
International Journal of Computer Applications Technology and Research

Volume 6–Issue 2, 109-116, 2017, ISSN:-2319–8656

www.ijcat.com 109

Towards Ontology Lifecycle: Building, Matching and
Evolution to Semantically Integrate Application

Ontologies

Razika Driouche

National High College

of Biotechnology, Taoufik

Khaznadar, Algeria

Abstract: Semantic interoperability among applications, systems, and services are mostly based on ontology. Its increase usage in

Information Systems and knowledge sharing systems raises the importance of ontology development and maintenance. It is essential

for sharing information among independent organizations, exchange of information among heterogeneous systems. To make this

possible, we need to carefully model the domain knowledge while preserving its semantics. Ontologies are complex in nature and

often structured. Their development and maintenance incorporate research areas like: building, evolution, versioning, matching and

integration where these are fundamentally different. We uncover the gap in the current research area of ontology building, matching

and evolution. We propose a research direction based on ontology construction using knowledge extraction, matching evolution

between versions. This paper presents system architecture to manage the lifecycle of the application ontology incorporating building,

matching and evolution processes. This solution is integrated in the source ontology since its creation in order to make it possible to

evolve and to be versioned.

Keywords: ontology lifecycle; ontology building; ontology matching; ontology evolution; application ontology.

1. INTRODUCTION
With growing business globalization and worldwide

collaboration of manufacturing companies, a seamless

exchange of products, services and information, within and

across enterprises is urgently required. Both vendors and users

are making serious efforts to improve enterprise

interoperation [1].

Modern organizations are increasingly operating upon

distributed and heterogeneous information systems, as they

continuously build new autonomous systems, powered by the

rapid advancement of information technology. They are

facing challenges to integrate heterogeneous applications. The

need to integrate heterogeneous applications, both within and

across organizations, is indeed becoming pervasive.

Every day, organizations all over the world generate reports,

articles, books, emails, and all kind of textual data concerning

several topics. The increase of the storage capacity of

computers and servers enable these organizations to keep all

files. They produce without the need of deleting anything.

One mainly problem they face is to know what kind of

information they have, and how it is related.

The fundamental aspect of information exchange among

applications, systems, and services is the development of a

consistent and comprehensive model for representing the

domain knowledge [2]. It is essential for sharing information

among independent organizations, and exchange information

among heterogeneous applications of Information Systems.

To make this possible, we need to model the domain

knowledge while preserving its semantics [3]. The

development of ontologies is becoming a crucial part of

semantic web and knowledge management in the

organizations.

Interoperability among different ontologies becomes essential

to gain from the power of the Semantic Web. Thus, matching

of ontologies becomes a core question.

Ontology matching is a key interoperability enabler for the

semantic web, as well as a useful tactic in integration tasks

dealing with the semantic heterogeneity problem. It takes the

ontologies as input and determines as output a set of

correspondences between the semantically related entities of

those ontologies.

Ontology matching is seen as a solution provider in today’s

landscape of ontology research. As the number of ontologies

that are made publicly available and accessible on the Web

increases steadily, so does the need for applications to use

them. A single ontology is no longer enough to support the

tasks envisaged by a distributed environment like the

Semantic Web. Multiple ontologies need to be accessed from

several applications. Matching could provide a common layer

from which several ontologies could be accessed and hence

could exchange information in semantically sound manners

[4].

Thus the use of ontology is increasing in Information

Systems, which in response increases the significance of

ontology maintenance. Ontologies need to be kept updated for

the dependent systems to remain usable. With the increase of

changes occurring in the represented domains, ontology

evolution becomes a necessary process.

Ontologies are often large and complex structures, whose

development and maintenance give rise to certain interesting

research problems. For many practical applications,

ontologies change over time according to some factors, such

as domain changes, adaptations to different applications, and

changes to our conceptualisation or understanding of a

domain. Support for change management is vital to support

distributed ontologies. Preserving consistency, while

accommodating new changes, is a crucial task that needs

special attention [3]. Also, matching between ontologies are

easily affected by changes in the ontologies because a change

in one ontology could effects the others.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 6–Issue 2, 109-116, 2017, ISSN:-2319–8656

www.ijcat.com 110

The paper mainly addresses the problem of cooperating

enterprises trying to solve the interoperability problem by

introducing ontology based reconciliation solutions. Our

purpose focuses on ontology lifecycle for building, matching

and evolution ontologies in the enterprise Information

Systems.

