
International Journal of Computer Applications Technology and Research

Volume 11–Issue 07, 284-290, 2022, ISSN:-2319–8656

DOI:10.7753/IJCATR1107.1005

www.ijcat.com 284

Implementation and Evaluation of Advantage Actor-

Critic Algorithm on a Desktop Computer with a Multi-

Core CPU

Fredy Martínez

Universidad Distrital Francisco José de Caldas

Bogotá D.C., Colombia

Angélica Rendón

Universidad Distrital Francisco José de Caldas

Bogotá D.C., Colombia

Abstract: In this paper, the implementation and evaluation of the Advantage Actor-Critic (A2C) algorithm, one of the most important

Deep Reinforcement Learning schemes, is performed. The objective is to determine the behavior of the algorithm on a desktop

computer with a multi-core CPU, establishing its behavior, performance, and resource consumption for embedded applications. This

algorithm makes use of multiple agents on parallel instances of the environment so that each agent adds knowledge to the system,

which is weighted by a value of Advantage that evaluates its interaction in the environment. This assessment is performed on OpenAI's

CartPole-v0 playground, so the results are comparable and easily reproducible. The results show a high performance of the algorithm

for different instances with fixed-length segments of experience, which allows us to think of successful use on more resource-

constrained hardware platforms.

Keywords: A2C; agent; cartpole-v0; environment; optimal policy; reinforcement learning; value function

1. INTRODUCTION
Reinforcement learning (RL) is a Machine learning strategy

inspired by the behaviorist psychology of John B. Watson,

under which the actions of agents are determined by their

interaction with the environment, leaving aside consciousness

and introspection [1]. Under this idea, the agent makes

decisions to maximize some reward or reward function

throughout their interaction [2, 3]. Given its simplicity of the

concept, and its high performance in a multitude of tasks, the

strategy has been successfully used in many disciplines such

as control, game theory, search problems, optimization, and

even robotics [4–6]. Although in much of the research related

to RL the problem tends to focus on the search for optimal

solutions [7], its usefulness as a learning strategy and in tasks

related to generalization and approximation has been widely

documented and appreciated [8, 9]. In addition, great

similarities have been observed with the Markov Decision

Process (MDP) given how the agent is related to the

environment, which is an important tool of Machine learning,

but with the possibility of being used in highly complex

problems since the RL does not require explicitly defining the

MDP relationships [10]. Another important feature of RL is

that, unlike supervised learning, RL does not require

Input/Output training pairs, but takes the information for the

model from exploration and interaction in the environment

[11].

RL models consist of a set of states of the environment, a set

of actions, a set of rules for switching between states, rules for

evaluating the reward associated with state change, and rules

for interpreting the agent’s observations. In this sense, a

system built to be trained as an RL model can also be

described by the nomenclature of a hybrid system [12] or as a

reactive system described by Linear Temporal Logic (LTL)

[13, 14]. It is precisely this type of structure that allows the

use of deep neural networks as the agent’s learning

architecture to structure what has been called Deep

Reinforcement Learning (DRL) [15]. In this framework, the

agent’s decisions tune a neural model that defines the

behavioral policy, which is reflected in the agent’s action on

the environment (Fig. 1).

Figure 1. Deep Reinforcement Learning scheme.

One of the most recent DRL-type algorithms, and among the

most influential, is the Asynchronous Advantage Actor-Critic

(A3C) [16]. The algorithm is called asynchronous because

unlike other DRL algorithms with a single agent in a single

environment, A3C uses multiple agents each in its

environment with its parameters [17, 18]. Each agent interacts

in its environment asynchronously with the other agents,

learning from its interaction. As each agent gains knowledge,

this knowledge contributes to the knowledge of the overall

algorithm. This scheme is similar to the experience gained

individually by each person but contributes to the joint

development of projects. An alternative implementation of the

algorithm allows each actor to finish its learning segment

before performing an update, which achieves synchronization

of the agents, thus forming a better-performing algorithm

called Advantage Actor-Critic (A2C) [19, 20]. The Actor-

Critic role names are assigned since the algorithm uses a

Value function V(s) (Critic) to update the Optimal Policy

function Π(s) (Actor). The Advantage designation is given

since the agent receives a value of Advantage instead of a

reward, which improves the learning process.

