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Abstract:The world's most valuable resource these days is the expanding data. Large organisations continuously produce data about their 
clients, consumers, and employees in real time. This data cannot be easily interpreted in its raw form, but after being processed and 
changed, it can be widely used for analytics. This improves a number of the aforementioned business entity's existential traits, including 
organisational management, market capabilities, and consumer feedback.Given the volume of data that a corporation generates, it is 
obvious that it will need a significant investment of money, time, talent, and resources to achieve the goal of in-house data processing, 
calibration, and storage. The goal is to overcome the obstacles businesses present for data-pipelining technology and get processed data 
directly at the conclusion of the data sync cycle. One sync cycle is the continuous fetching of data created or altered over the course of a 
given time frame, such as a fortnight or a month. 
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1. INTRODUCTION 

An ETL pipeline is a group of procedures used to transfer data 

from one or more sources into a database, such as a data 

warehouse. The three interdependent data integration processes 

called "extract, transform, and load," or ETL, are used to take 

data out of one database and transport it to another. Once loaded, 

data can be used for reporting, analysis, and the creation of useful 

business insights. 

The relevance of utilising such data in analytics, data science, and 

machine learning programmes to gain business insights develops 

along with the amount of data, data sources, and data types at 

organisations. Since turning the raw, unclean data into clean, 

new, trustworthy data is a crucial step before these projects can 

be undertaken, the requirement to prioritise these activities puts 

growing pressure on the data engineering teams. ETL, or extract, 

transform, and load, is a method used by data engineers to gather 

data from various sources, transform it into a reliable and useable 

resource, and then load it into the systems that end users may 

access and utilise later to address business-related issues. 

 

 

 
Fig 1: ETL process 

Extract 

Data extraction from the target sources—which are typically 

heterogeneous and include business systems, APIs, sensor data, 

marketing tools, transaction databases, and others—is the initial 

step of this process. As you can see, while some of these data 

types are likely to be semi-structured JSON server logs, others 

are likely the structured outputs of commonly used systems. The 

extraction can be done in a variety of ways: Three techniques for 

data extraction: 

Partial Extraction - If the primary system alerts you when any 

data has changed, that is the simplest way to retrieve the data. 

With Update Notification of Partial Extraction - Not all systems 

can send out notifications when an update occurs, but they can 

still identify the entries that have changed and send out an extract 

of those records. 

Full extract - Some systems are unable to determine which data 

has been altered at all. In this situation, the only way to obtain the 

data from the system is through a full extract. For this technique 

to work, you must have a duplicate of the previous extract in the 

same format so you can track down the modifications that were 

performed. 

Transform 

This stage entails converting the unformatted raw data that has 

been gleaned from a source into a form that can be accessed by 

various applications. In order to meet operational requirements, 

data is cleaned, mapped, and converted during this stage, 

frequently to a particular schema. This procedure involves many 

sorts of transformation to guarantee the accuracy and reliability 

of the data. Instead of loading data straight into the ultimate data 

source, data is usually placed into a staging database. This 

procedure guarantees a speedy rollback in the event that things 

does not proceed as expected. You have the option to create audit 

reports for legal compliance at this point, as well as identify and 

fix any data problems. 

Load 

 Last but not least, the load function involves copying converted 

data from a staging region to a target database, which may or may 

not have existed before. The complexity of this process will vary 

depending on the requirements of the application. You can use 

ETL tools or custom code to complete each of these processes. 

 

2. RELATED WORK 
The idea of data pipelines is relatively new, and recent 

innovations in cloud architecture and cloud storage have 

advanced this particular field. These are the only new 

developments in the related area of data pipelining. 

The following idea served as the foundation for a study on ETL 

technology that was carried out in 2009 [1]. Extraction-

Transformation-Loading (ETL) forms are the earliest computer 

algorithms that promote initial stacking and sporadic warehouse 

refreshing. There were some limitations to this; information 

extraction is still a challenge, largely due to the closed nature of 

the sources; there are also challenges with streamlining and 
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resume; and the absence of a baseline prevents further research. 

Real-time ETL Data Warehousing was then researched in 2012 

[2]. The goal was to achieve real-time data warehousing, which 

is heavily reliant on the selection of an extraction, transformation, 

and loading (ETL) method in data warehousing technologies 

(ETL). 

