
International Journal of Computer Applications Technology and Research

Volume 6–Issue 1, 32-37, 2017, ISSN:-2319–8656

www.ijcat.com 32

Performance Forecast of DB Disk Space

Srikanth Kumar Tippabhotla

CTS

Abstract: ln the absence of special purpose monitoring and/or modeling software designed specifically for forecasting database disk

space requirements, a solution was developed using general purpose database facilities and office suite products. The results achieved

were (1) an understanding of the heretofore unknown trends and patterns in the use of disk space by individual databases (2) the ability

to accurately and proactively forecast the additional disk space needed for individual databases, and (3) the ability to reclaim the

forecast unused disk space, all based upon linear regression analyses.

Keywords: Performance; DB

1. INTRODUCTION
As the sheer number, size, and complexity of databases

deployed in organizations continues to climb each year, the

effective management of those instances becomes a challenge

for the IT staff, and in particular for those charged with

maintaining database integrity, availability, performance, and

recoverability. Practices rooted in reactive and frequently

eleventh-hour individual heroics no longer make the grade in

today’s business environment. Rather, one needs to create and

adopt repeatable, proactive methodologies in order to provide

appropriate IT service delivery.

The database management systems (DBMS) utilized consisted

of:

 Oracle Server (Oracle)

 Sybase Adaptive Sen/er Enterprise (Sybase)

 IBM DB2/UDB (UDB)

 Microsoft SQL Server (SQL Server)

Operating system (OS) environments included:

 UNIX -- IBM AIX

 UNIX -- Sun Microsystems Solaris

 Microsoft Windows Server.

As is the case with most operational support groups an on-call

pager rotation schedule placed a team member in the “hot

seat" 24 hours a day for a one- week period. During this tour

of duty, the on-call person would respond to pages that were

programmatically generated by the combination of the BMC

Patrol Monitor for Sybase/Oracle/UDB product (hereafter

referred to as Patrol) and the Tivoli Enterprise Manager suite.

Additional, manually-generated pages were also issued by IT

staff members at the round-the-clock computer operations

center.

2. METHODS
Before getting into the details of the system, let’s lay the

foundation for that discussion with some background

information.

Definition of Terms and Database Concepts:

DBMS: Software package that allows you to use a computer

to create a database; add, change, and delete data in the

database; sort the data in the database; retrieve data in the

database; and create forms and reports using the data in the

database.

Instance: A database instance consists of the running

operating environment which allows users to access and use a

database. A database (as a generic structured store of data)

becomes an instance when instantiated as a system and made

available via its database management system. Specific

database providers can define database instances in terms of

the precise hardware and software resources required to make

them available: thus the Oracle database requires allocated

system memory and at least one background process before

the database counts as an instance.

Database: A database is a collection of information stored in

a computer in a systematic way, such that a computer program

can consult it to answer questions. The software used to

manage and query a database is known as a database

management system (DBMS). The properties of database

systems are studied in information science.

in the case of Oracle and UDB there is a one-to-one

relationship between an instance and a database; e.g. there is

one and only one database associated with each instance.

Sybase and SQL Server, on the other hand, have a one-to-

many relationship between an instance and its databases; e.g.,

one instance can have multiple databases defined and

managed within it.

The Physical Representation of Database Content on Disk

All of the “stuff” that’s stored and managed by a database

(tables, indices, procedures, packages, rules, constraints) has

to ultimately reside on disk. Below is an overview of the

different approaches taken by the various DBMS

architectures.

Oracle and UDB use the concept of a tablespace as the

metaphor for holding the contents of a database. There is a

one-to-many relationship between an instance (database) and

its tablespaces. That is, an instance can and usually does have

a number of tablespaces associated with it. Those tablespaces,

however are not shared among other, unrelated instances.

A tablespace, in turn, consists of one or more “datafi|es"

(Oracle) or “containers” (UDB) which are the actual physical

files on disk that are visible to the hosting OS.

Sybase, on the other hand, use the concept of a database

device to hold the contents of a database. A database device is

somewhat akin to a tablespace. Database devices, in turn,

consist of physical files on disk which are visible to the OS.

While a database device can be used by multiple databases

within an instance, the practice at the author‘s location is to

associate only one database to any particular database device.

