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Abstract: Computer vision has gained momentum in medical imaging tasks. Deep learning and Transfer learning are some of the 

approaches used in computer vision. The aim of this research was to do a comparative study of deep learning and transfer learning 

in the detection of diabetic retinopathy. To achieve this objective, experiments were conducted that involved training four state-of-

the-art neural network architectures namely; EfficientNetB0, DenseNet169, VGG16, and ResNet50. Deep learning involved 

training the architectures from scratch. Transfer learning involved using the architectures which are pre-trained using the ImageNet 

dataset and then fine-tuning them to solve the task at hand. The results show that transfer learning outperforms learning from 

scratch in all three models. VGG16 achieved the highest accuracy of 84.12% in transfer learning. Another notable finding is that 

transfer learning is able to not only achieve high accuracy with very few epochs but also starts higher than deep learning in the first 

epoch. This study has also demonstrated that in image processing tasks there are a lot of transferrable features since the ImageNet 

weights worked well in the Diabetic retinopathy detection task.   
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1.0 INTRODUCTION  

The evolution of machine learning has greatly contributed to 

solving some of the major problems in the world. Of 

particular interest is deep learning which has become a 

game-changer in computer vision due to its representation 

learning capabilities[1]. Under representational learning, a 

machine is fed with raw data and it develops its own 

representation needed to extract the data[1]. This is made 

possible by convolutional neural networks since they can 

extract features from an image using the convolutional layer 

and thus a separate feature extractor is not needed.  

Deep learning has been applied in a variety of image 

processing tasks in various fields to solve image processing 

problems[2]. Deep learning has promising results in 

complex medical diagnostics. It helps physicians by 

providing a second opinion and flagging concerning areas in 

images[1].  

Meta-Learning is also known as learning-to-learn makes it 

possible for deep learning models to do multitask learning 

and use transfer learning to enable them to solve a new but 

related task with just a few data samples also known as few-

shot learning[3]. This helps in addressing the challenges of 

data shortage and increases the robustness of models 

developed using this approach.  

Transfer learning involves training a deep learning 

architecture with huge amounts of data. This training 

involves feature extraction from the training dataset. Once 

the training is done the weights are then transferred and fine-

tuned to a smaller dataset[4]. Thus, this makes it possible for 

the transfer learning model to leverage on previously 

acquired knowledge.   

The main aim of this study was to do a comparative study of 

deep learning and transfer learning in the detection of 

diabetic retinopathy. Deep learning, involved training a 

model from scratch using the dataset. In transfer learning, a 

model is first pre-trained using the ImageNet dataset then the 

weights are transferred to the Diabetic retinopathy dataset. 

Further to this, the model is finetuned and the results of the 

two approaches are compared.  

The other sections are organized as follows. 2.0 related 

works, 3.0 Methodology, 4.0 results, and discussion, 5.0 

conclusion and future work.  

2.0 RELATED WORKS  

Diagnosis based on medical images has been very successful 

in using convolutional neural network-based methods. This 

is largely motivated by the fact that CNN has achieved 

human-level capabilities in tasks involving object 

classification[1]. CNN networks have also demonstrated 

strong performance in transfer learning in medical image-

based diagnostics[1].  

Diabetic retinopathy (DR) is an eye disease that is a result of 

diabetes. It is characterized by damaged blood vessels in the 

retina, swollen or leaking vessels, some close thus stopping 
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blood from passing through them, and abnormal vessels can 

grow in the retina. These changes can eventually result in 

loss of vision[5]. 

 Diabetic retinopathy is usually classified into five main 

categories which are: No DR, Mild DR, Moderate DR, 

Severe DR, and Proliferative DR [6]. Several researchers 

have developed models aimed at classifying Diabetic 

retinopathy. The models are trained using public datasets 

such: as the EyePACs dataset, Indian Diabetic Retinopathy 

Dataset, APTOS 2019 blindness dataset, and Messidor 

Dataset[7][8] [9]. Researchers have used a combination of 

two or more of these datasets or just one dataset in 

developing their models.  