In this paper, the implementation and evaluation of the A2C

algorithm are performed. To generate knowledge, multiple

agents are run synchronously in parallel, each in its

International Journal of Computer Applications Technology and Research

Volume 11–Issue 07, 284-290, 2022, ISSN:-2319–8656

DOI:10.7753/IJCATR1107.1005

www.ijcat.com 285

environment (all identical instances), letting each one finish

its interaction process before starting a new epoch of the

system adjustment [21]. At any instant of the tuning process,

each agent experiences a different state, which allows the

algorithm to decorrelate the data of each agent. The algorithm

is run on a desktop computer with a multi-core CPU to

determine its actual performance without the use of GPUs.

The algorithm is evaluated with OpenAI’s CartPole-v0

playground, in which the agent is a cart controlled by two

possible actions that cause left and right movements [22].

2. METHOD
In our implementation of the Advantage Actor-Critic

algorithm, we consider the traditional RL approach in which

an agent interacts with an environment E over time, observed

in a finite number of discrete steps (Fig. 1). At each of these

time steps, the agent observes a state st in the environment, to

which it responds with action at selected from some set of

possible actions A, and in coherence with a behavioral policy

π. The action value Qπ(s,a) (Eq. 1) corresponds to the

expected return for the selected action a in state s and

according to policy π.

Under this context, Π (set containing all π) is a mapping from

states to actions. Upon executing this action, the agent

receives a reward rt, and the state of the system evolves to a

new observable state s(t+1). This process continues for each

time step until a final state is reached, evolving in such a way

that the agent at each step maximizes the reward received. In

the end, the cumulative return is given by Eq. 2 for a discount

factor γ є (0,1].

In value-based RL strategies, the function value is

approximated utilizing some suitable model, e.g., a neural

network. In this case, the approximator takes the following

form (Eq. 3):

This corresponds to an action-value function approximator

with θ parameters, where the value of such parameters is

iteratively updated by various RL algorithms, as in the case of

Q-learning, again maximizing the reward it receives at each

transition. As an alternative to value-based methods there are

policy-based methods, in which the policy is parameterized in

the form (Eq. 4):

Here again, the θ parameters are adjusted, but in this case

through an ascending gradient over the environment

considering the cumulative return.

The variance of the estimate can be reduced by subtracting the

learned function of the state bt(st) from the cumulative return

value Rt. This parameter Rt−bt becomes an estimator of the

advantage of the action at in state st. It should be remembered

that Rt is an estimate of Qπ, and that bt is an estimate of Vπ(st).

This structure is known as actor-critic architecture (policy π is

the actor and bt is the critic).

Asynchronous Advantage Actor-Critic (A3C) is a robust,

simple, and high-performance Deep RL algorithm compared

to other Deep RL schemes, particularly in tasks with complex

state and action spaces (Fig. 2). It is called asynchronous

because the algorithm uses multiple agents, each in its

environment, which are trained in parallel, contributing their

experience (knowledge gained) individually regardless of the

progress of the other agents (asynchronous update). The

advantage is the metric used to evaluate the actions of each

agent, and the Actor-Critic model is used for decision making

(actor) and the evaluation of how good the action was (critic).

Figure 2. Asynchronous Advantage Actor-Critic (A3C).

Advantage Actor-Critic (A2C) is a variant of A3C, with

similar performance, in which it waits for each agent to finish

its experience segment in the environment before performing

the update, which makes it simpler than A3C, and suitable for

running on CPU-only machines (no GPU). A coordinator is

included in the overall scheme, which activates each agent in

sequence, reducing the computational cost of the algorithm

(Fig. 3).

Figure 3. Synchronous Advantage Actor-Critic (A2C).

Our implementation of the A2C algorithm was developed in

Google Colab because of its accessibility without prior

configuration, interactivity, the possibility of using GPU, and

ease of sharing content. A Google account is sufficient to

access this tool. A recommended first step is to connect the

Google Drive service to the Google Colab virtual computer,

which can be done as illustrated in Fig. 4.