The goal of this research is to present a system architecture to

describe the lifecycle of the application ontology

incorporating building, matching and evolution processes.

The paper discusses the main features of these processes and

their contributions to address the problem of interoperability.

The building process is based on knowledge extraction from

corpuses and databases to generate the domain ontology. For

this purpose, we have developed a set of ontologies intended

to capture the semantics for applications integration. The

matching process tries to find semantic relationships between

entities of ontologies. It takes the ontologies as input and

determines as output a set of correspondences to build the

matching ontology. Typically, similarity measurement

strategies become necessary. In evolution process, the main

focus is on keeping ontology and its dependents consistent

when changes occur. It includes two sub-processes. The first

one is related to the application ontology evolution to

guarantee its consistency. The second one concentrates on the

matching evolution to highlight consequent effects of

ontology evolution on dependent ontologies.

 The remainder of this paper is organized as follows. Section 2

presents the building, matching and evolution system

architecture. Section 3 sketches out the proposed ontology

building process. Then, we present an iterative matching

process in section 4. Next, we describe the five (5) major

steps of the ontology evolution process and the matching

evolution process to highlight consequent effects of ontology

evolution on dependent ontology. Just after that, many ideas

concerning mapping evolution are mentioned where the

matching evolution process is showed. Section 6 discusses

some related work on ontology building as well as ontology

evolution. Finally, Section7 provides concluding remarks and

sketches some future work.

2. BUILDING, MATCHING AND

EVOLUTION SYSTEM

ARCHITECTURE

EIS (Enterprise Information Systems) is defined as an

enterprise application system or an enterprise data source that

provides the information infrastructure for an enterprise. An

EIS can have many different types including batch

applications, traditional applications, client/server

applications, web applications, relational databases, and so on.

These systems are often materialized in enterprise reality in

the form of relational databases, ERP (Enterprise Resource

Planning), CRM (Customer Relationship Management), SCM

(Supply Chain Management), and legacy systems [5].

The proposed system architecture aims at offering a support

for integrating heterogeneous and distributed applications, and

accessing multiple ontologies (Figure. 1). It includes building

matching and evolution management of application ontologies

ensured by three (3) levels respectively.

Building level: A company model is a computational

representation of the structure including, activities, processes,

information, resources, people, behavior, goals and business

constraints. The goal is to capture the sets of the enterprise

applications, the activities that they perform, the required

resources, the manipulated data and the invoked messages.

Then, we identify the information flow, their structure and the

technical infrastructure to support them for building the

application ontologies.

Figure 1. Building, matching and evolution system architecture.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 6–Issue 2, 109-116, 2017, ISSN:-2319–8656

www.ijcat.com 111

Matching level: It concerns the application ontologies

integration. The EIS based ontology consists of

heterogeneous, autonomous and distributed application. Each

application has its own ontology. The application ontologies

are related to each other with a matching ontology. We aim at

overcoming the gap between application ontologies,

according to the semantic relations. A special component,

named matcher, is used to perform the tasks of building the

matching ontology, and transforming instances of the source

ontology into instances of the target ontology.

The Matching Ontology (MO) is formally defined by a 4

tuple:

MO= (E, O, M, RT)

E: set of entities such as concepts, relations and attributes.

O: set of applications ontologies in the system.

M: Os  Ot

Mapping relation between source ontology (Os) and target

ontology (Ot)

RT: rules transformation of source instances to target

instances.

Additionally, an overview about the matcher component is

given in the following. The main task of the matcher is to find

semantic relations between concepts of application ontologies.

It involves the following tasks:

 Tries to find related concepts or attributes of ontologies

and the relations between them. This can be done

automatically, semi-automatically or manually with the

help of domain experts.

 Represents the identified relations between ontologies

based on semantic relations. It combines many

algorithms to measure the similarity. Then, it adopts a

multi-strategy approach to compute the concepts

similarity at various levels, such as lexical, properties

(roles and attributes), hierarchical and instances

similarities.

