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Abstract: In this paper, the implementation and evaluation of the Advantage Actor-Critic (A2C) algorithm, one of the most important 

Deep Reinforcement Learning schemes, is performed. The objective is to determine the behavior of the algorithm on a desktop 

computer with a multi-core CPU, establishing its behavior, performance, and resource consumption for embedded applications. This 

algorithm makes use of multiple agents on parallel instances of the environment so that each agent adds knowledge to the system, 

which is weighted by a value of Advantage that evaluates its interaction in the environment. This assessment is performed on OpenAI's 

CartPole-v0 playground, so the results are comparable and easily reproducible. The results show a high performance of the algorithm 

for different instances with fixed-length segments of experience, which allows us to think of successful use on more resource-

constrained hardware platforms. 
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1. INTRODUCTION 
Reinforcement learning (RL) is a Machine learning strategy 

inspired by the behaviorist psychology of John B. Watson, 

under which the actions of agents are determined by their 

interaction with the environment, leaving aside consciousness 

and introspection [1]. Under this idea, the agent makes 

decisions to maximize some reward or reward function 

throughout their interaction [2, 3]. Given its simplicity of the 

concept, and its high performance in a multitude of tasks, the 

strategy has been successfully used in many disciplines such 

as control, game theory, search problems, optimization, and 

even robotics [4–6]. Although in much of the research related 

to RL the problem tends to focus on the search for optimal 

solutions [7], its usefulness as a learning strategy and in tasks 

related to generalization and approximation has been widely 

documented and appreciated [8, 9]. In addition, great 

similarities have been observed with the Markov Decision 

Process (MDP) given how the agent is related to the 

environment, which is an important tool of Machine learning, 

but with the possibility of being used in highly complex 

problems since the RL does not require explicitly defining the 

MDP relationships [10]. Another important feature of RL is 

that, unlike supervised learning, RL does not require 

Input/Output training pairs, but takes the information for the 

model from exploration and interaction in the environment 

[11]. 

RL models consist of a set of states of the environment, a set 

of actions, a set of rules for switching between states, rules for 

evaluating the reward associated with state change, and rules 

for interpreting the agent’s observations. In this sense, a 

system built to be trained as an RL model can also be 

described by the nomenclature of a hybrid system [12] or as a 

reactive system described by Linear Temporal Logic (LTL) 

[13, 14]. It is precisely this type of structure that allows the 

use of deep neural networks as the agent’s learning 

architecture to structure what has been called Deep 

Reinforcement Learning (DRL) [15]. In this framework, the 

agent’s decisions tune a neural model that defines the 

behavioral policy, which is reflected in the agent’s action on 

the environment (Fig. 1). 

 

Figure 1. Deep Reinforcement Learning scheme. 

One of the most recent DRL-type algorithms, and among the 

most influential, is the Asynchronous Advantage Actor-Critic 

(A3C) [16]. The algorithm is called asynchronous because 

unlike other DRL algorithms with a single agent in a single 

environment, A3C uses multiple agents each in its 

environment with its parameters [17, 18]. Each agent interacts 

in its environment asynchronously with the other agents, 

learning from its interaction. As each agent gains knowledge, 

this knowledge contributes to the knowledge of the overall 

algorithm. This scheme is similar to the experience gained 

individually by each person but contributes to the joint 

development of projects. An alternative implementation of the 

algorithm allows each actor to finish its learning segment 

before performing an update, which achieves synchronization 

of the agents, thus forming a better-performing algorithm 

called Advantage Actor-Critic (A2C) [19, 20]. The Actor-

Critic role names are assigned since the algorithm uses a 

Value function V(s) (Critic) to update the Optimal Policy 

function Π(s) (Actor). The Advantage designation is given 

since the agent receives a value of Advantage instead of a 

reward, which improves the learning process. 

In this paper, the implementation and evaluation of the A2C 

algorithm are performed. To generate knowledge, multiple 

agents are run synchronously in parallel, each in its 



International Journal of Computer Applications Technology and Research 

Volume 11–Issue 07, 284-290, 2022, ISSN:-2319–8656 

DOI:10.7753/IJCATR1107.1005 

www.ijcat.com  285 

environment (all identical instances), letting each one finish 

its interaction process before starting a new epoch of the 

system adjustment [21]. At any instant of the tuning process, 

each agent experiences a different state, which allows the 

algorithm to decorrelate the data of each agent. The algorithm 

is run on a desktop computer with a multi-core CPU to 

determine its actual performance without the use of GPUs. 

