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Abstract: The volume information extracted from computed tomography angiogram is very useful for cardiologists to diagnose various diseases. 
An approach is presented to segment human coronary artery trees from the volumetric datasets. The coronary arteries’ surfaces are recovered 

by triangle mesh with the boundary points extracted from the coronary artery voxels segmented. The positions where the calcified plaques occur 

are identified by mapping the intensities of boundary points of the coronary artery trees on the triangle meshed surfaces. If different values of 

the computed maximum principle curvatures of boundary points surrounding the lumen cross section are mapped on the triangle meshed surfaces 

of the segmented coronary artery trees, the cross section structure of the coronary artery lumen segment is noncircular cross section structure. 
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1.  INTRODUCTION 
Computed tomography angiogram (CTA) [1] plays a significant 

role as a clinical tool in the diagnosis of the coronary artery 

diseases. It provides three-dimensional information [2], allows 

for a better understanding of cardiac three-dimensional anatomy 

[4], [5], medical diagnosis [6], and ongoing investigations of 

acute and chronic coronary heart diseases [7]. The noninvasive 

[9] manner empowered with the visualization of vessels attracts 

cardiologists to apply it in clinical environments. Segmenting and 

visualizing coronary artery trees and deriving quantitative data 

[18] from CTA image datasets for inspecting the coronary lesions 

is what many algorithms’ goal to focus on.  

Several algorithms have been developed to segment and visualize 

vessels in three dimensions [3], for instance, level set method 

[10], active contour algorithm [14], vesselness measurement [11], 

[12], expectation maximization estimation algorithm [15], 

moment-based shape analysis for voxel clusters [16], shape 

model based algorithms such as tubular model in three 

dimensions [17], the algorithm of combining graph-cuts and 

robust kernel regression to segment coronary lumens [18], [19]. 

The standard marching cube algorithm [21] generates a high 

resolution isosurface with an isovalue of image intensity to 

represent the object’s surface. The vertices of the set of triangles 

build the boundary point cloud of the object. A gradient based 

algorithm is used to extract vessel boundaries, the vessel 

boundaries are represented as an unstructured point cloud in 

three-dimensional image space. The locations of the vessel 

boundaries are defined among a set of voxels with the maximum 

gradient magnitude along the gradient direction. In this work, this 

algorithm will be applied to produce a boundary point cloud 

representing the coronary artery boundaries of a human heart. 

The existences of the calcified and soft plaques are harmful to the 

health of a human body [22-24]. Calcified plaques are with high 

intensities [15]. Assuming voxels’ intensities of the segmented 

coronary arteries are a Gaussian distribution brings out calcified 

plaques’ being identified. The computed mean value plus three 

standard deviations of the intensities is the threshold value to 

recognize the calcified plaques [25]. Stenoses or soft plaques are 

studied to be detected with profiles of artery lumen sectional area 

or vessel radiuses along the vessels’ centerlines [15], [27], [30]. 

The detections of the artery lumen, calcified and soft plaques or 

stenoses are clinical useful [31-33]. A coronary artery 

segmentation method is presented in this work to segment the 

voxels representing the coronary artery trees from CTA datasets. 

A triangle mesh method is used to recover the coronary artery 

surface from those detected vessels’ boundary points. The 

positions of calcified plaques can be identified from the 

recovered triangle surfaces. The computed maximum principle 

curvatures of the coronary boundary points are mapped on the 

triangle surfaces. 

2.  SEGMENT THE CORONARY 

ARTERIES WITH MULTIPLE 

ISOVALUES 

2.1 Downsample the CTA Datasets 
Similarly as [8], the sampling theorem in three dimensions is 

applied in this work. The discrete image dataset is obtained by 

sampling a continuous function 𝑓𝑐(𝑥, 𝑦, 𝑧)  on a lattice with 

interval (𝑋, 𝑌, 𝑍). For different sampling rate of a continuous 

function, the lattice interval (𝑋, 𝑌, 𝑍)  takes different values. 

Different lattice interval value represents different voxel size. 

Then for the same continuous function, the discrete image dataset, 

when sampled at lower sampling rate, has larger lattice interval, 

therefore larger voxel size. For the same spatial dimensions, if the 

discrete image dataset is sampled at high sampling rate, the voxel 

size is smaller, and the number of the resulted voxels is greater 

than those sampled at low sampling rate.  

