
International Journal of Computer Applications Technology and Research

Volume 11–Issue 07, 291-295, 2022, ISSN:-2319–8656

DOI:10.7753/IJCATR1107.1006

www.ijcat.com 291

An Overview of Domain Details Tool

B Somu Sashank Dr. Sandhya S

Computer Science and Engineering Computer Science and Engineering

RV College of Engineering RV College of Engineering

Bangalore, India Bangalore, India

Abstract: The Get Domain Details uses the DIG command to provide hostname or Domain Name Server details for particular location

or edge server IP. An information collection and preparing device is accounted for DIG. The tool permits the management of a product

cycle to have the option to extract information from a repository to groom the information and to create reports. The reports are pointed
toward helping the management in the control of the product advancement process. DIG allows the executives to construct a total portrayal

of the efficiency information to more readily coax out the boundaries and figure out the reasons for variety in the information. Also, the

information acquired and prepped by DIG might be utilized to align and apply process control models.
Keywords: software testing, report, GANTT plan, deployment, dnslookup, plugins

1. INTRODUCTION
This paper presents the utilization of the tool DIG. The tool was

developed to satisfy the requirement for information collection

in a software process environment; especially for the approval of

a model of the interleaved occasions of coding and testing

incremental programming improvement. DIG is a robust

command-line tool developed by BIND for querying DNS

nameservers. It can identify IP address records, record the query

route as it obtains answers from an authoritative nameserver and

diagnose other DNS problems. Dig is more advanced than

dnslookup and host commands. It is noticed that such a tool could

uphold numerous information-driven drives including

management works, process improvement, and control,

preparing prescient reproduction models or measurements

development for different purposes. Generally speaking, the

alignment of a product cycle simulation model demands tedious

manual extraction, preparation, and translation of verifiable

interaction execution information from different sources. In these

assignments, the issues may not loan themselves to natural

arrangements; for this situation, it could be useful for the model

creators to give devices to plan specific process elements to

demonstrate ideas, and for extricating model boundaries from

defective arrangements of information. While DIG worked to

align a particular model, its more extensive utility lies in the way

that it gives a system for the development and translation of time-

series information from process curios. This tool you can verify

if the routing between a user and edge server is optimal and if the

domain has any Canonical Name records, namely whether your

domain has other domains acting as its aliases and if there are

any issues with the resolution of domain names.
2. GOALS
When interpreting the data removed from the artifacts of a

specific cycle, looking at the information inside the setting of the

interaction that produced it is vital. For instance, think about

Figure 1. In the figure, by overlooking the GANTT plan one

could reason that the efficiency of code creation, drops off

moderately immediately followed by a significant stretch of low

efficiency. Given the appropriate setting, notwithstanding,

one can without much of a stretch see that the store information

for Release 0.2 addresses the execution of two undertakings:

Coding and then the slow Rework task. This is the essential

objective of the DIG instrument: to give the semi-computerized

component for incorporating crude process information with the

setting given in the task plan. Upon this objective we place three

positive properties: i) The center application ought to uncover,

in an object structure, the gathered information by means of a

public connection point expected for those applications which

would consume the information; ii) The revealing capability of

the device ought to help a secluded 'estimation' which is free of

a specific perspective on the information/computations, and iii)

The tool ought to have the option to work with the momentum

variants of the cycle relics and give changed information and

computations consistently upon artifact update.

Figure. 1 Interpretive context provided by project schedule

3. RELATED WORK

The literature on automated data collection and analysis lays out
the primary motivating factors driving the construction of
automated tools. They may be briefly summarized as i) Data
collection is expensive, and there is no instant gratification for
doing it; ii) Data collection is unreliable, owing in no small part
to the fact that developers find it irritating and secondary in
priority; and iii) Errors in the recording of the data seem to occur
more frequently in the critical parts of the development process;

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 11–Issue 07, 291-295, 2022, ISSN:-2319–8656

