
International Journal of Computer Applications Technology and Research

Volume 11–Issue 08, 315-319, 2022, ISSN:-2319–8656

DOI:10.7753/IJCATR1108.1004

www.ijcat.com 315

Developing an ETL Pipeline for
Data Analysis

 A S Prajwal Babu

 Computer Science and Engineering

 RV College of Engineering

 Bangalore, India

Prof. Suma B

Computer Science and Engineering

RV College of Engineering

Bangalore, India

Abstract:The world's most valuable resource these days is the expanding data. Large organisations continuously produce data about their
clients, consumers, and employees in real time. This data cannot be easily interpreted in its raw form, but after being processed and
changed, it can be widely used for analytics. This improves a number of the aforementioned business entity's existential traits, including
organisational management, market capabilities, and consumer feedback.Given the volume of data that a corporation generates, it is
obvious that it will need a significant investment of money, time, talent, and resources to achieve the goal of in-house data processing,
calibration, and storage. The goal is to overcome the obstacles businesses present for data-pipelining technology and get processed data
directly at the conclusion of the data sync cycle. One sync cycle is the continuous fetching of data created or altered over the course of a
given time frame, such as a fortnight or a month.

Keywords: Data pipeline,ETL pipeline Cloud, Data Warehouse, Data Analytics

1. INTRODUCTION

An ETL pipeline is a group of procedures used to transfer data

from one or more sources into a database, such as a data

warehouse. The three interdependent data integration processes

called "extract, transform, and load," or ETL, are used to take

data out of one database and transport it to another. Once loaded,

data can be used for reporting, analysis, and the creation of useful

business insights.

The relevance of utilising such data in analytics, data science, and

machine learning programmes to gain business insights develops

along with the amount of data, data sources, and data types at

organisations. Since turning the raw, unclean data into clean,

new, trustworthy data is a crucial step before these projects can

be undertaken, the requirement to prioritise these activities puts

growing pressure on the data engineering teams. ETL, or extract,

transform, and load, is a method used by data engineers to gather

data from various sources, transform it into a reliable and useable

resource, and then load it into the systems that end users may

access and utilise later to address business-related issues.

Fig 1: ETL process

Extract

Data extraction from the target sources—which are typically

heterogeneous and include business systems, APIs, sensor data,

marketing tools, transaction databases, and others—is the initial

step of this process. As you can see, while some of these data

types are likely to be semi-structured JSON server logs, others

are likely the structured outputs of commonly used systems. The

extraction can be done in a variety of ways: Three techniques for

data extraction:

Partial Extraction - If the primary system alerts you when any

data has changed, that is the simplest way to retrieve the data.

With Update Notification of Partial Extraction - Not all systems

can send out notifications when an update occurs, but they can

still identify the entries that have changed and send out an extract

of those records.

Full extract - Some systems are unable to determine which data

has been altered at all. In this situation, the only way to obtain the

data from the system is through a full extract. For this technique

to work, you must have a duplicate of the previous extract in the

same format so you can track down the modifications that were

performed.

Transform

This stage entails converting the unformatted raw data that has

been gleaned from a source into a form that can be accessed by

various applications. In order to meet operational requirements,

data is cleaned, mapped, and converted during this stage,

frequently to a particular schema. This procedure involves many

sorts of transformation to guarantee the accuracy and reliability

of the data. Instead of loading data straight into the ultimate data

source, data is usually placed into a staging database. This

procedure guarantees a speedy rollback in the event that things

does not proceed as expected. You have the option to create audit

reports for legal compliance at this point, as well as identify and

fix any data problems.

Load

 Last but not least, the load function involves copying converted

data from a staging region to a target database, which may or may

not have existed before. The complexity of this process will vary

depending on the requirements of the application. You can use

ETL tools or custom code to complete each of these processes.

2. RELATED WORK
The idea of data pipelines is relatively new, and recent

innovations in cloud architecture and cloud storage have

advanced this particular field. These are the only new

developments in the related area of data pipelining.