According to marching cube algorithm, to compute the vessel 

boundary points from the original size of the CTA dataset, each 

voxel has to be computed. The extracted boundary point cloud 

includes the boundary points of arteries, chambers and other 

tissue structures. In a discrete image dataset, the vessels and other 

tissue structures are expressed as connected voxels. For the 

original image dataset, the number of voxels representing the 

vessels and other tissue structures is greater than those of image 

dataset with low sampling rate. Then the resulted boundary points 

from the original size of CTA dataset are more than those from 

the downsampled CTA dataset. 

Consequently, the amount of memory space involved for 

computing a downsampled CTA dataset is decreased. To 

downsample the image dataset, the image dataset is convolved 

with a sinc function and the original continuous function is 
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reconstructed, so that it can be resampled. The sinc function has 

infinite support, therefore, the windowed sinc function has to be 

used, which truncates the sinc function by multiplying it with a 

window function. After downsampling the volumetric image 

dataset, the size of the dataset is changed to 1/3 of the original 

image size in both rows and columns, respectively, and 1/1.6 of 

the original image dataset size in the number of slices. 

2.2 Detect Coronary Artery Regions 
Computation of all voxels in each image slice will produce many 

boundary points including other tissue structures besides the 

boundaries of the vessels, and the involved memory is of large 

amount. It is better to segment the regions containing coronary 

arteries for the extraction of their boundary points. Mathematical 

morphological operators can cluster a set of connected pixels 

with a structure element. In this work, such operators are applied 

to detect the coronary artery regions.  

Dilation morphological operation is to move a structure element 

inside the region of interest, and outputs the locus of the pixels 

covered by the structure element when its center moves inside the 

region of interest. The intensities of the artery regions are higher 

compared with those of the heart muscles. For each image slice, 

its average intensity is computed. If the pixels’ intensities in each 

image slice are higher than the average intensity plus or minus a 

small offset defined by the user for segmenting different coronary 

artery trees, the center of a 3x3 square structure element is placed 

on them. All the pixels covered by this square are defined as the 

foreground region. Erode this foreground region with an 8x8 

square when the downsampled dataset is being processed and 

with a 24x24 square when an original dataset is being operated.  

Small regions of foreground voxels can be removed via this 

operation. The resulted erosion set is dilated with a 4x4 square 

(with a downsampled dataset) or 12x12 square (with an original 

dataset) again. The difference of the foreground region and the 

resulted set is the region where coronary arteries exist. With this 

region, the produced boundaries belong to other tissue structures 

and the involved memory can be reduced. An image slice as an 

instance of the coronary artery region detected is shown in Figure. 

1 (a).   

2.3 Analyze Image Histograms of the CTA 

Datasets with the Original Size 
The image displays an object when its average intensity is 

different from its adjacent areas. The histogram provides an 

image’s gray-level distribution. Multimodal histograms can 

occur when the image contains multiple objects of different 

average brightness. The CTA datasets’ intensity histograms are 

shown in Figure. 2. There are three peaks in both of the 

histograms. The first one represents the background objects and 

its intensity is the lowest. The second one indicates the blood’s 

intensity and its intensity is between the lowest and the highest. 

The third one is recognized as the objects with the highest 

intensities, for instance, the bones or calcified plaques, etc.  

2.4 Segment with Multiple Isovalues 
The standard marching cube algorithm is applied to extract an 

object’s boundary point cloud. It is to find a boundary point 

linearly interpolated along the edge between two adjacent voxels 

in 𝑥 , 𝑦 , or 𝑧  direction. Thus the object’s boundary points 

generated by the standard marching cube algorithm vary with the 

intensity threshold value defined by the user. Since the varying 

contrast agent among the coronary arteries, multiple threshold 

values, similarly as in [26], are used in this work to extract 

coronary artery boundaries in the marching cube algorithm. The 

tested CTA datasets’ intensities are ranged from 0 to 4095. These 

multiple threshold values are selected inside an 

 

 

  

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

intensity region around the second peak value in the CTA 

dataset’s intensity histogram. The intensity threshold values are 

listed in Table I.  

TABLE  I THE MULTIPLE INTENSITY THRESHOLD VALUES 

Dataset  Intensity values 

1 1022 1102 1145 1187 

2 1343 1445 1500 1562.5 

    
Since multiple thresholds are used, multiple boundary layers are 

perhaps produced for the vessels. To reduce multiple boundary 

layers to one layer, the point with maximum gradient magnitude 

is kept among the neighboring boundary points near the gradient 

line of each boundary point.  