 Transforms instances from the source application

ontology into instances of the target application ontology

by evaluating the equivalence relations defined earlier by

the adaptor. Two problems that may arise are that the

mappings are incomplete or the that the mapped entities

differ in the context. The missing mappings can be

gained through inference mechanism.

Evolution level: It concerns the evolution management. The

evolution manager is composed of two parts, ontology

evolution and matching evolution. The first part encompasses

the set of activities which ensures that the ontology continues

to meet organizational objectives and users’ needs in an

efficient and effective way. It includes five (5) steps;

detection, elements extraction, analysis, treatment of needed

change and evaluation. The second part focuses on matching

evolution because dynamic environment and applications

changes often have consequent effects on dependent

ontologies. The role of matching evolution is to detect the

new mapping between the old and new versions of the

updated ontology.

3. BUILDIND PROCESS
Every day, organizations over the entire world generate

reports, articles, books, emails, and all kind of textual data

concerning several topics. The increase of the storage capacity

of computers and servers enable these organizations to keep

all files they produce without the need of deleting anything.

Although this is an obvious advantage for everybody, it also

implies some problems. One mainly problem they face is to

know what kind of information they have, and how it is

related. One way to organize information in computer science

is in ontology form. This is similar to a conceptual map in

which the main topics or concepts are related to each other by

some kind of relations [6].

We propose an extraction and building process which includes

four main phases [5]: the linguistic study and knowledge

extraction, the specification, the ontology conceptualization

and formalization and finally, the ontology implementation

and validation (cf. figure 2).

The proposed process begins with the linguistic study and the

knowledge extraction. It introduces the following steps:

corpus pre-processing, extraction of terms, cleaning and

filtering, and finally classification. The second phase is the

ontology specification phase. It identifies the knowledge

domain and the purpose of the ontology, including the

operational goal, the intended users and the scope of the

ontology which contain the set of terms to be represented and

their characteristics. Then, the third phase consists in the

conceptualization and formalization. The last phase concerns

the ontology implementation and validation test. The arrival

of a new corpus of text expresses the need of evolution to

maintain our domain ontology. The process of evolution is

invoked to guarantee the consistency and the coherence of the

ontology and ensure the evolution of the data and/or the

domain.

 Figure 2. Application ontology building process.

3.1 Linguistic study and knowledge

extraction
This phase relies on corpus work and involves the following

tasks:

a. Corpus pre-processing. It aims to define a strategy to treat

the missing data. It consists in normalizing the text to obtain

coherent results and also, as possible, to correct human errors

by the assistant of linguistic experts. This task serves to

normalize the diverse manners of writing the same word, to

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 6–Issue 2, 109-116, 2017, ISSN:-2319–8656

www.ijcat.com 112

correct the obvious spelling mistakes or the typographic

incoherence and to clarify certain lexical information

expressed implicitly in texts. The textual or linguistic analysis

of the corpus means systematizing and making more effective

the search of terms in the texts. We also used the spellchecker

to avoid errors in the corpus. Then, the text is divided into a

set of sentences to allow the use of the morphosyntactic

analyzer Tree Tagger [7].

b. Extraction of terms and cleaning. It aims at listing all the

terms contained in a corpus. To achieve this goal, we use Tree

Tagger, version 3.2 [7]. It is a tool of morphosyntactic

labelling and lemmatization. It serves to assign to each term in

the corpus its morph syntactic category (name, verb,

adjective, article, proper noun, pronoun, abbreviation, etc.)

and give for each term its lemmatization. As input, corpus of

texts must be organized into a set of sentences, and stored

them in a file of .txt extension. Tree Tagger is used to classify

extracted terms (concepts/relations) using the annotation and

lemmatization information [7]. After the mining of text, we

perform the cleaning operations, such as remove the stop

words, change the upper case characters to lower case and.

remove the irrelevant and abbreviation terms.

Several measures are usually used to select the candidate

terms, we can quote the number of appearances of a term

within a corpus, as well as more complex measures such as

the mutual information, tf-idf, is still used in statistical

distributions methods [8]. The method is based on the

syntactic analysis, and uses the grammatical techniques. They

put the hypothesis that the grammatical dependences reflect

semantic dependences [9].

c. Classification of terms. The terms extracted from the

previous step, were then classified into two categories of

terms, following this idea, we try to classify the semantic

elements extracted according into two categories: the concepts

and the relations. Basing on the information provided by the

TreeTagger tool, we classify NAME (proper nouns) as

concepts and the terms of type (verb) as relations.