Therefore, for purposes of trending and analysis, disk

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 6–Issue 1, 32-37, 2017, ISSN:-2319–8656

www.ijcat.com 33

utilization metrics at the internal database level were gathered

and used for forecasting, and not at the database device level.

ln order to define a common terminology for the tablespace

(Oracle, UDB) and database (Sybase) constructs across the

various DBMSs, the author coined the term “data holder”.

When an instance or database experiences a near or complete

shortage of disk space, it experiences that shortage at its “data

holder’ level. That condition is manifested in DBMS error

messages to that effect. Similary, from the OS‘s perspective,

the files which hold the databases content are stored just like

any other file; i.e., inside an OS file system. While there are

differences between the way the UNIX and Windows Server

file systems work internally, logically they can be viewed as a

pre-defined amount of disk space for holding files.

Analogically, a data holder is to an RDBMS database as a file

is to an OS file system -- both are layers of abstraction in the

path to the final representation of database content on disk.

Regardless of how file systems are instantiated to a particular

OS image (SAN, NAS, arrays, internal disk, others), they all

share the common attribute of having been assigned a finite

size that meets the anticipated needs of that file system. An

image of an OS would typically have many file systems

defined to it, each with a different size.

if a database instance has a 10GB file system defined for its

use, that file system can hold any number of files as long as

the sum of their sizes is <= 10GB. Any attempt to increase the

size of an existing file or create a new file that would bring

that sum over 10GB would be met with an OS error message

and a denial of that attempt.

Statement of the Problem

No matter which DBMS is involved, all databases operate

within the constraint of having to house all of their content

within a set of data holders, each of which is pre-defined to be

of a certain size. When any such data holder is first defined to

the database, it will appear to the OS to be a file or set of files

which occupies the full size of the defined data holder. For

example, creating a 5GB tablespace in Oracle will result in a

file or set of files whose sum of file system disk occupancy, as

seen by its hosting OS, will be 5GB. However, from the

DBMS's perspective at this point in time, the tablespace is

empty or 0% full, and has no database content in it yet. It

shows up as an empty tablespace with the capacity to hold

5GB worth of database objects. If the hosting OS file system

were defined at 10GB, it would see the file system now as

50% full.

As database objects (tables, indices, etc.) are defined and

subsequently populated using that data holder, it will present

itself to the DBMS as housing n bytes. As n encroaches on

5GB it will come up against the 100% full internal DBMS

mark and the DBMS will not be able to add any more content

to that data holder until it's is made larger, or content is

deleted. At that point the DBMS will return error codes to any

database operation which would result in the need for more

disk space in the effected data holder; e.g., SQL INSERT

requests and certain types of SQL UPDATE requests.) Note

that there would be no OS error messages since no attempt

has been made to increase the size of the underlying files.

Such a condition would be seen as a loss of availability to

parts or all of the application using that database. In order to

get the application running again, a short-term quick fix for

this situation would be to increase the size of the data holder,

providing that the hosting file system had unused space in it

for such an increase. lf the file system were full, other IT

players would have to be contacted to see if alternative

solutions could be tried; e.g., the applications group might see

if there was any data that could be deleted from the database,

or the host system administration group would see if they

could increase the size of the effected file systems. While

these options were being explored, the application would be

out-of-sen/ice. Were this to occur in the off-hours, an even

greater delay in restoration to normal service would be

expected as on-call people as contacted to remedy this basic

disk space problem from remote locations. The magnitude of

this issue became apparent to the author when he saw that that

there were over 2,800 data holders that made up the Sybase,

Oracle, and UDB instances. These 2,800 data holders in turn

consist of over 5,100 individual data files. Managing 2,800

data holders and 5,100 files in a reactive, pager event-driven

basis was simply not working. A proactive, quantitatively

based forecasting approach was needed.

Statement of the Solution

ln order to prevent these types of database disk space

problems from occurring, or at least to greatly reduce their

likelihood of occurrence, what was needed was information

that characterized the usage patterns of each of the data

holders in the enterprise over time. Having that data would

allow one to extract the underlying trends and patterns

exhibited in the data holders over an extended period, and to

forecast what the future needs were of each data holder.