2.5 Determine the Coronary Arteries’ 

Centerlines 
The computed boundary point cloud is tetrahedralized, 

centerpoints can be calculated by applying a topological analysis 

of the vector field based on the gradient field within every 

tetrahedron. The computed centerpoints can be connected via a 

line segment when their nearest neighboring centerpoints are 

found.  The centerpoint can be connected with another 

centerpoint that is also closest to it and is in the reverse direction. 

Thus this centerpoint’s neighbors are determined.  

To differentiate the coronary artery centerpoints from the 

computed centerpoint cloud, one experienced medical technician 

can pick one seed centerpoint among the centerpoint cloud. This 

centerpoint is recognized as a coronary artery centerpoint; the 

neighboring centerpoints, which it is connected to, are 

recursively marked as coronary artery centerpoints. Several seed 

 
(a) 

 

(b) 

Figure. 1 (a) an image slice with the coronary artery 

region detected, (b) an original image slice without 

detection operation 
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centerpoints with a downsampled dataset are selected to find the 

other portions of a coronary artery tree’s centerlines. The number 

of seed centerpoints with an original dataset is more than a 

downsampled dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.6 Find the Coronary Artery Boundaries 
For each coronary artery centerpoint, the boundary points are 

recognized as boundary points of the coronary arteries when they 

are enclosed in a ball with the radius of current centerpoint. These 

boundary points’ normals must point inward of the vessel that 

encloses the current centerpoint. The tetrahedra attached by each 

of these boundary points are defined as the vessel tetrahedra 

except those, of which, there are any vertices’ normals pointing 

outward of the vessel. The vertices of vessel tetrahedra are 

identified as the boundary points of the coronary arteries.  

2.7 Segment the CTA Dataset with the 

Original Size 
The coronary artery boundary voxels of the original CTA dataset 

can be located from those coronary artery boundary points from 

the downsampled CTA dataset and are dilated with a 3x3x3 cube 

when a right artery tree is segmented and a 5x5x5 cube when a 

left artery tree is segmented. If the voxels belong to the detected 

coronary artery region, they are again processed with the same 

procedures to the downsampled datasets, for instance, 

segmenting with multiple isovalues, tetrahedralizing the 

boundary points, determining the coronary artery centerlines and 

finding the coronary artery boundaries. To extract the coronary 

artery centerlines, the centerlines represent small vessel branches 

are removed manually. Thus the vessel tetrahera are defined and 

the coronary artery boundary points are found.  

A scan-conversion algorithm [20] for lines computes the 

coordinates of the voxels that line on or near an ideal, infinitely 

thin straight line in three dimensions. In principle, the sequence 

of voxels is required to lie as close to the ideal line as possible 

and to be as straight as possible. The line segment can be drawn 

with a sequence of voxels described above with given start point 

and end point of this line segment. Scan converting polygons as 

area-defining primitives could be done a line segment at a time. 

Similarly, scan converting a tetrahedron as a volume-defining 

primitive can be completed a triangle at a time. Then the voxels 

representing a tetrahedron can be identified. And the coronary 

artery voxels can be obtained from all the vessel tetrahedra. The 

coronary artery boundary points are triangulated with a surface 

mesh. And the coronary artery voxels also include the voxels by 

the scan converting each triangle. 

3. VISUALIZE THE CORONARY 

ARTERY TREES 
The intensities of voxels that are not coronary artery voxels are 

set to zero. Those voxel sets of coronary arteries are smoothed 

with recursive Gaussian filter, and then are processed with the 

gradient based extraction algorithm. The triangle mesh is applied 

to the resulted boundary points to recover the surfaces of the 

segmented coronary artery trees.  

3.1 Rendering the Surfaces of the Coronary 

Artery Trees 
Two main visualization techniques for three-dimensional 

medical images are surface rendering and direct volume 

rendering (DVR) [13]. Rendering an object’ surface with triangle 

mesh belongs to the surface rendering visualization category. In 

DVR, a projected two-dimensional image represents the entire 

three-dimensional dataset. The projected two-dimensional image 

does not allow DVR to capture all the three-dimensional surface 

information completely. Figure. 3 (a), (b), (c), (d) display the 

surfaces recovered by the triangle mesh on the segmented 

coronary artery trees. The number of boundary points, the 

triangles and hole triangles are listed in the Table II, 1 represents 

dataset 1, 2 indicates dataset 2. A hole triangle means at least one 

edge of the triangle connects only one triangle. 

