computer Science

(including subseries Lecture Notes.

[45] Cox , B., Evans, D., Filipi, A., Rowanhill, J., Hu, W.,

Davidson, J., Knight, J., Nguyen-Tuong,A., and Hiser, J.

2006. N-variant computerss: a secretless framework for

security through diversity. In Proceedings of the 15th

conference on USENIX Security.

[46] Roeder, T. and Schneider, F. 2010. Proactive

obfuscation. ACM Transactions on Computer

Computerss (TOCS) 28, 2, 4.

[47] Nguyen, Q. and Sood, A. 2009. Quantitative approach to

tuning of a time-based intrusion-tolerant computers

architecture. In Proc. 3rd Workshop Recent Advances on

Intrusion-Tolerant Computerss. 132–139.

[48] Aung, K., Park, K., and Park, J. 2005. A model of its

using cold standby cluster. Lecture Notes in Computer

AUNG, K., PARK, K., AND PARK, J. 2005. A model of

its using cold standby cluster. Lecture Notes in Computer

Science 3815 LNCS, 1–10.

[49] Nagarajan, A. and Sood A., "SCIT and IDS architectures

for reduced data ex-filtration", DSNW, 2010,

Dependable Systems and Networks Workshops,

Dependable Systems and Networks Workshops 2010, pp.

164-169, doi:10.1109/DSNW.2010.5542601.

[50] Grottke, M., Matias, R., and Trivedi, K. 2008. The

fundamentals of computer program aging. In Computer

program Reliability Engineering Workshops, 2008. IEEE

Int’l. Conf.

[51] Macedo, A., Ferreira, T., and Matias, R. 2010. The

mechanics of space-related computer program aging. In

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5– Issue 7, 422 - 432, 2016, ISSN:- 2319–8656

www.ijcat.com 432

Computer program Aging and Renewal (WoSAR), 2010

IEEE Second Int’l. Workshop on.

[52] Matias, R., Barbetta, P., Trivedi, K., and Filho, P. 2010a.

Accelerated degradation tests applied to computer

program aging experimentations. Reliability, IEEE

Transactions on 59, 1.

[53] Shereshevsky, M., Crowell, J., Cukic, B., Gandikota, V.,

and Liu, Y. 2003. Computer program aging and

multifractality of space resources. In Dependable

Computerss and Networks, 2003. Proc. 2003 Int’l. Conf.

[54] Magalhaes, J. and Silva, L. 2010. Prediction of

performance anomalies in web-functions based-on

computer program aging scenarios. In Computer

program Aging and Renewal (WoSAR), 2010 IEEE

Second Int’l. Workshop on.

[55] Zhao, J. and Trivedi, K. 2011. Performance modeling of

apache web server affected by aging. In Computer

program Aging and Renewal (WoSAR), 2011 IEEE

Third International Workshop on. 56 –61.

[56] A. Andrzejak and L. Silva, “Using machine learning for

non intrusive modeling and prediction of computer

program aging,” in Network Operations and

Management Symposium, 2008. NOMS 2008. IEEE

IEEE, 2008, pp. 25–32.

[57] D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo,

“Computer program aging analysis of the linux operating

computers,” in Computer program Reliability

Engineering (ISSRE), 2010 IEEE 21st International

Symposium on IEEE, 2010, pp. 71–80.

[58] B. Sharma, P. Jayachandran, A. Verma, and C. R. Das,

“Cloudpd: Problem determination and diagnosis in

shared dynamic clouds in IEEE DSN, 2013.

[59] P. Zheng, Y. Qi, Y. Zhou, P. Chen, J. Zhan, and M. Lyu,

“An automatic framework for detecting and

characterizing performance degradation of computer

program computerss,” Reliability, IEEE Transactions on

vol. 63, no. 4, pp. 927–943, 2014.

[60] M. U. Ahmed and D. P. Mandic, “Multivariate

multiscale entropy: A tool for complexity analysis of

multichannel data,” Physical Review E, vol. 84, no. 6, p.

061918, 2011.

[61] L. Cao, A. Mees, and K. Judd, “Dynamics from

multivariate time series,” Physica D: Nonlinear

Phenomena, vol. 121, no. 1, pp. 75–88,, 1998.

[62] J. F. Cadima and I. T. Jolliffe, “Variable selection and

the interpretation of principal subspaces,” Journal of

agricultural, biological, and environmental statistics, vol.

6, no. 1, pp. 62–79, 2001.

[63] http://www.eweek.com/cloud/slideshows/nine-common-

reasons-cloud-systems-crash.html

http://www.ijcat.com/
http://www.eweek.com/cloud/slideshows/nine-common-reasons-cloud-systems-crash.html
http://www.eweek.com/cloud/slideshows/nine-common-reasons-cloud-systems-crash.html