The following idea served as the foundation for a study on ETL

technology that was carried out in 2009 [1]. Extraction-

Transformation-Loading (ETL) forms are the earliest computer

algorithms that promote initial stacking and sporadic warehouse

refreshing. There were some limitations to this; information

extraction is still a challenge, largely due to the closed nature of

the sources; there are also challenges with streamlining and

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 11–Issue 08, 315-319, 2022, ISSN:-2319–8656

DOI:10.7753/IJCATR1108.1004

www.ijcat.com 316

resume; and the absence of a baseline prevents further research.

Real-time ETL Data Warehousing was then researched in 2012

[2]. The goal was to achieve real-time data warehousing, which

is heavily reliant on the selection of an extraction, transformation,

and loading (ETL) method in data warehousing technologies

(ETL).

In 2013, synchronous research [3] was being conducted in the

field of ELT using an information distribution center's ability to

directly input unprocessed, raw data while deferring information

update and cleaning until needed by pending reports.

ETL was being accepted for a few applications later in 2016 [4,

including the healthcare field]. While maintaining its integrity,

this information must be appropriately deleted, modified, and

packed into the warehouse. It gave the extract, transform, and

load (ETL) procedure its seal of approval for correctness,

populating the clinical research database as a result.

At the same time, Amazon's S3 [5] service may be useful because

it offers bulk storage that doesn't require packing or cleaning. The

Simple Storage Service (S3), a cheap capacity utility, had been

introduced by Amazon.com. S3 intends to offer storage as a low-

effort, widely available assistance with a simple "pay more only

as costs emerge" payment approach.

With the introduction of Data lakes after one year in 2017, the

adoption of Extract-Load-Transform grew more quickly [6]. The

simplest assumption of an information lake is to mash up each

piece of data provided by an organisation to produce increasingly

important information at finer granularities.

2018 saw the incorporation of a defined methodology to create

an R-based platform leveraging SQL. create a framework for R

that influences SQL and is predictable and piping-able such that

repeatable research on medium-sized data is a simple reality.

Therefore, it had scaling issues based on data volume, and

algorithms weren't instantaneous for medium data, which

increased latency. Another implementation was made later that

year to compile scientific data for analysis. To handle scientific

data aggregation, transformation, and improvement for scientific

data discovery and retrieval, a distributed extract-transform-load

system that is horizontally scalable [8].

The improvement of privacy for ETL operations, particularly

with biomedical data, was the subject of research in 2019 [9].

Data from many sources can be combined at clinical and

translational distribution centres to create the requisite enormous

datasets. This was accepted since anonymization was not

supported by current ETL tools. Furthermore, at that moment,

basic anonymization tools cannot be incorporated in ETL work

processes.

Another work procedure related to the widely used On-Demand

ETL system was being studied that same year. The Extract

Transform Load process (ETL), which is the primary bottleneck

in BI arrangements, is addressed creatively by DOD-ETL [10],

an instrument that provides it in almost real-time. The main

difficulty was to manage several information sources while also

providing little latency for real-time responses.

Use in the banking industry was also being investigated later that

year. Our new idea (RDD4OLAP) cubes consumed by Spark

SQL or Spark Core fundamentals will replace the standard

information combination and investigation process. It will do this

by utilising Extract-Transform-Load (ETL) concepts, big data

processing techniques, and oriented containers clustering

architecture [11]. But also provide for very little delay so that you

can react instantly.

3. EXISTING FAME WORK

To create a contemporary ETL system, open source frameworks

like Apache Airflow might be employed. There are fantastic

possibilities to contribute to the open source community that we

pretty much rely on when the project is still in the development

stage. As a result, we have chosen to release the project as open

source under the Apache license.

Below are some of the procedures that Airflow powers:

Data warehousing: prepare, arrange, evaluate the quality of the

data, and add information to our expanding data warehouse.

Calculate metrics for both host and visitor for engagement and

growth accounting using growth analytics.