TABLE II. THE TRIANGLE MESH WITH THE ARTERY TREES’ 
BOUNDARY POINTS  

Artery 

tree 

point 

number 

triangle 

number 

Hole 

triangle 

number 

Left 1 32481 64961 14 

Right 1 33694 67400 0 

Left 2 44189 88376 12 

Right 2 27008 54008 9 

3.2 Identify Calcified Plaques on the Triangle 

Meshed Surfaces of the Coronary Artery 

Trees 

For the varying contrast agent among the coronary arteries, 

intensities of the boundary points are assumed as with Gaussian 

distribution. The mean (𝜇𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑝𝑜𝑖𝑛𝑡 ) and standard deviation  

 

 

 
(a) 

 
(b) 

Figure.  2 intensity histograms of CTA datasets (a) dataset 1, 

(b) dataset 2 
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( 𝜎𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑝𝑜𝑖𝑛𝑡 ) of intensities of the boundary points are 

computed. Figure. 4 shows the intensities of the artery trees’ 

boundary points mapped on the triangle mesh. The intensity 

values are displayed varying from low to high with color ramping 

map. The calcified plaques are having higher intensities 

compared with their neighboring intensities and are included in 

the vessel lumens by the multiple isovalue based algorithm. The 

color red represents those boundary points with intensities higher 

than 𝜇𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑝𝑜𝑖𝑛𝑡 + 4𝜎𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑝𝑜𝑖𝑛𝑡 . The calcified plaques 

can be perceived as a small block with the color red or light red 

if that light red’s surrounding areas are colored green. Thus the 

calcified plaques with intensities lower than the threshold values 

can be identified. These calcified plaques are identified correctly 

as those are recognized from each image slice when the 

intensities of the boundary points are mapped on the triangle 

mesh.  

Figure. 5 shows instances of the calcified plaques recognized 

from image slices circled with orange color. Figure. 5 (c) also 

displays one calcified area circled with blue color, which is not 

recognized with the boundary point intensity mapping, a false 

negative error. With tested coronary arteries, this calcified plaque 

detection method has zero false positive and only one false 

negative. 

Figure. 6 visualizes the calcified plaques as sets of voxels colored 

orange, and they are recognized since they have higher average 

intensity than that of the blood of the coronary arteries. The 

calcified plaques are inside the vessel lumens by the multiple 

isovalue based algorithm and they are included in the segmented 

coronary artery voxels. Assume the blood intensities of the 

coronary arteries are with Gaussian distribution. The calcified 

plaques are recognized as those voxels which intensity values are 

greater than 𝜇𝑣𝑜𝑥𝑒𝑙 +  3𝜎𝑣𝑜𝑥𝑒𝑙, 𝜇𝑣𝑜𝑥𝑒𝑙 is the mean intensity of the 

segmented coronary artery voxels,  𝜎𝑣𝑜𝑥𝑒𝑙  is the standard 

deviation. The calcified plaques with intensities less than the 

threshold value cannot be determined. In dataset 1 and 2, there  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(a) 

 
(b) 

 

(c) 

 

(d) 

Figure. 3 triangle mesh on the artery trees (a) left 1, (b) 
right 1, (c) left 2, (d) right 2, 1 represents dataset 1, 2 

indicates dataset 2. 

 

 

   
(a) 

  

(b) 

Figure. 4 
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(a)                                         (b) 

Figure. 5 

 
(c) 

Figure. 5 calcified plaques recognized from image 

slices (a) left 1, (b) right 2, (c) left 2, 1 represents 

dataset 1, 2 indicates dataset 2. 

 

 
(a) 

Figure. 6 

 
(b) 

Figure. 6 

 

 

 
(c) 

Figure. 4   

 

 

  

(d) 

Figure. 4 intensities of the artery trees’ boundary points mapped 
on the triangle meshed surfaces (a) left 1,  (b) right 1,  (c) left 2,  

(d) right 2, 1 represents dataset 1, 2 indicates dataset 2. 
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is one false positive calcified area in the left coronary artery tree 

of dataset 1, and there are still three false negative areas in the 

left coronary artery tree of dataset 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3 Mapping Maximum Principle Curvatures 

of Boundary Points on the Triangle Meshed 

Surfaces of the Coronary Artery Trees 
The maximum principal curvature of a torus is a constant which 

is equal to the reciprocal of the minor radius [29], and the 

maximum principal curvature of a circular cylinder is also a 

constant with a value of the reciprocal of the radius of circle base 

[29]. This work uses the hypotheses that if the real lumen cross 

section structure is deviated from the circular cross section 

structure, different values of the maximum principle curvatures 

of boundary points are surrounding the lumen cross section on 

the triangle meshed surfaces of coronary artery trees. 