To that end, the author devised the simple collector mentioned

earlier for all of the Oracle databases. The collector itself is a

single SELECT statement that leverages several PL/SQL

features. This statement is run just once a day on a single

Oracle instance. That single instance has database links set up

for all of the other Oracle instances in the enterprise. This

allows the SQL to gather the information from all other

instances in the complex via database links, and to gather all

of the information for all data holders on all instances into a

single database table for analysis and longer term storage The

PL/SQL loops through the dba_db_|inks table, generates the

SQL needed for each instance, and then executes the

generated SQL. The execution is serial, gathering the needed

information about all tablespaces in any one instance and then

going on to the next instance until information from all

instances is placed into the central repository table. The

information gathered from each instance was described above

and is repeated here in its database format in Table below:

Column Name Data type

Batch_date DATE

Instance VARCHAR2 255

RDBMS type VARCHAR2 6

Data_holder_name VARCHAR2 30

Allocated_bypes NUMBER

Free_bytes NUMBER

Note: “batch_date" is the date and time when the data was

collected. ln order to provide a consistent value for all of the

tablespaces in all of the instances at data collection time, the

current date and time at the start of the collection process is

stored as a constant. It's then reused in all of the data extracted

from each instance, even though the actual extraction times

might be a minute or two offset from that value. Given the

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 6–Issue 1, 32-37, 2017, ISSN:-2319–8656

www.ijcat.com 34

longitudinal nature of the data used in the analyses, this

difference in time is not a problem. Having a consistent date

and time for the all values collected that day allows grouping

by date and time in subsequent analyses.

As noted earlier, shortly after the Oracle collectors were

created and put into place, another team member created

collectors for Sybase and UDB. These collectors gather the

same six fields as shown in Table 1 since the data holder

concept, by intent and design, is extensible to all DBMSs.

Due to architectural dissimilarities between Oracle, Sybase,

and UDB, the actual means of collecting the information is

unique to each DBMS. The extracted data, however, has the

same meaning and is not sensitive to any particular DBMS

collection context. Once this information was gathered to

cover a reasonable period of time, it was possible to subject

the data and its derivatives to a number of analyses, described

below.

Results:

Forecastinq Analvses Performed on the Data:

In order to use the collected data, it first had to be placed on a

common platform that would provide the analytics needed for

forecasting, descriptive statistics, etc. While the Oracle

collector accumulated all of its obsen/ations about each Oracle

instance into a single table on the central Oracle collector

instance, the Sybase and UDB collectors used a different

approach. They created individual flat files in comma

separated value (CSV) format on each Sybase and UDB

instance’s host. What was needed was a means to gather the

content of these three disparate data sources and put it in one

spot. The initial solution chosen for this forecasting system

was to use Microsoft’s OLAP Services, a component of MS

SQL Server versions 7.0 and 2000. The CSV files from each

Sybase and UDB instance were automatically gathered

together each day and sent via file transfer protocol (FTP) to

an MS SQL Server instance. There they were loaded into a

common table (t_data_hoIder) via Data Transformation

Services. Similarly, the Oracle data for each day was

automatically extracted out of its table and loaded into the

same location. That table’s layout is identical to the one

shown in Table 1. All columns have the “NOT NULL"

attribute. The intent of designing the data structure in this way

was to provide a means of performing multi-dimensional

analyses along variables of interest. While the main focus was

to forecast when each individual data holder would run out of

space, the presence of the instance, DBMS, and data holder

columns allowed one to dice-and-slice the data along those

values. These are discussed later in the paper.

The following derived measures were created for each data

holder:

 Bytes_used: (bytes_allocated — bytes_free)

 Percent Used: (Bytes_used/bytes_allocated)*1O0

 Percent Free: (bytes_free/bytes_allocated)*100

With the table in place on MS SQL Server, the author defined

a multi-dimensional data structure and set up analyses in MS

OLAP Services. That structure and its analyses vetted (serial)

time against bytes_used for each unique combination of

instance name and data holder name. This analysis used the

most recent 365 day’s of daily data points for each data holder

as input and yielded the slope, intercept, and Pearson product

moment correlation coefficient (squared) for each data holder

on each instance. Numerous other descriptive statistics were

also calculated for each data holder such as the mean, median,

mode, variance, standard deviation, and number of

observations. The output of these OLAP Services analyses

was in the form of a table which contained a row for each of

the 2,800 data holders. The columns in each row of this table

were the instance name, the DBMS type, the data holder

name, slope, the intercept, the R2, the number of observations,

the mean, the median, the mode, the variance, and the

standard deviation for that “set”.