DOI:10.7753/IJCATR1107.1006

www.ijcat.com 292

precisely when the data are most needed. The literature espouses
a particular modular architectural structure consisting of the
following components : i) Data collection/Data grooming - those
parts of the system which act as an interface between the data
storage/processing central component and the raw data sources
(e.g. SCM tools, Project Mgmt. tools, IDEs, etc.); ii) Data storage
and representation - the central component which gathers the
groomed data from the collection components, and makes it
available in some object form to client applications/applets; and
iii) Data clients - the client applications/applets which use the
data provided by the data storage module to calculate metrics,
charts, or model parameters. Here, the term ‘component’ is used
to refer to the idea of ‘add-on software components, both to a
central application – as per our approach illustrated in Figure 2,
as well as ‘deployment modules’ as per where the notion is that
of a stand-alone client application which runs elsewhere on the
network. The authors propose the idea that future tools should
support “a more explicit view of the process,” as the current tools
tend to focus on the raw data from the sources in isolation from
the perspective provided by the context of the process as a whole.
Here we note the distinction between product and process
metrics. The product variety may likely be calculated without
regard to an explicit representation of the process; these are
metrics such as complexity, size, etc. The process metrics, such
as defect insertion rates, productivity, etc., require context for
interpretation. For example, while one may simply use
completion data to derive coarse productivity metrics, we note
that extrapolation from such metrics must assume that future
work is performed in a similar environment; it is only by
considering the confounding environmental factors (e.g.,
vacation days, concurrency in the schedule, etc.) that one may
derive an understanding of process metrics that is capable of
being applied to widely varying future environments. We
propose that there is value inherent in tying the raw data to the
project schedule as the minimum satisfaction of the premise that
the process should find representation in any such data collection
tool. To support this conjecture, we draw an analogy with best
practices using high-level programming languages: it is
suggested that the ‘goto’ command be avoided because it
destroys the logical Constructs which simplifies program

Figure. 2 Deployment of DIG in a networked environment

We make a similar case for why it's important to include raw

time-series data in the project plan; this way, external effects and

confounding factors can be easily identified and the link between

the factors and the metrics under study may be better understood.

To increase understanding, we (in DIG) compel the linkage of

time-series data to schedule components.

Figure. 3 Tool Deployment Scheme

4. ARCHITECTURE OF DIG
To promote wide applicability, DIG is constructed as a

framework; a core application that manages the association of

data and schedule elements, and a set of organization-specific

plug-ins to parse out the data from the proprietary artifacts and

provide. The ConcreteCompletionDataPlugin class in Figure 4

represents the custom-written parser; the classes represent the

standardized interfaces to the raw data that the parsers must

provide; the interface exposes a set of mappings (i.e. ‘cross

references’): i) from the Tasks to the Workforce members who

were responsible for their completion; ii) from each Workforce

member to those units of change of the Task which for which

they were responsible, and iii) from each unit of change to a time-

series of completion data. In Figure 5 we give an example of the

mappings that were required to extract the data from the SCM

system in our case study work. As can be seen, the SCM

Completion Profile acts as a Facade for the calculations on the

SCM Repository elements that are parsed out of the data within

the SCM plug-in. For this example, The plugin’s user interface

requires the specification of the ChangeIDs associated with each

Schedule Task of interest; where ChangeIDs are a part of our

partner’s change management system. This is an instance of

semi-automated data collection, as the mappings must be

supplied manually, but the subsequent analysis and computation

are automated. In designing a general data representation for the

schedule and raw completion data, we have chosen to provide an

object structure that clients may traverse in order to gather the

collected data. This structure is an object representation of a

GANTT-like work-breakdown structure representing the

schedule, with the plug-in-supplied data attached to the leaf tasks

as seen in Figure 5, in the tree structure to the bottom-left of the

diagram. The link to the plug-in-supplied data is represented by

the association to the ConcreteCompletionProfile through the

CompletionProfile interface. The calculation model of DIG is a

point of novelty. In contrast to the common architecture seen in

the literature, we provide an interface for the specification of a

calculation independent of a view. Thus, one may implement a

calculation once, and use it to drive several graphical views,

textual report generators, more complex calculations, etc. In

order to support the read-only, external usage of the current

process artifacts, DIG and its plugins must identify data elements

by immutable identifiers. Thus, upon the reloading of a project

configuration after an artifact update, all of the artifacts are

reparsed, and the mappings are reapplied – were still applicable

– to the new set of artifact entities. DIG also supports a ‘type’ tag

for the tasks in the schedule. Currently, DIG supports five task

types: i) Feature Coding; ii) Test Case Authoring; iii) Test Case

Verification; iv) Regression; and v) Defect Elimination

(debugging); where ‘Test Case Verification’ refers to the

preliminary execution of a test case against an internal product

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 11–Issue 07, 291-295, 2022, ISSN:-2319–8656

DOI:10.7753/IJCATR1107.1006

www.ijcat.com 293

release for the purpose of evaluating the correctness of the test

case.