According to the curvature computation in [28], the maximum 

principal curvatures can be derived from the local Hessian matrix 

at each surface triangle’s vertex. They are mapped on the 

recovered triangle meshed surfaces of the coronary artery trees. 

The mean value of those maximum principle curvatures of 

boundary points is computed. In Figure. 7 (a), (b), (e), (f), (i), (j), 

(m), (n), (q), (r), the color blue represents those values of 

maximum principle curvature that are greater than the mean value. 

Figure. 7 (b), (f), (j), (n) show the large views of the coronary 

artery segments located with line segments, different colors are 

displayed surrounding the lumen segments. The boundary points 

of these artery segments show light blue or green colors for low 

maximum principle curvature values and blue colors for high 

maximum principle curvature values. The positions of high (low) 

maximum principle curvatures are displayed at symmetric 

locations around the lumen segment’s axis. These artery 

segments are investigated by the maximum intensity projection 

(MIP) technique. It is one of recommended image post 

processing formats for interpreting the coronary CTA dataset 

[34]. In this work, the MIP images are parallel projected. From 

the three-dimensional positions where the line segments are 

placed, the slab volumes containing the positioned artery 

segments can be found. Figure. 7 (c), (d), (g), (h), (k), (l), (o), (p) 

are the MIP images of the slab volumes containing the vessel 

segments that are located with line segments. Figure. 7 (c), (g), 

(k), (o) are the MIP images of one side view to project the slab 

volume onto the projection plane where the side of colors with 

high values of the maximum principle curvatures can be 

perceived. The MIP images of another view are shown in Figure. 

7 (d), (h), (l), (p), they are created when the slab volume is 

projected onto the projection plane where the side of colors with 

low values of the maximum principle curvatures can be observed. 

The MIP images of these two side views illustrate different radii 

can be obtained from these two sides views at the same cross 

sections of the artery segments. The different radii displayed by 

these MIP images agree with the different colors mapped by 

maximum principle curvatures. (q) is another view of mapping 

maximum principle curvatures on the triangle meshed surface of 

left coronary artery of dataset 1. The artery segment positioned 

by the line segment is surrounding with blue color completely 

displayed in (r). The MIP images of the two side views of this 

artery segment in (s) and (t) display not obvious difference of 

radiuses at the same cross sections of the artery segment 

positioned by the line segment, which agree with the same color 

mapped by the maximum principle curvatures. 

In this work, the computed maximum principle curvatures are 

inspected at positions without detected calcified plaques. The 

tested coronary artery segments located by the line segments 

show that if different values of the computed maximum principle 

curvatures of boundary points are surrounding the same lumen 

cross section on the triangle meshed surfaces of coronary artery 

trees, the lumen displays different radiuses surrounding the same 

cross section by MIP images, which further indicates this cross 

section structure is not a circular cross section structure. 

4. CONCLUSIONS 
The method presented to segment coronary artery trees is capable 

to obtain the sets of voxels representing coronary arteries. The 

positions of the calcified plaques can be identified when the 

intensities of boundary points of the coronary artery trees are 

mapped on the triangle meshed surfaces. If different values of the 

computed maximum principle curvatures of boundary points 

surrounding the lumen cross section are mapped on the triangle 

meshed surfaces of the segmented coronary artery trees, the cross 

section structure of the coronary artery lumen segment is 

noncircular cross section structure. 

 

 

 

 

 

 

 

(c) 

Figure. 6 

 
(d) 

Figure. 6 calcified plaques visualized as orange 

voxels inside the coronary artery boundaries (a) 
left 1, (b) right 1, (c) left 2, (c) right 2, 1 

represents dataset 1, 2 indicates dataset 2. 
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(a) (b) 

                           

(c)                                                 (d)                    

                        Figure. 7 

 

  
                                        (e) 

  

      (f)                       (g)                                  (h) 

                                              Figure. 7 

 

   

                      (i)                                                      (j) 

             

                    (k)                                     (l)                        

                                           Figure. 7 

  

                                  (m) 

       

               (n)                      (o)                           (p) 

Figure. 7 
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