Additional columns in this table, by way of programming

done by the author within OLAP Sen/cies, were the most

current values for bytes_used bytes_allocated, and bytes_free,

along with the value of the date of the most recent observation

in the past year’s set of data for this

instance/DBMS/data_holder set. Lastly, OLAP Sen/ices was

further programmed to take these values and forecast what the

expected shortfall or surplus would be, in bytes, for each data

holder six months from the current date, using the method

described immediately below:

Using the simple linear equation “y = mx + b", the author

solved for “y” in order to see how many bytes would be in use

(bytes_used) at time where “X” was displaced 180 days

fon/vard from the current date. Applying the slope “m”

calculated for each data holder we arrived at the projected

bytes_used six months from now.

Further programming in OLAP Services yielded the

difference between the most current bytes_a||ocated number

and the six-month forecast bytes_used value If the difference

between the current bytes_a|located and the forecast

bytes_used was positive, that indicated that we would have a

surplus of that exact magnitude six months from now for that

particular data holder in that particular instance. lf, on the

other hand, that result was negative, we would have a shortfall

of that size in six months, and would need to take corrective

action now so as to forestall an on-call coverage pager event

in the future. The above calculations were all predicated upon

filling the data holder to 100% of its allocated capacity at the

six month target date, since we were forecasting bytes_used

against the most current bytes_a||ocated. Based upon practical

experience, and given the variance observed over time in each

data holder on each instance, or collectively across the DBMS

or instance dimensions, it was evident that allowing a data

holder to approach 100% full was a dangerous practice. It did

not take into account the periodic, seasonal, and random ebbs

and flows that were observed in the data holder‘s behavior

with respect to bytes_used. Not all data holders grew at a

linear rate; rather, they exhibited troughs and crests in

bytes_used over the course of time. The consensus within the

author’s workgroup, after having looked at the data for all

instances and data holders, was that a best practice would be

to forecast data holders to reach their 70% full “saturation”

point. That being agreed, bytes_used was adjusted in the

equation by dividing it by 0.70. The values of the

surplus/shortfall column for all 2,800 data holders were then

examined for the largest negative values. This was done by

importing the OLAP cube into Excel. The conditional

formatting feature in Excel was used to show those data

holders with a projected shortfall to have their numbers

literally “in the red". In some oases there was sufficient space

in the underlying file system(s) to satisfy the forecast

shortfall, and the data holder was increased in size by the

amount calculated by one of the database staff. However, in

other cases, there was not sufficient free space in the

underlying file system(s) and a formal request was created for

the UNIX disk management group to add the needed number

of bytes. This proactive, forecasting approach allowed such

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 6–Issue 1, 32-37, 2017, ISSN:-2319–8656

www.ijcat.com 35

requests to be fulfilled well in advance of the six month

projected shortfall. The forecast numbers, in and of

themselves, were not used blindly. Examination of the R2

values for each data holder was used to assess how well the

observed data points resonated to the march of time. If the R2

value was below 0.80, visual inspection of the plotted bytes

used data points was undertaken to help understand the

pattern, if any, in the data. If the data was “all over the place"

for a particular data holder, the database team would make a

best estimate of what to do with that individual data holder,

and manually monitor it more closely in the coming six

months. Since R2 is the percent of the observed variance

that’s accounted for by the independent variable (time in this

case), 0.80 was arbitrarily used as a line in the sand against

which all forecasts were evaluated for usefulness.

These analyses were run on a regular and automatic basis

every three months. The results were examined by the

database group to see which data holders needed an

adjustment to accommodate their projected growth (or

decline) in the next six months.

3. BEYOND FORECASTING

3.1 Additional insights Provided by the

data:
Having a year’s worth of data in the database now allowed the

author to pose specific queries about the nature of all the

databases in the organization. It was only by having this data

and exploiting its emergent properties that these insights were

possible Heretofore, such questions had been impossible to

answer quantitatively due to there being no historical data.

Best guesses were made, current real-time data was used, and

the collective anecdotal experience of the workgroup was

combined to produce SWAG answers.

Now, with the actual data at hand, a number of questions

could be and were answered:

 Q. Which data holders exhibit has the highest or

lowest mi of growth?

- A. By sorting the OLAP cube on the slope value, we display

all data holders ordered by their rate of growth, from positive

to negative.

 ' Q. Which data holders exhibit has the highest data

content occupancy?

~ A. By sorting the OLAP cube on the mean bytes used value,

we display all data holders ordered by amount of information

they store.