3.2 Ontology specification
This phase aims at supplying a clear description of the studied

problem and at establishing a document of requirements

specification. We need to determine why the ontology is being

built, and what is its intended uses and final users.

3.3 Ontology conceptualization and

formalization
The conceptualization step comprises the following tasks:

a. Glossary of terms. It contains the definition of all terms

extracted in the previous phase (concepts, instances,

attributes, relations). It contains all the terms and linguistic

description.

b. Concept taxonomies. The hierarchy of concepts

classification shows the organization of the ontology concepts

in a hierarchical order which expresses the relations sub-class

and super-class.

c. Definition of binary relations diagram. It specifies which

concepts are linked by each relation.

d. Concept dictionary. It contains some of the domain

concepts, instances of such concepts, class and instance

attributes of the concepts, relations whose source is the

concept and, optionally, concept synonyms and acronyms

e. Definition of binary relations tables. The binary relations

are represented in the form of properties which attach a

concept to another. For each relation, we define: its name, the

name of source concept, the name of target concept, the

cardinality and the name of the inverse relation if it exists.

f. Definition of the attributes tables. The attributes are

properties which take it values in the predefined types (String,

Integer, Boolean …). For each attribute appearing in the

concepts dictionary, we specify its name, the type and the

domain.

g. Definition of the logic axioms table. We define for each

axiom, its description in natural language, the name of the

concept to which the axiom refers, attributes used in the

axiom and the logic expression.

h. Definition of the instances table. For each instance

identified in the concepts dictionary, we specify the instance

name, the concept name to belong to it, the attributes and their

values.

The formalization step consists of two parts: terminological

language TBOX in which concepts and relations are defined;

and an assertion language ABOX in which we introduce the

instances.

a. TBOX construction: We define here concepts and relations

relating to our domain, by using the constructors provided by

description logic to give structured descriptions at concepts

and relations [10].

b. ABOX construction: The assertion language is dedicated to

the description of facts, by specifying the instances (with their

classes) and the relations between them.

3.4 Ontology implementation and

validation
The implementation step involves the representation of the

captured concepts and its relationship in a formal language.

Protégé OWL [11] is a development environment with

functionality for editing classes, slots (properties) and

instances. Protégé is highly extensible and customizable. To

evaluate correctness and completeness of domain ontology,

we use query and visualization provided by PROTÉGÉ OWL.

We use the built in query engine for simple query searches

and query plug-in to create more sophisticated searches. We

also use visualization plug-ins to browse the application

ontology and ensure its consistency. The problems of

coherence, correctness and completeness are then verified

using the RACER inference engine [11].

OOPS is a web application based on Java [12], used by

ontology developers during the ontology validation activity

[13]. OOPS! scans ontologies looking for potential pitfalls

that could lead to modelling errors. We enter the URL

pointing the OWL document describing the ontology to be

tested. Once the ontology is parsed using the Jena API the

model is scanned looking for pitfalls, from those available in

the pitfall catalogue. Therefore, the ontology elements

involved in potential errors are detected as well as warnings

regarding OWL syntax and some modelling suggestions are

generated as well as explanations describing the pitfalls [13].

Once the constructed ontology is validated, it is ready to be

invoked by users' requests using SWRL language. The

Protégé SWRL Editor is an extension to Protégé OWL that

permits interactive editing of SWRL rules [14]. It is tightly

integrated with Protégé OWL and is primarily accessible

through it. When editing rules, we can directly refer to OWL

classes, properties, and individuals within an OWL

knowledge base.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 6–Issue 2, 109-116, 2017, ISSN:-2319–8656

www.ijcat.com 113

4. MATCHING PROCESS

Figure 3. Iterative matching process.