 Thiagarajan et al., (2020)  used a Convolutional Neural 

Network and Grey-level co-occurrence matrix with the 

Indian Diabetic retinopathy dataset. The data preprocessing 

that was done involved horizontal flipping, scaling, zooming 

in, cropping, and translation. The model used the binary 

cross-entropy loss function to do binary classification.    

Welling (2018) developed a model that pre-trained reptile 

with ImageNet dataset and then transferred the weights to 

the Diabetic retinopathy dataset. The researcher used the 

default reptile network architecture in pre-training and meta-

learning. The batch normalization layer was removed during 

pre-training since it was found to be less transferrable. 

During transfer learning the weights apart from the last 

SoftMax layer were finetuned to the target dataset using the 

Adam optimizer and its default parameters (learning rate 

0.001, β1 = 0.9, β2 = 0.999, and a batch size of 32) [10].  

Ensembles of CNN models for transfer learning to create a 

meta-algorithm has also proved to be a good approach in the 

detection of Diabetic retinopathy. [11] proposed a model that 

ensembles state-of-the-art CNN networks which include: 

ResNet50, InceptionV3, Xception, Dense121, and 

Dense169. The networks were pre-trained using ImageNet 

and then fine-tuned to the Diabetic Retinopathy dataset. The 

ensembled model achieved 80.8%, 51.5%, 86.72%, 63.85%. 

and 53.74% in accuracy recall, specificity, precision, and F1-

score respectively[11].  

Previous works that tried to do a comparative study of 

transfer learning and other image processing approaches 

include; [4] which did a comparative study of deep transfer 

learning and shallow learning in accurate fingerprint 

detection. The deep transfer learning architectures 

considered were InceptionV3, NasNet, and ResNet50. While 

in shallow learning linear and non-linear Gaussian support 

vector machines were used together with the following 

image descriptors: Binarized statistical image features, 

weber local descriptor, and local phase Quantization. [4] did 

not compare Transfer learning against deep learning in the 

same environment set-up.  

 

3.0 METHODOLOGY  

In this section four neural network architectures which are 

EfficientNetB0, DenseNet169, VGG16, and ResNet50 have 

been used for both deep learning and transfer learning tasks.  

DenseNet169 

This architecture was proposed by Huang et al., [12]. It 

connects each layer to every other layer in the network in a 

feed-forward manner. Thus, for each layer, the feature maps 

for each preceding layer are used as inputs in the subsequent 

layers. DenseNets are advantageous in the following ways: 

they reduce the number of parameters, strengthen feature 

propagation, enhance feature reuse, and alleviate the 

vanishing gradient problem. DenseNets are easy to train 

since each layer has direct access to the gradient of the input 

layer from its loss function. This results to an implicit deep 

supervision[12], [13].  

There exists the following variants of DenseNet: 

DenseNet121, DenseNet169, DenseNet201, DenseNet264 

[12]. The numbers represent the depth of the networks[14]. 

DenseNet169 has the following features:  7*7 convolutional 

layers with 2 strides, 3*3 max pooling layer with 2 strides, a 

series of dense blocks, 7*7 classification layer, and 1000 D 

fully connected SoftMax [12],[15]. This architecture was 

chosen since literature has demonstrated it to be a high-

performance architecture[15].  

EfficientNetB0 

EfficientNets were proposed by Tan & Le, (2019) as a new 

scaling method that uniformly scales in all dimensions of 

width, resolution, and height using a compound coefficient. 

By balancing the height, resolution, and width this 

architecture can achieve higher accuracy than the 

competitors. EfficientNets are a family that ranges from 

EfficientB0 to EfficientNetB7 which represents a 

combination of efficiency and accuracy on different scales. 