Experimentation: Calculate the logic and aggregates of our A/B

testing experimentation framework.

Search: Calculate metrics relating to search ranking.

Email targeting: Applying rules to email targeting allows us to

target and engage users.

Sessionization: generate datasets for clickstream and time spent

Data infrastructure maintenance: Application of data retention

policies, folder cleanup, and database scraping are all examples

of data infrastructure maintenance.

Airflow Principles:

⚫ Scalable

⚫ Dynamic

⚫ Extensive

⚫ Elegant

Airflow Features:

⚫ Pure Python

⚫ Useful UI

⚫ Robust Integrations

⚫ Open Source

Architecture

Python has solidified itself as the language of data, much the way

English is being used for professional business. Python-like

Python was used from the ground up to create Airflow. The code

base has extensive unit test coverage, is expandable, well-

documented, consistent, and limited.

Python is also used for pipeline creation, making it simple to

generate dynamic pipelines from configuration files or other

sources of metadata. We adhere to the idea of "configuration as

code" for this. Although any language could be used to construct

Airflow pipelines using yaml or Json task setup, we thought that

some fluidity was lost in translation. It is quite valuable to be able

to meta-program, subclass and use import libraries while writing

pipelines in code (Python, IDEs). Remember that as long as you

create Python that reads these configurations, you can still author

jobs in any language or markup.

Airflow can be used for running in just a few commands,

however the full architecture consists of the following elements:

A comprehensive CLI (command line interface) for testing,

running, backfilling, describing, and clearing DAG components.

An online tool for exploring the definition, dependencies, status,

metadata, and logs of your DAGs. The Flask Python web

framework serves as the foundation for the web server, which

comes packed with Airflow.

A metadata repository which the Airflow uses to maintain track

of tasks and jobs statuses and other permanent data, often a

MySQL or Postgres database.

A group of workers that distributes the execution of the task

instances for the jobs.

The instances of the tasks that are prepared to run are launched

by scheduler processes.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 11–Issue 08, 315-319, 2022, ISSN:-2319–8656

DOI:10.7753/IJCATR1108.1004

www.ijcat.com 317

Fig 2: Airflow architecture

There are a few things to consider:

SQL database is used by Airflow to hold metadata about the data

pipelines that are being used. This is shown as Postgres in the picture

above, which is very popular with Airflow. MySQL is one of the

alternative databases that Airflow supports.

- Web Server and Scheduler: The Scheduler and Airflow web server

are independent programmes that communicate with the

aforementioned database while running locally (in this scenario).

- The Executor is depicted separately above since it is frequently

referenced in Airflow and in the documentation, although it actually

runs inside the Scheduler and is not a separate process.

- The Worker(s) are independent processes that also communicate

with the metadata repository and other elements of the Airflow

architecture.

- Airflow.cfg is the configuration file for Airflow, and the Web

server, Scheduler, and Workers may all access it.

- DAGs are the Python code-containing DAG files that represent the

data pipelines that Airflow will perform. These files must be

accessible by the Web Server, Scheduler, and Workers, and their

location is specified in the Airflow configuration file.

A DAG defines your process in this manner, but keep in mind that

we haven't specified what we actually want to do—A, B, and C could

refer to anything. Perhaps A prepares the data that B will use to

evaluate it while C emails. It's also possible that A keeps track of

your whereabouts so that B can open your garage door and C can

turn on your house lights. The DAG's role is to ensure that whatever

its constituent activities accomplish occurs at the proper time, in the

proper order, or with the proper handling of any unanticipated

complications; it is not important what those jobs actually do.

4. PROPOSED FRAMEWORK

The framework which we are discussing in this paper is primarily

built using Node JS. The framework is built in such a way that even

a person with least programming experience can build an ETL

pipeline. Most of the logic which has to be implemented should be

done using SQL.

ETL Stack

It is an ETL (Extract/Transform/Load) Stack written in NodeJS.