Figure 4. Connecting Google Drive to Google Colab.

After account verification, the Drive storage service is

connected to the virtual machine. The next step is to import

the necessary libraries. In addition to numerical manipulation

and visualization, the Torch tools, an open-source machine

learning library used to implement the learning model, must

be imported (Fig. 5). Also in this part, it is convenient to

configure CUDA in case you have and want to use this

capability in the hardware.

Figure 5. Import of Torch and other libraries.

The environment used is CartPole-v0, OpenAI's gym was also

imported with the other libraries. It is a simple playground

International Journal of Computer Applications Technology and Research

Volume 11–Issue 07, 284-290, 2022, ISSN:-2319–8656

DOI:10.7753/IJCATR1107.1005

www.ijcat.com 286

widely used to train and test RL algorithms, which in turn

makes it a platform that guarantees performance comparison

between different strategies and implementations. In this

environment, the agent is a cart balancing a vertical bar

(inverted pendulum), which is controlled by two possible

actions that force it to move to the right or the left. A reward

of +1 is assigned to each step that manages to keep the bar in

its vertical position since the control objective is to prevent it

from falling to either end. The goal of our model is to

maximize the total reward throughout the process, which

would guarantee that the bar does not fall, and therefore that

the problem has been solved. Before creating the

environment, it is necessary to install some libraries to the

virtual machine to perform the simulations (Fig. 6).

Figure 6. Installation requirements for the environment.

After fulfilling these requirements, the next step is to create

the environments. In our case, we are creating 20

environments (Fig. 7).

Figure 7. Creation of environments.

The other important element of this Deep RL model is the

deep neural network. For it, a method was created capable of

constructing the network from the needs, stacking layers with

the Sequential model of the required size. The activation

function used in the hidden layers is ReLU and in the output

layer Softmax (Fig. 8).

Figure 8. Creation of the deep neural network.

The cumulative return can be calculated at each step with a

simple function that receives the reward for a given value of γ,

which in this case has been set to 0.99 (Fig. 9). The values are

accumulated by keeping track of previous results.

Figure 9. Function for cumulative return calculation.

The next step is to configure the model characteristics. The

number of inputs and outputs, hidden layers of the deep

network and their learning rate, the type of model, i.e. Actor-

Critic, and the optimizer to be used are set. In our case, we

have used the Adan variant of the gradient descendent (Fig.

10).

Figure 10. Adjustment of model features.

Finally, the training of the model is performed. This is done

within a cycle that calls the functions and evaluates each

parameter at each step (Fig. 11).

Figure 11. Model training cycle.

3. RESULT AND DISCUSSION
As indicated above, we used the CartPole-v0 by OpenAI

playground as an evaluation platform for the algorithm. Many

experiments were performed on this platform for different

configurations of the algorithm, which guarantees the stability

and scalability of the results. In all cases, the reward and its

accumulated value throughout the training were recorded and

plotted.

International Journal of Computer Applications Technology and Research

Volume 11–Issue 07, 284-290, 2022, ISSN:-2319–8656

DOI:10.7753/IJCATR1107.1005

www.ijcat.com 287

The code was developed on a machine with a single Intel

Core i7-7700HQ eight-core 3.8 GHz CPU with 64-bit

architecture and 24 GB of RAM. This machine runs a Debian

Bullseye Linux OS with kernel 5.18.0. Within Google Colab

we used Torch 1.11.0+cu113, gym 0.17.3, piglet 1.0.0,

pyvirtualdisplay 3.0, python-opengl 3.1.0+dsfg-1, matplotlib

3.2.2, and numpy 1.21.6, configuring a GPU in the Runtime.

Fig. 12 shows four of our experiments with 16 environments,

256 hidden layers in the deep neural network, and a learning

rate of 3e-4. The average run time of each experiment was 2

minutes and 16 seconds. The cumulative reward in the

experiment in Fig. 12(a) was 186, in the experiment in Fig.