The algorithm is evaluated with OpenAI’s CartPole-v0 

playground, in which the agent is a cart controlled by two 

possible actions that cause left and right movements [22]. 

2. METHOD 
In our implementation of the Advantage Actor-Critic 

algorithm, we consider the traditional RL approach in which 

an agent interacts with an environment E over time, observed 

in a finite number of discrete steps (Fig. 1). At each of these 

time steps, the agent observes a state st in the environment, to 

which it responds with action at selected from some set of 

possible actions A, and in coherence with a behavioral policy 

π. The action value Qπ(s,a) (Eq. 1) corresponds to the 

expected return for the selected action a in state s and 

according to policy π. 

                                  

Under this context, Π (set containing all π) is a mapping from 

states to actions. Upon executing this action, the agent 

receives a reward rt, and the state of the system evolves to a 

new observable state s(t+1). This process continues for each 

time step until a final state is reached, evolving in such a way 

that the agent at each step maximizes the reward received. In 

the end, the cumulative return is given by Eq. 2 for a discount 

factor γ є (0,1]. 

     
     

 

   

             

In value-based RL strategies, the function value is 

approximated utilizing some suitable model, e.g., a neural 

network. In this case, the approximator takes the following 

form (Eq. 3): 

                             

This corresponds to an action-value function approximator 

with θ parameters, where the value of such parameters is 

iteratively updated by various RL algorithms, as in the case of 

Q-learning, again maximizing the reward it receives at each 

transition. As an alternative to value-based methods there are 

policy-based methods, in which the policy is parameterized in 

the form (Eq. 4): 

                    

Here again, the θ parameters are adjusted, but in this case 

through an ascending gradient over the environment 

considering the cumulative return. 

The variance of the estimate can be reduced by subtracting the 

learned function of the state bt(st) from the cumulative return 

value Rt. This parameter Rt−bt becomes an estimator of the 

advantage of the action at in state st. It should be remembered 

that Rt is an estimate of Qπ, and that bt is an estimate of Vπ(st). 

This structure is known as actor-critic architecture (policy π is 

the actor and bt is the critic). 

Asynchronous Advantage Actor-Critic (A3C) is a robust, 

simple, and high-performance Deep RL algorithm compared 

to other Deep RL schemes, particularly in tasks with complex 

state and action spaces (Fig. 2). It is called asynchronous 

because the algorithm uses multiple agents, each in its 

environment, which are trained in parallel, contributing their 

experience (knowledge gained) individually regardless of the 

progress of the other agents (asynchronous update). The 

advantage is the metric used to evaluate the actions of each 

agent, and the Actor-Critic model is used for decision making 

(actor) and the evaluation of how good the action was (critic). 

 

Figure 2. Asynchronous Advantage Actor-Critic (A3C). 

Advantage Actor-Critic (A2C) is a variant of A3C, with 

similar performance, in which it waits for each agent to finish 

its experience segment in the environment before performing 

the update, which makes it simpler than A3C, and suitable for 

running on CPU-only machines (no GPU). A coordinator is 

included in the overall scheme, which activates each agent in 

sequence, reducing the computational cost of the algorithm 

(Fig. 3). 

 

Figure 3. Synchronous Advantage Actor-Critic (A2C). 

Our implementation of the A2C algorithm was developed in 

Google Colab because of its accessibility without prior 

configuration, interactivity, the possibility of using GPU, and 

ease of sharing content. A Google account is sufficient to 

access this tool. A recommended first step is to connect the 

Google Drive service to the Google Colab virtual computer, 

which can be done as illustrated in Fig. 4. 

 

Figure 4. Connecting Google Drive to Google Colab. 

After account verification, the Drive storage service is 

connected to the virtual machine. The next step is to import 

the necessary libraries. In addition to numerical manipulation 

and visualization, the Torch tools, an open-source machine 

learning library used to implement the learning model, must 

be imported (Fig. 5). Also in this part, it is convenient to 

configure CUDA in case you have and want to use this 

capability in the hardware. 

 

Figure 5. Import of Torch and other libraries. 