Extract useful data out of raw data, Transform to usable metrics

(aggregations) and Load to Enterprise data lake.

ETL Job

An ETL Job (configured as JSON file) is a set of interdependent

tasks which run as a single unit of work. It is a logical unit of

work - Hourly Viewership metrics, Daily Ad-Analytics

metrics.

ETL Task

A Task is a single piece of independent work unit - Compute

hourly sessions from Beacon data for example. It can depend

on other task(s) to run.

Big data computation

Most tasks work with a source as Data lake, compute on data

from lake and put back computed data into data lake. Some

cases, they put the data/metrics back to the end-user reporting

system.

Tools Used

- Athena

Athena is a partition supported realtime big data crunching

system using Facebook’s PrestoDB underneath. You can write

a SQL query which runs on the data on S3. It can extract, filter,

aggregate, group data to create metrics.

- Data lake(S3)

S3 is big data storage system to store objects, logs, records in

formats like JSON, Parquet, CSV, Regex parsable text records.

- Postgres

RDBMS database used to store the end-user facing reporting

metrics with right indices to fetch data faster. Analytics portal

and APIs can use this database to provide reports and

visualizations to customers

The framework allows us to create a pipeline which is often

referred to as a job. This job will have many interdependent

tasks. The tasks are the individual work items which carry out

a specific function. All these tasks are joined and interlinked to

create a pipeline.

All the jobs in the framework are automated using cron

schedules so that without any human intervention all the jobs are

running at prescribed time. From extraction of information till

loading the useful information into the database is automated.

And the data in the database is used to build dashboards, send

reports, monitoring and alerting etc.

The picture below Figure 3 shows the basic architecture of the

whole process of how the ETL pipeline is working.

 Fig 3: Basic Architecture

 The architecture displays how the data is extracted from

different data sources or deployments. All this data is stored in

Amazon S3, which is the data warehouse. The data which is

needed for the pipeline is extracted from the data warehouse and

specific transformations are applied to the raw data using Amazon

Athena. The transformed data is then loaded into the database.

From the database the data is queried and displayed into the

dashboard.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 11–Issue 08, 315-319, 2022, ISSN:-2319–8656

DOI:10.7753/IJCATR1108.1004

www.ijcat.com 318

 5. METHODOLOGY

The following discussion touches upon the methodology of how

the pipeline is implemented from the first step of extraction to

the last step of displaying the data.

Fig 4: Flow Chart of the methodology

Figure 4 represents the flow of events happening while building

a pipeline:

Log Collection

The log data or the raw data is collected from different data

sources or deployments and stored in the Data Warehouse.

Data Pre-processing

The raw data or the logs which are collected can be any format,

usually the logs will be in a Json format. The data is processed

and converted to csv format with the useful data in it. The pre-

processed data is again stored in Amazon S3.

Extraction

Using Amazon Athena, few useful pre-processed data is

queried and used in the pipeline for getting some insights upon

that data.

Perform Aggregation and transformation

The raw data is aggregated and then transformed to get desired

output using the query engine which is the Amazon Athena.

Loading

The final transformed data is loaded into the database, and

stored over there.

Automation

The whole process is automated using cron schedulers. The

process is scheduled at a particular time, depending on the

frequency of which the process should be run. Accordingly the

process is scheduled and automated.

Dashboard

A dashboard is built upon the data in the postgres to provide

business insights to the customers. The dashboard can also be

used for monitoring and alerting the development team if there

are any data discrepancies.

 6. RESULTS AND DISCUSSION

In a perfect world, data analysts have access to all the information

they need and don't have to worry about how or where it is stored

since analytics just function.

The reality of analytics has been far more convoluted up until

recently. Building and maintaining flimsy ETL (Extract,

Transform, Load) pipelines that pre-aggregated and filtered data

down to a consumable level was required in order to access data

because expensive data storage and underpowered data

warehouses made this impossible. ETL software providers

compete based on how specialised and adaptable their data

pipelines were.