Figure. 4 Inter Object relations in DIG Framework

These categories are not intended to cover the entire spectrum
of task types but are intended to demarcate certain tasks as being

‘of interest’ so that the majority of the schedule may be ignored

were extraneous. Further, by having the task types, heuristic

methods may be applied (e.g., for determining the flows of work

between tasks)

Figure. 5 Proprietary data manipulation via plugins

5. RESEARCH METHODOLOGY
The following discussion touches upon the interesting problems

encountered during the construction of DIG, and their methods

of resolution. In some cases, we note how automated methods

might be facilitated given a small process augmentation.

Task completion. DIG was built originally to determine

production rates and to characterize how the productivity rates

change as a function of the proportion completed of tasks. Thus,

one needs the notion of task completion, and more specifically

for the characterization of productivity-rate change, one needs

to be able to define the partial completion of a task. While being

a seemingly benign requirement, the

scheduled tasks Often represent the completion of activities (i.e.,

coding, testing, etc.) with respect to a particular feature (or set

of features); which begs the question, “What does ‘half of a

feature’ mean?” In our plugins, we assume that most of the

partial completion is understood in terms of the proportion of

the artifact that is complete (e.g., the proportion of the total lines

of code being currently complete). The consequence is that we

must wait for a feature to be completed before DIG can analyze

its data. Also, consider the question of how defects and changes

in requirements fit into the definition of task completion. We

mark the completion of a task as the first point at which all of

the known work for a task is complete. Future defects and

changes to requirements are treated as reparative work.
Workforce allocation. Our conversations indicate a preference

in the industry for allocating the workforce to tasks in a task-

centric, rather than worker-centric, manner; ensuring that a task

has the ‘right’ people outweighs consideration of the workload

of the individual workers. This necessitates the notion of task

concurrency for a worker. Our plugins treat the allocation of

workers to tasks in terms of worker equivalents - which we

define as the fractional portion of an average worker’s effort

which is applied to a task as the result of giving an equal portion

of each work-day to each of the active concurrent tasks to which

the worker is assigned. It should be noted that it is possible that

all tasks to which a worker has been assigned are blocked due to

unsatisfied dependencies in the schedule. In such a case, we

assume that these workers are pulled into external projects and

thus contribute nothing to the current project.
Process representation. The process representation used by

DIG is the stripped-down entirely pragmatic version found in

the inter-task dependencies in the schedule. Thus, DIG handles

changes in procedure seamlessly: for those projects which must

now conform to the new process, the schedule will be updated,

and DIG will automatically use the new dependencies. For those

projects which are allowed to use the older process (i.e.,

grandfather clause), there is no schedule change, and so the

official procedure change is transparent to DIG.

Flow of work. The schedule alone may not be sufficient to

understand the dynamics of the development and test process;

as one team lead from our collaborative partner put it: “There’re

lots of little cycles that you just can’t represent very well in a

work-breakdown structure”. This is per- haps the best

illustration of what we term ‘flow of work’ – the quote above

was made in reference to the cycles of rework and re-evaluation

that are part of the debugging process. More technically,

workflow refers to the producer/consumer relations between the

tasks. One cannot interpret the productivity of a faster

downstream task without considering that slower upstream tasks

may be limiting its productivity by ‘starving’ the downstream

process for work. Models which require this data may attempt

to acquire it heuristically using the ‘task type’ tags and the inter-

task dependencies in the schedule.
Definition of task types. The task type tags may not ap- ply

directly to the tasks in the schedule. Consider a common process

definition where the development team is responsible for both

the writing of code and its informal unit testing where

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 11–Issue 07, 291-295, 2022, ISSN:-2319–8656

DOI:10.7753/IJCATR1107.1006

www.ijcat.com 294

the schedule includes separate tasks for coding and the informal
unit test. Any completion data which is as- signed to the coding

task will likely include the execution of the unit testing activity

as well. We note that by requiring the scheduling granularity to

match the type tag granularity, this becomes a non-issue.