Ontology matching is the process whereby semantic relations

are defined between two or more ontologies to align them. It

is the set of activities required to transform instances of source

ontology into instances of target ontology. In this paper, we

propose a matching process which includes seven main steps:

classification, similarity measurement, similar entities

annotation, bridging, inference, matching quality evaluation

and matching repairing. In the proposed process, the

classification step tries to filter the ontologies entities in order

to obtain candidates entities. It is an iterative process, as

described in figure 3, with a primary loop and a secondary

loop. At every iteration i, a semantic bridge is created between

entity ei of the source ontology and entity ej of the target

ontology. In the main loop, at every iteration i, the process

executes three steps: it first computes similarity sim(ei, ej)

using similarity strategies, then annotates similar entities , and

finally collects similar entities, selecting the most similar

entity and defines a bridge. The loop ends when it becomes

impossible to create a bridge between entities. The second

loop concerns two steps, bridging and inference. It tries to

detect new bridges basing on matching rules and human

experts. These matching are then used to translate instances of

source ontology into instances of target ontology. Finally, the

last step focuses on experimental study to deduce some

criteria to evaluate matching quality (For more detailed

description of this process, see [15]).

5 EVOLUTION PROCESS

Ontology evolution is defined by Haase and Stojanovic,

[16][17] as the “timely adaptation of an ontology to the arisen

changes and the consistent management of these changes”.

Ontology evolution is a process that supports the enrichment

of the ontology by adding new entities (concepts, properties,

and instances) or by modifying existing entities when new

knowledge is acquired.

The usage of ontology is wide spread in Information Systems

especially when building a lingua franca for resolving the

terminological and conceptual incompatibilities between the

enterprise applications. Ontology evolution takes place when

the perspective under which the domain is viewed has

changed. More specifically, ontology evolution means

modifying or upgrading the ontology when there is a certain

need for change as communities of practice concerned with a

field of knowledge develop a deeper understanding of the

domain. Ontology change management deals with the

problem of deciding the modifications to perform in ontology,

implementation of these modifications, and the management

of their effects in dependent data structures, ontologies,

services and applications [18].

One of the crucial tasks faced by practitioners and researchers

in the area of knowledge representation is to efficiently

encode the human knowledge in ontologies. Maintenance of

usually large and dynamic ontologies and in particular

adaptation of these ontologies to new knowledge is one of the

most challenging problems in the Semantic Web research.

This has led to the emergence of several different, but closely

related, research areas such as ontology integration, merging,

and versioning [3].

In our study, we focus on the ontology evolution and

mappings evolution between related ontologies because they

stand for the basis of all types of relations between ontologies,

such as merging, integration and alignment. For this purpose,

we describe two sub-processes. The first one is related to the

application ontologies evolution. The second one concentrates

on the matching evolution.

5.1 Ontology evolution process

Ontologies are not static entities but evolve over time. We

aim in our work to propose an evolution management system

to allow evolving, versioning and exploiting application

ontologies in dynamic environments. This system helps the

designer, user, and expert to supervise the required changes

and provides interfaces to participate to the ontology

evolution process (cf. Figure. 4).

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 6–Issue 2, 109-116, 2017, ISSN:-2319–8656

www.ijcat.com 114

5.1.1 Change detection

An evolution process requires some modifications to occur. It

is, thus, necessary to identify the needs of evolution and the

compatible changes to apply to the existing ontology. These

modifications are expressed informally by different ontology

actors (User, expert and ontology designer). The actors can

express ambiguous, vague or redundant modifications. These

needs will be expressed semi-formally according to one or

several types of changes to be applied to create the new

version of ontology.

The interview is commonly used to capture the possible

changes. It enables the ontology designer to ask periodically

questions and allows to the ontology user and experts some

freedom to express their answers. The interview includes

specific and general questions. The first one concerns the

experts to capture specific information. This kind of questions

is structured and has the dichotomous (Yes/No) answer. The

second one concerns the ontology user to explore an issue or a

specific need. This kind of questions is unstructured and its

answer is a corpus of text.

Example 1: Expert question

a- Does change affect the ontology properties?

 -Yes

 -No

b- Does change concern ontology instances?

 -Yes

 -No

Example 2: User question

a- Does change need to adapt functional requirements?

b- How can the needed change improve the ontology use?

The output of this step is a set of corpus of texts. They enable

the ontology designer to capture the needed change(s).