The environment used is CartPole-v0, OpenAI's gym was also 

imported with the other libraries. It is a simple playground 



International Journal of Computer Applications Technology and Research 

Volume 11–Issue 07, 284-290, 2022, ISSN:-2319–8656 

DOI:10.7753/IJCATR1107.1005 

www.ijcat.com  286 

widely used to train and test RL algorithms, which in turn 

makes it a platform that guarantees performance comparison 

between different strategies and implementations. In this 

environment, the agent is a cart balancing a vertical bar 

(inverted pendulum), which is controlled by two possible 

actions that force it to move to the right or the left. A reward 

of +1 is assigned to each step that manages to keep the bar in 

its vertical position since the control objective is to prevent it 

from falling to either end. The goal of our model is to 

maximize the total reward throughout the process, which 

would guarantee that the bar does not fall, and therefore that 

the problem has been solved. Before creating the 

environment, it is necessary to install some libraries to the 

virtual machine to perform the simulations (Fig. 6). 

 

Figure 6. Installation requirements for the environment. 

After fulfilling these requirements, the next step is to create 

the environments. In our case, we are creating 20 

environments (Fig. 7). 

 

Figure 7. Creation of environments. 

The other important element of this Deep RL model is the 

deep neural network. For it, a method was created capable of 

constructing the network from the needs, stacking layers with 

the Sequential model of the required size. The activation 

function used in the hidden layers is ReLU and in the output 

layer Softmax (Fig. 8). 

 

Figure 8. Creation of the deep neural network. 

The cumulative return can be calculated at each step with a 

simple function that receives the reward for a given value of γ, 

which in this case has been set to 0.99 (Fig. 9). The values are 

accumulated by keeping track of previous results. 

 

Figure 9. Function for cumulative return calculation. 

The next step is to configure the model characteristics. The 

number of inputs and outputs, hidden layers of the deep 

network and their learning rate, the type of model, i.e. Actor-

Critic, and the optimizer to be used are set. In our case, we 

have used the Adan variant of the gradient descendent (Fig. 

10). 

 

Figure 10. Adjustment of model features. 

Finally, the training of the model is performed. This is done 

within a cycle that calls the functions and evaluates each 

parameter at each step (Fig. 11). 

 

Figure 11. Model training cycle. 

3. RESULT AND DISCUSSION 
As indicated above, we used the CartPole-v0 by OpenAI 

playground as an evaluation platform for the algorithm. Many 

experiments were performed on this platform for different 

configurations of the algorithm, which guarantees the stability 

and scalability of the results. In all cases, the reward and its 

accumulated value throughout the training were recorded and 

plotted. 
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The code was developed on a machine with a single Intel 

Core i7-7700HQ eight-core 3.8 GHz CPU with 64-bit 

architecture and 24 GB of RAM. This machine runs a Debian 

Bullseye Linux OS with kernel 5.18.0. Within Google Colab 

we used Torch 1.11.0+cu113, gym 0.17.3, piglet 1.0.0, 

pyvirtualdisplay 3.0, python-opengl 3.1.0+dsfg-1, matplotlib 

3.2.2, and numpy 1.21.6, configuring a GPU in the Runtime. 

Fig. 12 shows four of our experiments with 16 environments, 

256 hidden layers in the deep neural network, and a learning 

rate of 3e-4. The average run time of each experiment was 2 

minutes and 16 seconds. The cumulative reward in the 

experiment in Fig. 12(a) was 186, in the experiment in Fig. 

12(b) it was 200, in the experiment in Fig. 12(c) it was 112, 

and in the experiment in Fig. 12(d) it was 134. 

 

Figure 12. Comparison of learning in four experiments with 16 

environments, 256 hidden layers in the deep neural network, and 20 

epochs: (a) case with 186 cumulative rewards, (b) case with 200 

cumulative rewards, (c) case with 112 cumulative rewards, and (d) 

case with 134 cumulative rewards. 

The first two experiments in Fig. 12 perform better in 

reaching a higher cumulative reward and maintaining a high 

reward value throughout the training than the last two cases. 