We are now getting closer to the analysts' ideal thanks to

technology. Fragile ETL pipelines are a thing of the past thanks

to practically free cloud data storage and significantly more

powerful contemporary columnar cloud data warehouses. Extract

and load the raw data into the destination, then transform it after

the load, is the modern data architecture. Numerous advantages

result from this distinction, including improved adaptability and

usability.

7. CHALLENGES
The challenges involved on this framework are:

- Retries for Failures: NO Retries for failed jobs. Manual

retries should be done for failed jobs

- No Cross-job Dependency: A task can depend on other

task(s) in the same job, but can’t depend on a task of

another job.

- Non-parsable Logs: Logs collected from ETL Jobs are not

parsable. So debugging requires manual analysis of Logs.

- Too many Slack notifications: Slack notifications are too

many - causing more ignorance for failed jobs.

8. CONCLUSION

Technology trends are aware that processing, storage, and

bandwidth are now accessible to anyone. The price of

computation has decreased over time due to technological

advancements. Similarly, the price of a gigabyte has dropped

from around $1 million to a few cents in a period of about 35

years. Data warehouses can now hold significantly higher data

volume as a result of these drastic cost reductions. It is no longer

necessary for organisations to pre-aggregate and, in the process,

delete a significant amount of source data. This makes it

possible for analysts to do analysis that is both deeper and more

thorough than previously. Despite the World Wide Web not

existing until 1991, internet transport costs have drastically

fallen. It fell from approximately $1,200 per Mpbs to a few

cents in less than twenty years. The cloud, or the utilisation of

remote, decentralised, web-enabled computer resources, is the

result of the convergence of these three cost-reduction

developments. A wide variety of cloud-native applications and

services have also emerged as a result of cloud technology.

Many firms adopt a manual, ad hoc approach to data integration;

in fact, 62 percent utilise spreadsheets like Google Sheets and

Excel to combine data from several files and visualise the

information. 2 In order to do this, files must be downloaded,

values must be manually changed or cleaned, intermediate files

must be created, and other similar operations.

Ad hoc data integration has a number of disadvantages, to

mention a few:

⚫ only suitable for very modest data amounts

⚫ Slow

⚫ Human error prone

⚫ Not safe enough for critical information

⚫ Often not reproducible

Maintaining the boundaries between distinct data sources' silos

while filling in the gaps with "federated" queries, which directly

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 11–Issue 08, 315-319, 2022, ISSN:-2319–8656

DOI:10.7753/IJCATR1108.1004

www.ijcat.com 319

query various source systems and integrate data in real time, is

a more long-term solution. Organizations can use SQL query

engines like Presto to accomplish this. This federated

approach's drawback is that it has a lot of moving pieces and

performs poorly with big amounts of data. The truth is that a

methodical, repeatable strategy to data integration—a data

stack—is necessary for a scalable, sustainable approach to

analytics.

 9. FUTURE WORK

The framework can be improved in many ways. A few

updates which are thought to be added are :

- Run in Pods: Dockerize, build for Kubernetes and Run Jobs

and Tasks in Kubernetes. Different ETL tasks require different

sized/resourced Pods.

- Parsable Logs: Collect Logs from ETL Jobs and parse them

to understand what is failing and reason for failing

- Automated Retries: Retry a failing job for n number of

times (already exists for few type of tasks) at job level and

various time periods (retry a job after 1 hour if daily job failed)

- ETL Dashboard: ETL Dashboard to show the progress of

the job execution, what is failing, one click retries etc.

- Non-NodeJs Tasks: Few tasks are better to run in other

languages - Shell script, Python etc. Wrapper for such tasks to

embed into NodeJS Job/Task Framework

- Monitoring Support: Monitor Analytics Pipeline also as a

first grade component - Raise alerts for failures, handle/recover

from failures etc.

- Cost and Stats: Costs of Athena and other operations at fine

grain level, building stats dashboard etc.