 Q. Which data holders exhibit has the highest disk

occupancy?

- A. By sorting the OLAP cube on the mean bytes_al|ocated

value, we display all data holders ordered by amount of disk

space they take up.

 Q. Which data holders are the most over- or under-

utilized?

- A. By sorting the OLAP cube on their Percent Used or

Percent Free values, we can display all data holders ordered

by where they stand in the O-100% data holder full category.

Perhaps the most valuable insight was provided by

creating a pivot table/chart in Excel, which was

published to the corporate intranet for use by managers,

developers, business analysts, and others. This allowed IT

staff to visualize the trends and other characteristics of the

data in an interactive manner. Since Excel has an internal

limit of 65K rows in a worksheet, and we had 2,800 data

holders with 365 observations each, or 1,022,000 rows, the

raw data could not be put into Excel. instead, the author

elected to only use the data from the production instances, and

to further aggregate that into its weekly mean values. This

was done by writing a trivial SQL statement to find the

weekly means for bytes_used, bytes_free, and bytes_a||ocated

for each unique combination of instance name, DBMS type ,

data holder name, and week number within the year. (Since

the data was on MS SQL Server, the datepart “week” value

was used in the GROUP BY clause. The datepart "year" was

used in the expression to order the data appropriately, since

we had multiple years in the database.)

The data for the pivot tables and charts consisted of the

elements shown in below Table:

dbms_prd_name (Sybase, Oracle, UDB)

db_instance (instance name)

data_holder_name

dbs_year (YYYY)

dbs_week (1-52)

Bytes_used (by that data holder)

Percent_Full (for that data holder)

Two pivot tables and two pivot charts were created from this

data: one that showed the (absolute) bytes_used values, and

one that showed the (relative) percent full values. The

bytes_used pivot table and chart had the following

characteristics:

 Its x-axis was time, expressed as the past 12

months, using the year and the week within the

year. Since the past 12 months would span a year in

all cases but the beginning of a new year, two pivot

select buttons appear on that axis: one for year and

one for week within year. For the most part these

buttons were unused, and the entire 12 months of

data was viewed.

 its y-axis plotted bytes_used.

 Pivot buttons were provided for:

 dbms_prd_name

 db instace

 data holder name

This allows the views to dice-and-slice the data along any of

these dimensions. For example, these questions were

answered in the pivot chart:

 Whats the pattern of bytes_used over the past year

for:

 All Oracle instances?

 All Sybase instances?

 All UBD instances?

 Oracle and Sybase combined?

 Oracle and UDB combined?

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 6–Issue 1, 32-37, 2017, ISSN:-2319–8656

www.ijcat.com 36

 Sybase and UDB combined?

 Sybase and Oracle and UDB combined?

 What’s the pattern of bytes_used over the past year

for:

 Any individual instance?

 Any combination of instances? (Note this also

permits any combination of instances of

interest. regardless of the DBMS that’s hosting

them.)

 What‘s the pattern of bytes used over the past year

for:

 Any individual data holder? (Note that one

must enter an instance name for this to be

meaningful. Otherwise it would show the total

value for all data holders that have that name,

regardless of the instance name.)

 Any combination of data holders?

An example of this pivot chart is shows in Figure below:

The percent used pivot table and chart had the same setup as

the bytes used pivot table. However, since the percent

calculation was performed at the data holder level in the raw

data, it would not be valid to do any roll-ups on the DBMS or

instance dimensions. Therefore, a warning message was

written to appear on the pivot chart that read Only meaningful

if a data holder name is selected, and that data holder name is

unique across DBMSs and instances. Supply further

dbms_prd_name and db_instance criteria to ensure

uniquenessm’) Below Figure shows the pivot chart. By using

this second pivot chart, people in the IS infrastructure could

see which data holders are close to their 100% full limits.

Also, the pivot table content can be copy/pasted into a new

spreadsheet and then sorted on its percent full value to show

all data holder's in the enterprise in order by their percent full

values. Using excel Filtering, these queries can further be

refined into DBMS type, instance name, and data holder

name.

The Excel spreadsheet was created such that one can refresh

the raw data from the source database on MS SQL Server

with a single click. Therefore, each month it’s possible to

completely update the pivot tables and charts with virtually no

effort.

4. DISCUSSION
By measuring and storing just these two, simple metrics every

day for each data holder on each instance (bytes_allocated,

bytes_free), the organization was able to evolve from its

previous reactive mode to a more proactive and methodical

process.