12(b) it was 200, in the experiment in Fig. 12(c) it was 112,

and in the experiment in Fig. 12(d) it was 134.

Figure 12. Comparison of learning in four experiments with 16

environments, 256 hidden layers in the deep neural network, and 20

epochs: (a) case with 186 cumulative rewards, (b) case with 200

cumulative rewards, (c) case with 112 cumulative rewards, and (d)

case with 134 cumulative rewards.

The first two experiments in Fig. 12 perform better in

reaching a higher cumulative reward and maintaining a high

reward value throughout the training than the last two cases.

In addition, the latter two cases tend to deteriorate their

behavior after epoch 15. To evaluate the effect of the

parameters on the algorithm, similar training was performed

by varying only one of these parameters, first the number of

training epochs, then the number of environments, and finally

the depth of the neural network. In the first set of experiments,

the number of training epochs was doubled, and the result is

shown in Fig. 13. The cumulative reward in the experiment in

Fig. 13(a) was 200, in the experiment in Fig. 13(b) it was 171,

in the experiment in Fig. 13(c) it was 200, and in the

experiment in Fig. 13(d) it was 200. The average time per

experiment was four minutes and 34 seconds.

Figure 13. Comparison of learning in four experiments with 16
environments, 256 hidden layers in the deep neural network, and 40

epochs: (a) case with 200 cumulative rewards, (b) case with 171

cumulative rewards, (c) case with 200 cumulative rewards, and (d)
case with 200 cumulative rewards.

International Journal of Computer Applications Technology and Research

Volume 11–Issue 07, 284-290, 2022, ISSN:-2319–8656

DOI:10.7753/IJCATR1107.1005

www.ijcat.com 288

By doubling the training time, a better behavior of the models

is observed. In many of the experiments it is observed that at

some point the reward decreases, but somehow this

contributes to increasing the stability of the process, since the

reward value increases again, and remains high for the rest of

the training.

The third set of experiments again reduced the training time to

20 epochs, and doubled the number of environments to a total

of 32, keeping all other parameters constant. The results are

shown in Fig. 14, in the experiment in Fig. 14(a) the

cumulative reward was 110, in the experiment in Fig. 14(b)

the cumulative reward was 200, in the experiment in Fig.

14(c) the cumulative reward was 200, and in the experiment

in Fig. 14(d) the cumulative reward was 200. The average

time in these experiments was two minutes and 40 seconds.

Figure 14. Comparison of learning in four experiments with 32

environments, 256 hidden layers in the deep neural network, and 20
epochs: (a) case with 110 cumulative rewards, (b) case with 200

cumulative rewards, (c) case with 200 cumulative rewards, and (d)

case with 200 cumulative rewards.

In these experiments, it is observed that the increase in the

number of environments has an impact on the stabilization of

the reward, since unlike the experiments in Fig. 12, the reward

value remains more stable, and the final cumulative reward

values also increase. The time cost for half of the

environments is only 17.6% additional.

The last set of experiments evaluates the impact of neural

network depth, returning to the 16 environment configuration,

and increasing the number of hidden layers to 512. All other

model parameters are kept the same. Examples of these

experiments are shown in Fig. 15, in the experiment in Fig.

15(a) the cumulative reward was 98, in the experiment in Fig.

15(b) the cumulative reward was 200, in the experiment in

Fig. 15(c) the cumulative reward was 200, and in the

experiment in Fig. 14(d) the cumulative reward was 86 The

average time in these experiments was two minutes and six

seconds.

Figure 15. Comparison of learning in four experiments with 16

environments, 512 hidden layers in the deep neural network, and 20

epochs: (a) case with 98 cumulative rewards, (b) case with 200

International Journal of Computer Applications Technology and Research

Volume 11–Issue 07, 284-290, 2022, ISSN:-2319–8656

DOI:10.7753/IJCATR1107.1005

www.ijcat.com 289

cumulative rewards, (c) case with 200 cumulative rewards, and (d)

case with 86 cumulative rewards.