 10. ACKNOWLEDGEMENT

Prof. Suma B, Mr. Venkatesha and Mr. Sai Charan deserve

special thanks for their insightful remarks and ideas as well as

for giving the authors the chance to examine the development

process, artefacts, and records.

11. REFERENCES

[1] Panos Vassiliadis, “A Survey of Extract-Transform-Load

Technology.,” International Journal of Data Warehousing and

Mining, July 2009

[2] Kamal Kakish, Theresa A Kraft, “ETL Evolution for Real-

Time Data Warehousing”, presented at Conference:

Proceedings of the Conference on Information Systems Applied

Research, At New Orleans Louisiana, USA,2012

[3] Florian Waa, Tobias Freudenreich, Robert Wrembel, Maik

Thiele, Christian Koncilia, Pedro Furtado, “On-Demand ELT

Architecture for Right-Time BI: Extending the Vision”,

International Journal of Data Warehousing and Mining 9(2):21-

38 · April 2013

[4] Michael J. Denney, MA,1 Dustin M. Long, PhD,2 Matthew

G. Armistead, BS,1 Jamie L. Anderson, RHIT, CHTS-IM,3 and

Baqiyyah N. Conway, PhD4, “Validating the Extract,

Transform, Load Process Used to Populate a Large Clinical

Research Database,” Int. J. Med. Inform., 94, 2016

[5] Valerio Persico, Antonio Montieri, Antonio Pescapè, “On

the Network Performance of Amazon S3 Cloud-Storage

Service”,5th IEEE International Conference on Cloud

Networking (Cloudnet), 2016

[6] Pwint Phyu Khine, Zhao Shun Wang, “Data Lake: A New

Ideology in Big Data Era”, 4 th International Conference on

Wireless Communication and Sensor Network [WCSN2017],

At Wuhan, China, 2017

[7] Benjamin S. Baumer, “A Grammar for Reproducible and

Painless Extract-Transform-Load Operations on Medium

Data”, arXiv:1708.07073v3 [stat.CO], 23 May 2018

[8] Ibrahim Burak Ozyurt and Jeffrey S Grethe, “Foundry: a

message-oriented, horizontally scalable ETL system for

scientific data integration and enhancement”, Database

(Oxford). 2018.

[9] FabianPrasser, HelmutSpengler, RaffaelBild,

JohannaEicher, Klaus A.Kuhn, “Privacy-enhancing ETL-

processes for biomedical data”, International Journal of Medical

Informatics, Volume 126, June 2019, Pages 72-81

[10] Gustavo V. Machado, Ítalo Cunha, Adriano C. M. Pereira,

Leonardo B. Oliveira , “DOD-ETL: distributed on-demand ETL

for near real-time business intelligence “, Journal of Internet

Services and Applications volume 10, Article number: 21,

2019.

[11] Noussair Fikri, Mohamed Rida, Noureddine Abghour,

Khalid Moussaid & Amina El Omri, “An adaptive and real-time

based architecture for financial data integration”, Journal of Big

Data volume 6, Article number: 97, 2019.

[12] Aiswarya Raj,Jan Bosch,Tian J. Wang,Helena Holmström

Olsson, “Modelling Data Pipelines”, at 46th Euromicro

Conference on Software Engineering and Advanced

Applications (IEEE), 2020.

[13] Marko Jamedžija, Zoran Đurić, “Moonlight: A Push-based

API for Tracking Data Lineage in Modern ETL processes”, at

20th International Symposium INFOTEH-JAHORINA(IEEE),

2021.

[14] Noussair Fikri , Mohamed Rida, Noureddine Abghour,

Khalid Moussaid, Amina El Omri, “An adaptive and real-time

based architecture for financial data integration”, in Springer

open, journal of big data, 2019.

[15] Valerio Persico,Antonio Montieri, Antonio Pescapè, “On

the Network Performance of Amazon S3 Cloud-storage

Service”, at 5th IEEE International Conference on Cloud

Networking, 2016.

http://www.ijcat.com/