5.1.2 Elements extraction

We refer to linguistic study and knowledge extraction phase

in the ontology building process to discover the pertinent

terms and the type of change(s).

5.1.3 Change analysis
To resolve changes, we must identify and represent them in a

suitable format. Changes must be formally expressed through

types of changes. The composed changes which express a

sequence of several elementary changes forming only one

logical entity together [17].

5.1.4 Change treatment

During this step, it is necessary to determine the direct and

indirect types of changes to be applied. In case of ambiguity

or in presence of several possibilities, the ontology actors

(user, expert and designer) decide on the action to occur.

All changes, and derived ones, confirmed by the designer are

applied to the ontology. Consequently, the changes are

physically applied to the ontology. The implemented changes

need to be propagated to all interested parts in the ontology.

5.1.5 Ontology evaluation

It is essential to verify the consistency of the ontology in

relation to the semantics of the ontology changes. At the end

of the evolution process, a new ontology version is created. At

this level, we decide whether to preserve the old version of

ontology in the version base or not. The last task in this step is

to keep track of the performed changes in the evolution log.

The latter records the history of applied ontology changes as

an order sequence of information.

A change in one application ontology in the system could

have extensive effects on other related ontologies. This is

especially important when ontologies are used as basis for

semantic integration of enterprise applications. To handle this

problem, we have proposed a matching evolution process that

defines ontologies versions mappings and new mappings.

In order to avoid performing undesired changes, before

applying a change to ontology, a temporary version of the

ontology is created to support the change activities.

Figure 4. Ontology and matching evolution process.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 6–Issue 2, 109-116, 2017, ISSN:-2319–8656

www.ijcat.com 115

It enables the ontology engineer to accept or reject the

suggested changes and eliminate the changes that can cause

ontology inconsistency. Moreover, ontology designer should

check the results of a change request on the temporary version

to ensure consistency. At the end, the designer can perform

successively all the changes on the concerned ontology.

5.2 Matching evolution process

Multi-ontology means the existence of multiple ontologies

related to each other in many ways [19]; reuse fusion,

alignment and integration, to adapt to the various tasks of the

EIS. These ontologies must be accessible by different

applications and must even exchange semantic information.

That is achieved through the mapping of ontologies which is

necessary for the management of multiple and heterogeneous

ontologies. It is due to its capacity to provide a common layer

allowing the access to ontologies and the semantic exchange

of information. The problem is how to manage the ontology

versions in the system when the ontology evolves?

Additionally, our work is articulated around the ontological

mappings evolution after an ontology evolution. Therefore,

we define the three following types of mappings:

-The horizontal mappings are the set of existing mappings

between the old version of evolved ontology and related

ontologies.

-The vertical mappings are mappings between the old version

of the evolved ontology and its new version.

-The diagonal mappings are those mappings that exist

between the new version of the evolved ontology and all

related ontologies. These diagonal mappings are new

mappings that are generated when ontology evolves.

Therefore, the detection of these diagonal mappings in an

automatic way constitutes the principal objective of our work.
The diagonal mapping is the composition of horizontal

mapping and the vertical mapping.

We have proposed a matching evolution process composed of

three (3) steps. The first one is the detection of the vertical

mappings between the evolved ontology versions (old, new).

For that reason, we studied the effects and the

correspondences derived from the application of the change

operations. Then, the diagonal mappings are obtained by

composition of vertical mappings with the horizontal ones

existing between evolved ontology and related ontologies.

Finally, we eliminate the invalid and useless correspondences

of the obtained mappings.

5. DISCUSS AND RELATED WORK
A range of methods and techniques have been reported in the

literature regarding ontology building methodologies. We

have selected some methodologies whose proposals meet the

design criteria mentioned above. Given that ontologies are

mainly used in ontological engineering, many of the existing

methodologies are geared to the organization and exchange of

information in computer systems, as well as in the Semantic

Web. Nevertheless, we consider that it is possible to adapt

those methodologies to the aims of data and text-mining.