The increase in the complexity of the deep neural network has

an interesting effect on the performance of the agent, as it

increases its performance. This is observed in a small

reduction in the total training time (7.3% reduction), which

indicates that it is easier for the agent to learn in its interaction

with the environment. Even so, the overall performance in

terms of cumulative reward is similar to that observed in the

earlier experiments with a shallower neural network.

4. CONCLUSION
This paper implements and evaluates the Advantage Actor-

Critic (A2C) algorithm to determine its actual performance for

different combinations of parameters running on a single

multi-core CPU system without GPU. The algorithm was

implemented in Python on the Google Colab platform,

making use of its GPU service, and with PyTorch support.

The sensitive parameters of the algorithm were number of

agents/environments, neural network depth, and training

duration. From the results of multiple experiments it was

concluded that the variables with the greatest impact on

performance are those that improve the level of interaction of

the agent with its environment. In particular, longer training

times have a significant impact on the stability and final value

of the accumulated reward. The depth in the neural network

also facilitates the learning of the environment, and the

number of environments helps to stabilize the reward behavior

along the process. Therefore, it can be stated that a higher

level of interaction of the agent in the environment

significantly increases its level of learning. In addition, since

the algorithm is faster and more robust than classical RL

algorithms, it is more suitable than other similar techniques

for use in embedded systems, even more so if one considers

that it can be used in both discrete and continuous space

problems.

5. DECLARATIONS
Authors declare that they have no conflict of interest in this

research paper.

6. ACKNOWLEDGMETS
This work was supported by the Universidad Distrital

Francisco José de Caldas, in part through CIDC, and partly by

the Facultad Tecnológica. The views expressed in this paper

are not necessarily endorsed by Universidad Distrital. The

authors thank the research group ARMOS for the evaluation

carried out on prototypes of ideas and strategies.

7. REFERENCES
[1] J. Watson, “Psychology as the behaviorist views it,”

Psychological Review, vol. 20, no. 2, pp. 158–177, 1913.

[2] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M.

Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T.

Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis, “A

general reinforcement learning algorithm that masters

chess, shogi, and go through self-play,” Science, vol.

362, no. 6419, pp. 1140–1144, dec 2018.

[3] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M.

Mathieu, A. Dudzik, J. Chung, D. H. Choi, R. Powell, T.

Ewalds, P. Georgiev, J. Oh, D. Horgan, M. Kroiss, I.

Danihelka, A. Huang, L. Sifre, T. Cai, J. P. Agapiou, M.

Jaderberg, A. S. Vezhnevets, R. Leblond, T. Pohlen, V.

Dalibard, D. Budden, Y. Sulsky, J. Molloy, T. L. Paine,

C. Gulcehre, Z. Wang, T. Pfaff, Y. Wu, R. Ring, D.

Yogatama, D. Wünsch, K. McKinney, O. Smith, T.

Schaul, T. Lillicrap, K. Kavukcuoglu, D. Hassabis, C.

Apps, and D. Silver, “Grandmaster level in StarCraft II

using multi-agent reinforcement learning,” Nature, vol.

575, no. 7782, pp. 350–354, oct 2019.

[4] B. Kiumarsi, K. G. Vamvoudakis, H. Modares, and F. L.

Lewis, “Optimal and autonomous control using

reinforcement learning: A survey,” IEEE Transactions on

Neural Networks and Learning Systems, vol. 29, no. 6,

pp. 2042–2062, 2018.

[5] J. Han, A. Jentzen, and W. E, “Solving high-dimensional

partial differential equations using deep learning,”

Proceedings of the National Academy of Sciences, vol.

115, no. 34, pp. 8505–8510, 2018.

[6] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V.

Tsounis, V. Koltun, and M. Hutter, “Learning agile and

dynamic motor skills for legged robots,” Science

Robotics, vol. 4, no. 26, p. 5872, 2019.

[7] P. A. Erdman and F. Noé, “Identifying optimal cycles in

quantum thermal machines with reinforcement-learning,”

npj Quantum Information, vol. 8, no. 1, p. 1, 2022.

[8] C. M. Wu, E. Schulz, T. J. Pleskac, and M.