Compound scaling allows the EfficientNetB0 to avoid 

extensive grind search of hyperparameters thus surpassing 

models at every scale(Tan & Le, 2019).  

EfficientNetB0 was chosen since it is the base model of the 

EfficientNet family and all the other architectures in the 

family are scaled from it by adding more layers [16],[17]. 

Thus, it provides a suitable baseline to compare deep 

learning and transfer learning. Also, the base model requires 

less computational power to achieve desirable 

performance[17].  

ResNet50  

Residual networks were developed by He et al., [18] with 

aim of making it possible for neural networks which are deep 

to be trained with less complexity and achieve high 

performance. In ResNet, the layers are reformulated as 

learning residual functions with reference to the layer’s 

input. ResNet50 refers to the 50-layer residual learning 

network, which also has 3.8 billion flops.  

ResNet50 solves the saturation and degradation of accuracy 

problem[19]. Mukti & Biswas  [19], further records that 

ResNet50 surpasses AlexNet, VCG16, and VCG19 in plant 

leaf disease classification using transfer learning. This 

justified the choice of ResNet50 for this task.  

VGG16  
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VGG extended Alex Net by increasing the depth of the 

network using small 3*3 convolution filters. VGG networks 

demonstrated the capability to achieve high performance 

even when used in relatively simple pipelines[20]. The 

architecture of VGG involves the following: First, the input 

layer which takes 224*224 pixels colored images. Second, 

the convolution layers which use a very small receptive field. 

The convolution layers are accompanied by a 1*1 

convolution filter and a Relu unit. Third, three fully 

connected layers in which the first two have 4096 channels 

while the last has 1000 channels. Fourth a series of hidden 

layers with all of them using the RELU activation 

function[20].  

Simonyan and Zisserman [21] record that there are three 

variants of VGG Networks which are: First, VGG11 which 

supports 11 weight layers in the model (convolution layers). 

Second VGG13 which supports 13 weight layers. Third, 

VGG16 which supports 16 weight layers. Fourth VGG19 

which supports 19 weight layers. VGG19 and VGG16 are 

the most commonly used architectures of the VGG model. 

Researchers such as Khan et al. [21] used VGG16 to classify 

diabetic retinopathy and achieved an average accuracy of 

83.8%.  

3.2 Experiment Setup  

3.2.1 Dataset Used  

This study used a combination of two datasets namely the 

Indian Diabetic Retinopathy dataset and the Aptos 2019 

blindness detection dataset. The combined dataset resulted 

in 4125 labeled and colored fundus images. The images were 

labeled using numbers as follows: 0-No DR, 1-Mild DR, 2-

Moderate DR, 3-Severe DR, and 4 Proliferative DR. The 

researchers then combined Moderate-DR and severe DR into 

a single class. This was informed by [22] who used the 

Messidor dataset which has the same distribution. 

Also,(Messidor - ADCIS, 2021.) records that Moderate DR 

and Severe DR overlap.  

 

Figure 1: Sample Eye Fundus Images 

Figure 1 shows sample Eye Fundus images and their 

respective labels.   

3.2.2 Experiment   

All the models were trained in Google Colaboratory with 

NVIDIA GPU, CUDA version 11.2, TensorFlow version 

2.7.0, and Keras.   

For the deep learning model algorithm, 3.1 was used in the 

experiment 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1: Deep Learning Algorithm 
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The data was loaded into the model then data pre-processing 

which involved resizing all images to shape (224, 224, 3) 

was done. This was followed by data augmentation. Data 

augmentation aimed to have several variants of the same 

image so that the network can learn how to extract features 

from images from different viewpoints. It also prevents the 

overfitting of the model[24].  

The architectures were imported from Keras. The model 

weights were excluded so that the model can be trained from 

scratch. The following model parameters were set, Adam 

optimizer with the default learning rate of 0.001, categorical 

cross-entropy loss function, and Accuracy metrics.  The 

EfficientNetB0 model had a total of 4, 054, 695 parameters 

out of which 42, 023 were non-trainable parameters.  