Some of them are, for instance, Uschold and King’s [20],

METHONTOLOGY [21], On-To-Knowledge [22] and Noy

and McGuinness’ [23]. Other methodologies arose from the

work by terminology researchers interested in taking

advantage of the features of ontologies for extracting

knowledge from local resources. The most relevant is

TERMINAE [24]

Based on these results, METHONTOLOGY meets the most

criteria, with the exception of corpus based knowledge

extraction. TERMINAE also complies with all the

requirements. Therefore, we propose to create a methodology

that combines the best characteristics of METHONTOLOGY,

on one side, and of TERMINAE on the other. The proposed

process is completely suitable to the domain of ontological

engineering and knowledge extraction from corpuses and

databases.

According to Stojanovic [17], “Ontology Evolution is the

timely adaptation of ontology to the arisen changes and the

consistent propagation of these changes to dependent artefacts

(i.e. Dependent ontologies, ontology instances, applications

using ontology)”. Ontology evolution is a complex process,

due to the variety of sources and consequences of changes.

Ontology evolution requires taking into account the effects of

each change on the ontology to ensure uniformity in the basic

ontology and all dependent objects.

Research on ontology evolution is being carried out by

different researcher’s groups, and their approaches overlap

with each other. The current state of the art can be found in

[3], [16]. While some of these tools are ontology editors,

others provide more specialized features to the user, like the

support for evolution strategies, collaborative edits, change

propagation, transactional properties, intuitive graphical

interfaces, undo/redo operations etc.

Despite these features, our work focuses on the ontology

change and matching evolution between related ontologies.

Furthermore, we propose two processes. The first one is

related to the application ontologies evolution. The second

one concentrates on the matching evolution. We have also

address the problem of undo/redo operations by using

temporary version of the concerned ontology.

6. CONC LUSION
Semantic interoperability among applications, systems, and

services are mostly based on ontology. A solution is to use an

ontology based approach associated to enterprise applications.

It provides a semantic layer to encapsulate the applications’

heterogeneity. In this paper, we have outlined architecture for

application ontologies lifecycle for building, matching and

evolution management.

The goal of this research study is to extract knowledge by

mining corpus of text to build application ontology. This

article deals with knowledge extraction using a text mining

approach. More precisely, we concentrate on the extraction

and construction process which includes four main phases: the

specification, the linguistic study and knowledge extraction,

the ontology conceptualization and finally, the

implementation of the developed ontology. We use also tools

of terminological extraction such as Tree Tagger for the

morpho-syntactic labelling and Protégé OWL for the

implementation of the ontology.

We have also developed an evolution management system to

allow evolving, versioning and exploiting application

ontologies in dynamic environments. This system allows the

designer, the user and the expert to supervise the required

changes, and provides interfaces to participate to the ontology

evolution process.

For the future, we identified a number of open issues, we to

address in future work. We will improve tool support in the

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 6–Issue 2, 109-116, 2017, ISSN:-2319–8656

www.ijcat.com 116

building process by investigating ways of automatic ontology

extraction from data base schema. Particularly interesting is

the question of how to combine a top-down modeling

approach (the way humans think) with a bottom-up approach

(which results from automatic ontology extraction).

Furthermore, we intend to integrate our matching tool with

(semi-) automatically generated data dictionaries, in order to

help domain and/or modeling experts faster understand

foreign domains, during the matching process.

7. REFERENCES
[1] Jochem, R. 2010. Enterprise interoperability assessment.

In Proceedings of the 8th International Conference of

Modeling and Simulation, Hammamet Tunisia. 10-12,

[2] T. R. Gruber, “Towards principles for the design of

ontologies used for knowledge sharing”, International

Journal of Human-Computer studies, Vol 43, 907-928,

1995.

[3] A. M. Khattak, K. Latif, and S. Y. Lee, "Change

management in evolving web ontologies", Knowledge

based Systems, (SCI IF: 1.574), ISSN: 0950-707051,

2012.

[4] Hong-Hai. Do. Melnik. S. Erhard. R. 2002. Comparison

of Schema Matching Evaluations. In Proceedings of

International Workshop on Web Databases, German,

Informatics Society.

[5] Driouche, R. Bensassi, H. Kemcha, N. 2015. Domain

ontology building process based on text Mining from

medical structured corpus. In Proceedings of the

International Conference on Digital Information

Processing, Data Mining and Wireless Communications,

Dubai.