Speekenbrink, “Time pressure changes how people

explore and respond to uncertainty,” Scientific Reports,

vol. 12, no. 1, p. 4122, 2022.

[9] S. Manna, T. D. Loeffler, R. Batra, S. Banik, H. Chan, B.

Varughese, K. Sasikumar, M. Sternberg, T. Peterka, M.

J. Cherukara, S. K. Gray, B. G. Sumpter, and S. K. R. S.

Sankaranarayanan, “Learning in continuous action space

for developing high dimensional potential energy

models,” Nature Communications, vol. 13, no. 1, p. 368,

2022.

[10] J. Aznar-Poveda, A.-J. García-Sánchez, E. Egea-López,

and J. García-Haro, “Approximate reinforcement

learning to control beaconing congestion in distributed

networks,” Scientific Reports, vol. 12, no. 1, p. 142,

2022.

[11] E. Kuprikov, A. Kokhanovskiy, K. Serebrennikov, and S.

Turitsyn, “Deep reinforcement learning for self-tuning

laser source of dissipative solitons,” Scientific Reports,

vol. 12, no. 1, p. 7185, 2022.

[12] Z. cheng Qiu, G. hao Chen, and X. min Zhang,

“Trajectory planning and vibration control of translation

flexible hinged plate based on optimization and

reinforcement learning algorithm,” Mechanical Systems

and Signal Processing, vol. 179, no. 109362, p. 109362,

2022.

[13] R. T. Icarte, T. Q. Klassen, R. Valenzano, and S. A.

McIlraith, “Reward machines: Exploiting reward

function structure in reinforcement learning,” Journal of

Artificial Intelligence Research, vol. 73, no. 1, pp. 173–

208, 2022.

[14] L. Bobadilla, F. Martinez, E. Gobst, K. Gossman, and S.

M. LaValle, “Controlling wild mobile robots using

virtual gates and discrete transitions,” in 2012 American

Control Conference (ACC). IEEE, 2012, pp. 743–749.

[15] F. Martínez, F. Martínez, and E. Jacinto, “Performance

evaluation of the nasnet convolutional networkin the

automatic identification of covid-19,” International

Journal on Advanced Science Engineering Information

Technology, vol. 10, no. 2, pp. 662–667, 2020.

International Journal of Computer Applications Technology and Research

Volume 11–Issue 07, 284-290, 2022, ISSN:-2319–8656

DOI:10.7753/IJCATR1107.1005

www.ijcat.com 290

[16] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P.

Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu,

“Asynchronous methods for deep reinforcement

learning,” ICML 2016, 2016.

[17] B. Sellami, A. Hakiri, S. B. Yahia, and P. Berthou,

“Energy-aware task scheduling and offloading using

deep reinforcement learning in SDN-enabled IoT

network,” Computer Networks, vol. 210, no. 1, p.

108957, 2022.

[18] A. Biswas, P. G. Anselma, and A. Emadi, “Real-time

optimal energy management of multimode hybrid

electric powertrain with online trainable asynchronous

advantage actor–critic algorithm,” IEEE Transactions on

Transportation Electrification, vol. 8, no. 2, pp. 2676–

2694, 2022.

[19] P. Zhao, X. Li, S. Gao, and X. Wei, “Cooperative task

assignment in spatial crowdsourcing via multi-agent deep

reinforcement learning,” Journal of Systems

Architecture, vol. 128, no. 1, p. 102551, 2022.

[20] H. Yue, J. Liu, D. Tian, and Q. Zhang, “A novel anti-risk

method for portfolio trading using deep reinforcement

learning,” Electronics, vol. 11, no. 9, p. 1506, 2022.

[21] H. Montiel, F. Martínez, and F. Martínez, “Parallel

control model for navigation tasks on service robots,”

Journal of Physics: Conference Series, vol. 2135, no. 1,

p. 012002, 2021.

[22] K. Kanno and A. Uchida, “Photonic reinforcement

learning based on optoelectronic reservoir computing,”

Scientific Reports, vol. 12, no. 1, p. 3720, 2022.