Benefits

Some of the benefits that accrued through this shift in focus

and the use of applied mathematics were:

 With this data now published on a regular monthly

basis to the intranet, the consumers of it have gained

considerable insights into the seasonal and other

variations in their data usage patterns.

 The work group responsible for acquiring disk

space forthe entire IS organization can now set

realistic budget values for next years disk space

requirements, based upon the higher level rollups of

the bytes_used data.

 Pager call reduction: the 1,041 pages that were

previously issued per year for database disk space

problems dropped to only a handful.

 The rates of growth of the various applications or

business systems at the organization were now

quantified and published. This allowed the IT

organization to compare those rates between

applications, year-over-year, etc.

 The organization can now identify any

anomalousrates that might indicate that an

application change (intended or not) or business

driver variation was having a significant impact on

the rate at which data was being accrued in a

database.

 Descriptive statistics can be compared between data

holders to better understand their central tendencies

and dispersion characteristics.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 6–Issue 1, 32-37, 2017, ISSN:-2319–8656

www.ijcat.com 37

5. CONCLUSION
lt’s frequently amazing how just a tiny set of data

observations can form the basis of uncovering the underlying

substrates of an IT infrastructure. Automatically gathering just

two values per day from each data holder in the enterprise

allowed the IT staff to quantitatively and visually depict the

patterns that had had been there all the time -- they had just

not been measured. Applying that knowledge freed up

considerable staff time which had previously been consumed

by unnecessary, reactive paging events and by daily disk

space monitoring. Now that these analyses have given us a

glimpse into the nature of the organization's database

environment, additional next steps can be considered:

 One could correlate (orjoin, in “database-eze") OS

file system statistics with the DBMS data above so

as to automatically determine if there is enough

space in a file system to address the forecast deficit.

 We could explore non-linear regression

relationships, any number of classical transforms

(log, power, exponential, Nmorder polynomials,

squares, cubes, inverses, etc.) of the dependent and

independent variables could be performed to

determine if any combination of those yields higher

R values.

The very first DBMSs, which appeared in the early hunter-

gather phase of IT, required a tremendous amount of staff

time just to keep them running. Knowledge about and

experience with them was scarce, often acquired as folklore

from the tribal elders around the corporate campfires. Secret

handshakes and magical amulets abounded. Mystical robes

were frequently donned in order to exorcise the demons that

plagued that software. However, over time, the DBMS

vendors as a group added more and more self-managing

capabilities to those systems, which made them less and less

labor intensive. Even with those enhancements, the pesky

problems associated with database disk space persisted. Some

vendors did add features that self-managed the data holders by

automatically extending them into their host file systems on

an as needed basis, following business rules set up by the

database administrators. Vendors are even putting in features

that retract over-allocated data holders into disk space

footprints that more closely resemble their normal usage

patterns As those features become the accepted best practices

in the workplace, the clerical tedium of managing database

disk space will eventually become a faded memory, much like

the punch card.

The system described in this paper is an attempt to provide a

stepping stone to bridge the gap between the present state of

DBMS capabilities and the future, and to do so with a

methodology firmly rooted in quantitative analysis.

6. REFERENCES
[1] Vijay Datla, “Software Performance Tuning”, IJARCST,

vol. 4, issue 4, 2016.

[2] http://www.scolumbiasd.k12.pa.us/hsf/business/gengler/c

ompapp/accintro.htm

[3] Vijay Datla "Performance of Ecommerce

Implementation", International Journal of Advanced

Research in Computer Science and Software

Engineering, vol. 6, issue 12, 2016.

[4] http://en.wikipedia.org/wiki/Database_instance

[5] Vijay Datla “Software Performance Workload

Modelling”, International Journal of Computer

Applications Technology and Research (IJCATR),

Volume 6-Issue 1, 2017. doi:10.7753/IJCATR0601.1003

[6] http://en.wikipedia.org/wiki/Database_instance

[7] Vijay Datla “Performance Lifecycle in Banking

Domain”, International Journal of Computer

Applications Technology and Research (IJCATR),

Volume 6-Issue 1, 2017. doi:10.7753/IJCATR0601.1004

http://www.ijcat.com/
http://en.wikipedia.org/wiki/Database_instance
http://en.wikipedia.org/wiki/Database_instance