In addition, the latter two cases tend to deteriorate their 

behavior after epoch 15. To evaluate the effect of the 

parameters on the algorithm, similar training was performed 

by varying only one of these parameters, first the number of 

training epochs, then the number of environments, and finally 

the depth of the neural network. In the first set of experiments, 

the number of training epochs was doubled, and the result is 

shown in Fig. 13. The cumulative reward in the experiment in 

Fig. 13(a) was 200, in the experiment in Fig. 13(b) it was 171, 

in the experiment in Fig. 13(c) it was 200, and in the 

experiment in Fig. 13(d) it was 200. The average time per 

experiment was four minutes and 34 seconds. 

 

Figure 13. Comparison of learning in four experiments with 16 
environments, 256 hidden layers in the deep neural network, and 40 

epochs: (a) case with 200 cumulative rewards, (b) case with 171 

cumulative rewards, (c) case with 200 cumulative rewards, and (d) 
case with 200 cumulative rewards. 
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By doubling the training time, a better behavior of the models 

is observed. In many of the experiments it is observed that at 

some point the reward decreases, but somehow this 

contributes to increasing the stability of the process, since the 

reward value increases again, and remains high for the rest of 

the training. 

The third set of experiments again reduced the training time to 

20 epochs, and doubled the number of environments to a total 

of 32, keeping all other parameters constant. The results are 

shown in Fig. 14, in the experiment in Fig. 14(a) the 

cumulative reward was 110, in the experiment in Fig. 14(b) 

the cumulative reward was 200, in the experiment in Fig. 

14(c) the cumulative reward was 200, and in the experiment 

in Fig. 14(d) the cumulative reward was 200. The average 

time in these experiments was two minutes and 40 seconds. 

 

Figure 14. Comparison of learning in four experiments with 32 

environments, 256 hidden layers in the deep neural network, and 20 
epochs: (a) case with 110 cumulative rewards, (b) case with 200 

cumulative rewards, (c) case with 200 cumulative rewards, and (d) 

case with 200 cumulative rewards. 

In these experiments, it is observed that the increase in the 

number of environments has an impact on the stabilization of 

the reward, since unlike the experiments in Fig. 12, the reward 

value remains more stable, and the final cumulative reward 

values also increase. The time cost for half of the 

environments is only 17.6% additional. 

The last set of experiments evaluates the impact of neural 

network depth, returning to the 16 environment configuration, 

and increasing the number of hidden layers to 512. All other 

model parameters are kept the same. Examples of these 

experiments are shown in Fig. 15, in the experiment in Fig. 

15(a) the cumulative reward was 98, in the experiment in Fig. 

15(b) the cumulative reward was 200, in the experiment in 

Fig. 15(c) the cumulative reward was 200, and in the 

experiment in Fig. 14(d) the cumulative reward was 86 The 

average time in these experiments was two minutes and six 

seconds. 

 

Figure 15. Comparison of learning in four experiments with 16 

environments, 512 hidden layers in the deep neural network, and 20 

epochs: (a) case with 98 cumulative rewards, (b) case with 200 
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cumulative rewards, (c) case with 200 cumulative rewards, and (d) 

case with 86 cumulative rewards. 

The increase in the complexity of the deep neural network has 

an interesting effect on the performance of the agent, as it 

increases its performance. This is observed in a small 

reduction in the total training time (7.3% reduction), which 

indicates that it is easier for the agent to learn in its interaction 

with the environment. Even so, the overall performance in 

terms of cumulative reward is similar to that observed in the 

earlier experiments with a shallower neural network. 

4. CONCLUSION 
This paper implements and evaluates the Advantage Actor-

Critic (A2C) algorithm to determine its actual performance for 

different combinations of parameters running on a single 

multi-core CPU system without GPU. The algorithm was 

implemented in Python on the Google Colab platform, 

making use of its GPU service, and with PyTorch support. 

The sensitive parameters of the algorithm were number of 

agents/environments, neural network depth, and training 

duration. From the results of multiple experiments it was 

concluded that the variables with the greatest impact on 

performance are those that improve the level of interaction of 

the agent with its environment. In particular, longer training 

times have a significant impact on the stability and final value 

of the accumulated reward. The depth in the neural network 

also facilitates the learning of the environment, and the 

number of environments helps to stabilize the reward behavior 

along the process. Therefore, it can be stated that a higher 

level of interaction of the agent in the environment 

significantly increases its level of learning. In addition, since 

the algorithm is faster and more robust than classical RL 

algorithms, it is more suitable than other similar techniques 

for use in embedded systems, even more so if one considers 

that it can be used in both discrete and continuous space 

problems. 
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