The DenseNet169 model had 12, 649, 540 total parameters 

out of which 158, 400 were non-trainable parameters. The 

ResNet50 model had a total of 23, 595, 908 out of which 53, 

120 parameters were non-trainable. The VGG16 architecture 

had 14, 719, 301 total parameters out of which 3, 589 

parameters were trainable.  Each model was trained in its 

own notebook for 50 epochs. The performance in terms of 

accuracy was then observed and recorded for comparison.  

For the Transfer learning, architecture data pre-processing 

was similar to that of deep learning since the study aimed at 

comparing the two within the same setup. Algorithm 3.2 is 

the Transfer learning algorithm that was used.  

 

 

 

 

 

 

 

3.2: Transfer Learning Algorithm  

Input →Fundus Images belonging to 4 classes (DR0, DR1, DR3, DR4) 

Output →A model that classifies fundus images into the four classes  

1) Load the dataset  

2) Data pre-processing  

➢ Split 80% training and 20% Validation (Xtrain Yvalidation) 

➢ Resizing images  

➢ Data Augmentation  

❖ Horizontal random flip  

❖ Random rotation  

❖ Random Contrast  

❖ Random translation (h-factor=0.1, W_factor=0.1) 

3) Import the architectures without the weights= (EfficientNet B0, DenseNet169, ResNet50, 

VGG 16) 

4) Set the model parameters (Optimizer, Loss function, Metrics) 

While α=0.01 

 For epochs= 1 to 50 do  

  Update the model parameters for each batch of (Xtrain Yvalidation) 

  Assess the Accuracy and Loss  

 End  

End  
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The imported architectures were pre-trained using the 

ImageNet dataset. The architectures were then restructured 

to fit the task. The top layer was rebuilt as follows: A Global 

Average pooling 2D layer, a Batch Normalization layer, a 

dropout layer with a dropout rate of 0.2, and a dense layer as 

the output with SoftMax activation function, were added. 

The trainable function of the model was then set to true. 

The following model parameters were used for all the 

models: Adam optimizer with a learning rate of (α=1ⅇ-5), 

categorical cross-entropy loss function, and accuracy 

metrics. The models were trained for 50 epochs and the 

performance was recorded. The EfficientNetB0 model had a 

total of 4, 059, 815 parameters out of which 44, 583 were 

non-trainable parameters. The DenseNet169 had a total of 

12, 656, 196 parameters out of which only 161, 728 were 

non-trainable parameters. ResNet50 had a total of 23, 604, 

100 out of which 57, 216 parameters were non-trainable. 

VGG16 had a total of 14, 719, 301 out of which 14, 718, 277 

were trainable and 1, 024 were non-trainable.  

4.0 RESULTS AND DISCUSSION  

Table 1 shows a summary of the performance of the four 

models in both deep learning and transfer learning.  

 

 

 

 

Table 1: Comparison of Accuracy achieved by the models 

 

Input →Fundus Images belonging to 4 classes (DR0, DR1, DR3, DR4) 

Output →A model that classifies fundus images into the four classes  

1) Load the dataset  

2) Data pre-processing  

➢ Split 80% training and 20% Validation (Xtrain Yvalidation) 

➢ Resizing images  

➢ Data Augmentation  

❖ Horizontal random flip  

❖ Random rotation  

❖ Random Contrast  

❖ Random translation (h-factor=0.1, W_factor=0.1) 

3) Import pre-trained architectures with the weights= (EfficientNet B0, DenseNet169, 

ResNet50, VGG16) 

➢ Rebuild the top layer  

➢ Unfreeze the base model  

4) Set the model parameters (Optimizer, Loss function, Metrics) 

While model.trainable=true 

While α=1ⅇ-5(low learning rate) 

 For epochs= 1 to 50 do  

  Update the model parameters for each batch of (Xtrain Yvalidation) 