[6] J. I. Toledo-Alvarado, A. Guzmán-Arenas, G. L.

Martínez-Luna, “Automatic building of an ontology from

a corpus of text documents using data mining tools “

Journal of Applied Research and Technology, Vol. 10(3),

398-404, 2012.

[7]http://www.cis.unimuenchen.de/~schmid/tools/TreeTagger/

[8] Winkler. W. E. 1990. String comparator metrics and

enhanced decision rules in the Fellegi-Sunter model of

record linkage. In Proceedings of the Section on Survey

Research Methods (American Statistical Association).

354–359.

[9] H. Luong, S. Gauch, Q. Wang, and A. Maglia, “An

ontology learning framework using focused crawler and

text mining”. International Journal on Advances in Life

Sciences, Vol 1(23), 99-109, 2009.

 [10] F. Baader, D. Calvanese, D. L. McGuiness, D. Nardi, P.

F. Patel-Schneider. 2003. The description logic

handbook: Theory, implementation and applications.

Cambridge University Press, Cambridge, UK.

[11] http://protege.stanford.edu/

[12]http://www.oracle.com/technetwork/java/javaee/overview

/index.html

[13] M. Poveda. M.C. Suárez-Figueroa. A. A. Gómez-Pérez.

2010. Double classification of common pitfalls in

ontologies. In Proceedings of the Workshop on Ontology

Quality at the 17th International Conference on

Knowledge Engineering and Knowledge Management.

1-12. Lisbon, Portugal.

 [14] Golbreich, C. Imai, A. 2004. Combining SWRL rules

and OWL ontologies with Protégé OWL Plugin, Jess,

and Racer. In Proceedings of the 7th International

Protégé Conference, Bethesda, MD.

[15] Driouche. R. 2012. A Mapping process for semantic

integration of enterprise applications. In Proceedings of

the 3rd international Arab conference on e-technology,

Zarqa University, Jordan, 100-107.

 [16] Haase, P. and Sure. Y. 2004. State of the art on ontology

evolution. SEKT Deliverable.

[17] Stojanovic, L 2004 Methods and tools for ontology

evolution. Doctoral thesis, University of Karlsruhe.

[18] G. Flouris, D. Manakanatas, H. Kondylakis, D.

Plexousakis, G. Antoniou. “Ontology change:

classification and survey”. Knowledge Engineering

Review, Vol 23(2), 117-152, 2008.

[19] N. Choi, I. Song, H. Han, “A survey on ontology

mapping”, ACM SIGMOD Record, Vol 35 (3), 2006, 34-

41.

[20] Uschold, M. and King, M. 1995. Towards a methodology

for building ontologies. In Proceedings of the Workshop

on Basic Ontological Issues in Knowledge Sharing, D.

Skuce (Ed.), Montreal, Canada.

[21] Gómez-Pérez, A., Fernández-López, M., and Corcho, Ó.

2004. Ontological engineering: with examples from the

areas of knowledge management. London: Springer

Verlag. Greenwood, Edition. Metodología de la

investigación social. Buenos Aires, Argentina: Paidós.

[22] S. Staab, H. P. Schnurr, R. Studer, and Y. “Sure,

knowledge processes and ontologies”. IEEE Intelligent

Systems, Vol. 16 (1), 26-34, 2001.

[23] Noy, N. F. and McGuinness, D. L. 2001. Ontology

development 101: A guide to creating your first ontology

[online]. Technical Report Stanford Knowledge Systems

Laboratory.

http://www.ksl.stanford.edu/people/dlm/papers/ontology

101/ontology101-noymcguinness.html.

[24] Aussenac-Gilles, N. Després, S. and Szulman, S. 2008.

The TERMINAE method and platform for ontology

engineering from texts. In Proceedings of the Conference

on Ontology Learning and Population: Bridging the Gap

between Text and Knowledge. Amsterdam: IOS Press.

http://www.ijcat.com/
http://www.cis.unimuenchen.de/~schmid/tools/TreeTagger/
http://protege.stanford.edu/
http://www.ksl.stanford.edu/people/dlm/papers/ontology101/ontology101-noymcguinness.html
http://www.ksl.stanford.edu/people/dlm/papers/ontology101/ontology101-noymcguinness.html