Scheduled Vacations. DIG extracts scheduled vacation days

for employees from MS Project schedules and provides APIs

for date calculations. Ambitious plugins may adjust for

vacations in their interpretation of historical raw data, or in

future projections.

Figure. 6 Usage of the Dig tool

Relative task difficulty. DIG supports using the a priori initial
work estimates from the schedule (in MS Project, these are the

‘baselines’) for calculating relative difficulty metrics. The

motivation for this choice is a desire to include the expertise of

the project planning team in the set of data that DIG can access.

Name mapping. The problem of disparity between the names

of workers as they appear in one artifact vs. another. DIG

provides a simple fuzzy name mapping API that compares the

names by evaluating histograms of the letters A-Z present in

the names in each artifact.

Ad-hoc artifact organization. For plug-ins that read
collections of artifacts (e.g., test logs), obtaining the correct
subset of the collection for a particular task may be nontrivial
depending on the organization of the records. To handle ad hoc

organization, the test log plug-in we implemented supports
date filtering, file-name filtering, and compressed archive
support so that one need not touch the archives to be able to
read the appropriate subset of files.

Parameter correction. DIG provides the data and the context

from which a simulator can be calibrated and executed. The

modular calculation objects revises parameters estimates based

on simulation accuracy, etc.

6. RESULTS AND DISCUSSION
The issues encountered in the construction of DIG lead to the

following observations. The key to automating the entire

system is traceability from the schedule to the elements in the

artifacts. The majority of the functionality in DIG is to allow

the specification of these cross-references. Implementation of

a change management system, in contrast to separate change

tracking and software configuration management, is a likely

first step in building the process infrastructure to support

automated model calibration. Integrating knowledge of the

schedule into a change management system would be a final

goal. Upon this information source, tools like DIG would

become extremely simple to use. During initial testing of the

DIG tool, we found multiple examples of improper semantics in

the usage of the schedule dependencies – almost a colloquial

dialect based on the originally intended semantics of the

dependencies. Also, we found occurrences where dependencies

were simply not used, and the desired temporal structure was

imposed on the schedule by constraining the start dates of tasks

to particular dates. While this still allows the normal mapping of

data to tasks, it breaks any of the heuristic methods which rely

on traversing the schedule dependencies. As a project lead in our

collaborating company said, “No one wants to enter that data

twice, you spend hours doing it just once”. The colloquial usage

of dependencies in the project schedule is a practice that should

be avoided. While it may be an effective medium to convey the

appropriate message to subordinate workforce members, it pre-

includes the ability to use any standard tools to extract

meaningful data from the schedule. Interest in the tool, the

architecture, and potential applications may be directed to the

authors via email.

7. FUTURE WORK
As the truism goes, "Programming is rarely finished"; while

DIG is certainly not a business device, DIG is an exploration

model valuable to handle control scientists who need to remove

information from project storehouses with the end goal of

boundary assessment and use in process reproduction models.

Reports produced by DIG have likewise been thought of as

valuable by test supervisors. A couple of inquiries stay as for the

specific situation portrayal. It is widely known that an enormous

number of gatherings during a day or week unfavorably

influences productivity, so it appears to be that DIG ought to

attempt to pull in a representation of "meeting thickness" to

finish the image that we are attempting to draw around the relic

information. As far as extension, DIG is right now custom-made

to accumulate and work out time-series (for example efficiency)

information. Future work ought to expect to extend the extent of

DIG to envelop the full scope of information assortment tracked

down in modern practice. The subject of "what is the

fundamental arrangement of programmer information?"

emerges in planning the information portrayal that DIG would

have to help if seeking after this line; this might be a fascinating

inquiry with regards to itself. Ultimately, for simplicity of

organization, it appears to be that the construction of a "stock

module library" of parsers for normal relics and computations

for normal models/measurements/and so on would be of

extraordinary guide.