  Assess the Accuracy and Loss  

 End  

  End  

            End  
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Model  

Deep 

Learning  

Transfer 

Learning  

EfficientNetB0 79.03% 80.12% 

DenseNet169 75.39% 83.15% 

ResNet50 77.70% 81.33% 

VGG16 73.78% 84.12% 

 

The results demonstrate that all the models achieved higher 

accuracy in transfer learning compared to learning from 

scratch. Also, VGG16 achieved the highest accuracy of 

84.12%. This surpasses what is recorded in literature by [11] 

who achieved an average accuracy of 80.8%, and  [21] who 

achieved 83.8%.  

    

   

Figure 2: EfficientNetB0     Figure 3: DenseNet169 

      

 

Figure 5: VGG16 

Figures 2,3, 4, and 5 show a comparison of accuracy curves 

for both deep learning (learning from scratch) and transfer 

learning for 50 epochs. The results demonstrate that with 

transfer learning the models are easily able to extract 

features from the images by leveraging on their previous 

knowledge. While as in deep learning the models start by 
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Figure 4: ResNet50 
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learning from scratch that’s why they achieve very low 

accuracies in the first epoch.  

 

EfficientNetB0 represented in Figure 2 achieved 12.24% 

accuracy for deep learning and 72.73% for transfer learning 

in the first epoch. Within the first 15 epochs, deep learning 

had achieved an accuracy of 73.58% while transfer learning 

had achieved an accuracy of 75.15%.  

DenseNet169 represented in Figure 3achieved 16.48% for 

deep learning and 76.24% for transfer learning in the first 

epoch. Also, within the first 15 epochs, DenseNet169 had 

already achieved an accuracy of 81.45% for transfer learning 

while deep learning had only attained an accuracy 0f 70.6%.  

ResNet50 represented in Figure 4 attained an accuracy of 

79.03% in the first epoch for transfer learning while deep 

learning attained an accuracy of 12.36%. Within the first 15 

epochs, deep learning got an accuracy of 73.58% while 

transfer learning got an accuracy of 80.61%.  

VGG16 represented in Figure 5 attained an accuracy of 

60.85% and 73.5% in the first epoch of deep learning and 

transfer learning respectively. Within the first 15 epochs, 

deep learning had achieved an accuracy of 66.55% while 

transfer learning achieved an accuracy of 83.15% in the first 

15 epochs.  

4.1 Discussion  

The results show that VGG16 surpassed all the others in 

transfer learning. This demonstrates that the CNN and the 

filters in the VGG16 architecture play a very critical role in 

feature extraction. While the replaceable fully connected 

layer enables the model to have some level of domain shift 

generalizability.  

The accuracy curves show that transfer learning enables a 

model to easily avoid learning a new task from scratch and 

thus the model is able to achieve a high performance faster 

and with fewer computing resource needs. This is a great 

phenomenon since it makes it possible for developers to 

develop models with just a few shots of data.  

The results from the study also demonstrate that weights 

obtained by pre-training a model on the ImageNet dataset 

can easily be transferred to solving diabetic retinopathy 

classification tasks.  In this study, we have been able to 

compare deep learning (learning from scratch) with transfer 

learning across three state-of-the-art neural network 

architectures. We have also been able to attain a high 

accuracy with transfer learning compared to Qummar et al 

[11] and Pratt et al[25].  

CONCLUSION  

Meta-learning and transfer learning are some of the best 

developments in Neural Networks due to their capabilities. 

They have made it possible for researchers to explore 

medical imaging research even when big volumes of labeled 

data are a limitation. Thus, researchers can now be able to 

create models that automate the classification of diabetic 

retinopathy.  

This study mainly focused on comparing the performance of 

deep learning and transfer learning in performing the task of 

classifying diabetic retinopathy. The findings of this study 

can act as a reference point for researchers who wish to 

explore computer vision research using neural networks. 
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