8. ACKNOWLEDGEMENT
The Authors would like to extend their gratitude to Dr. Nagaraj

G Cholli, Dr. Praveena T for their valuable comments and

suggestions and providing the opportunity to study the

development process, artifacts and records.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 11–Issue 07, 291-295, 2022, ISSN:-2319–8656

DOI:10.7753/IJCATR1107.1006

www.ijcat.com 295

9. References

1. "Standard Glossary of Terms used in Software

Testing", (PDF). Version 3.1. International Software

Testing Qualifications Board. Retrieved, January

2018.

2. R. Abbas, Z. Sultan and S. N. Bhatti, "Comparative

analysis of automated load testing tools: Apache

JMeter Microsoft Visual Studio (TFS) LoadRunner

Siege", 2017 International Conference on

Communication Technologies (ComTech), pp. 39-

44, 2017.

3. R. Khalid, "Towards an automated tool for software

testing and analysis", 2017 14th International

Bhurban Conference on Applied Sciences and

Technology (IBCAST), pp. 461-465, 2017.

4. Vasilyev, I. Paramonov and S. Averkiev, "Method

and tools for automated end-to-end testing of

applications for sailfish OS", 2017 20th Conference

of Open Innovations Association (FRUCT), pp. 471-

477, 2017.

5. Vasilyev, I. Paramonov and S. Averkiev, "Method

and tools for automated end-to-end testing of

applications for sailfish OS", 2017 20th Conference

of Open Innovations Association (FRUCT), pp. 471-

477, 2017.

6. Vishawjyoti and P. Gandhi, "A survey on prospects

of automated software test case generation methods",

2016 3rd International Conference on Computing for

Sustainable Global Development (INDIACom), pp.

3867-3871, 2016.

7. P. Ammann and Offutt J, "Introduction to Software

Testing" in Cambridge University Press., pp. 26,

2016, ISBN 9781316773123.

8. A Comparative Study of Automated Software

Testing Tools Nazia Islam St.Cloud State University,

2016.

9. Cem Kaner, "(November 17 2006). Exploratory

Testing (PDF)", Quality Assurance Institute

Worldwide Annual Software Testing Conference.

Orlando FL. Retrieved, November 22, 2014.

10. "Test Automation Tool comparison - HP", UFT/QTP

vs. Selenium Aspire, Nov 2013.

11. W.L. Oberkampf and C.J. Roy, "Verification and

Validation in Scientific Computing" in Cambridge

University Press., pp. 154-5, 2010, ISBN

9781139491761.

12. M.G. Limaye, "Software Testing", Tata McGraw-

Hill Education, pp. 108-11, 2009, ISBN

9780070139909.

13. K.A. Saleh, "Software Engineering", J. Ross

Publishing, pp. 224-41, 2009, ISBN 9781932159943.

14. W. Wang, Y. Lei, S. Sampath, R. Kacker, R. Kuhn,

and J. Lawrence, "A combinatorial approach to

building navigation graphs for dynamic web

applications," in Proc. of ICSM, 2009, pp. 211-220.

Mesbah, E. Bozdag, and A. v. Deursen, "Crawling

AJAX by inferring user interface state changes," in

Proc. of ICWE, 2008, pp. 122-134.

15. M.-C. D. Marneffe, B. Maccartney, and C. D.

Manning, "Generating typed dependency parses from

phrase structure parses," in Proc. of the LREC, 2006,

pp. 449-454.

16. G. Little and R. C. Miller, "Translating keyword

commands into executable code," in Proc. of UIST,

2006, pp. 135-144.

17. D. Mandelin, L. Xu, R. Bodík, and D. Kimelman,

"Jungloid mining: helping to navigate the API jungle,"

in Proc. of PLDI, 2005, pp. 48-61.

18. Kelleher and R. Pausch, "Lowering the barriers to

programming: A taxonomy of programming

environments and languages for novice

programmers," ACM Comput. Surv., vol. 37, pp. 83-

137, June 2005.

H. Liu and H. Lieberman, "Programmatic semantics for natural
language interfaces," in Proc. of CHI Extended Abstracts on
Human Factors in Computing Systems, 2005, pp. 1597-1600.

http://www.ijcat.com/