In 2013, synchronous research [3] was being conducted in the 

field of ELT using an information distribution center's ability to 

directly input unprocessed, raw data while deferring information 

update and cleaning until needed by pending reports. 

ETL was being accepted for a few applications later in 2016 [4, 

including the healthcare field]. While maintaining its integrity, 

this information must be appropriately deleted, modified, and 

packed into the warehouse. It gave the extract, transform, and 

load (ETL) procedure its seal of approval for correctness, 

populating the clinical research database as a result. 

At the same time, Amazon's S3 [5] service may be useful because 

it offers bulk storage that doesn't require packing or cleaning. The 

Simple Storage Service (S3), a cheap capacity utility, had been 

introduced by Amazon.com. S3 intends to offer storage as a low-

effort, widely available assistance with a simple "pay more only 

as costs emerge" payment approach. 

With the introduction of Data lakes after one year in 2017, the 

adoption of Extract-Load-Transform grew more quickly [6]. The 

simplest assumption of an information lake is to mash up each 

piece of data provided by an organisation to produce increasingly 

important information at finer granularities. 

2018 saw the incorporation of a defined methodology to create 

an R-based platform leveraging SQL. create a framework for R 

that influences SQL and is predictable and piping-able such that 

repeatable research on medium-sized data is a simple reality. 

Therefore, it had scaling issues based on data volume, and 

algorithms weren't instantaneous for medium data, which 

increased latency. Another implementation was made later that 

year to compile scientific data for analysis. To handle scientific 

data aggregation, transformation, and improvement for scientific 

data discovery and retrieval, a distributed extract-transform-load 

system that is horizontally scalable [8]. 

The improvement of privacy for ETL operations, particularly 

with biomedical data, was the subject of research in 2019 [9]. 

Data from many sources can be combined at clinical and 

translational distribution centres to create the requisite enormous 

datasets. This was accepted since anonymization was not 

supported by current ETL tools. Furthermore, at that moment, 

basic anonymization tools cannot be incorporated in ETL work 

processes. 

Another work procedure related to the widely used On-Demand 

ETL system was being studied that same year. The Extract 

Transform Load process (ETL), which is the primary bottleneck 

in BI arrangements, is addressed creatively by DOD-ETL [10], 

an instrument that provides it in almost real-time. The main 

difficulty was to manage several information sources while also 

providing little latency for real-time responses. 

Use in the banking industry was also being investigated later that 

year. Our new idea (RDD4OLAP) cubes consumed by Spark 

SQL or Spark Core fundamentals will replace the standard 

information combination and investigation process. It will do this 

by utilising Extract-Transform-Load (ETL) concepts, big data 

processing techniques, and oriented containers clustering 

architecture [11]. But also provide for very little delay so that you 

can react instantly. 

 

 

 

 

 

3. EXISTING FAME WORK 

To create a contemporary ETL system, open source frameworks 

like Apache Airflow might be employed. There are fantastic 

possibilities to contribute to the open source community that we 

pretty much rely on when the project is still in the development 

stage. As a result, we have chosen to release the project as open 

source under the Apache license. 

Below are some of the procedures that Airflow powers: 

Data warehousing: prepare, arrange, evaluate the quality of the 

data, and add information to our expanding data warehouse. 

Calculate metrics for both host and visitor for engagement and 

growth accounting using growth analytics. 

Experimentation: Calculate the logic and aggregates of our A/B 

testing experimentation framework. 

Search: Calculate metrics relating to search ranking. 

Email targeting: Applying rules to email targeting allows us to 

target and engage users. 

Sessionization: generate datasets for clickstream and time spent 

Data infrastructure maintenance: Application of data retention 

policies, folder cleanup, and database scraping are all examples 

of data infrastructure maintenance. 

Airflow Principles: 

⚫ Scalable 

⚫ Dynamic 

⚫ Extensive 

⚫ Elegant 

Airflow Features: 

⚫ Pure Python 

⚫ Useful UI 

⚫ Robust Integrations 

⚫ Open Source 

 

Architecture 

Python has solidified itself as the language of data, much the way 

English is being used for professional business. Python-like 

Python was used from the ground up to create Airflow. The code 

base has extensive unit test coverage, is expandable, well-

documented, consistent, and limited. 

Python is also used for pipeline creation, making it simple to 

generate dynamic pipelines from configuration files or other 

sources of metadata. We adhere to the idea of "configuration as 

code" for this. Although any language could be used to construct 

Airflow pipelines using yaml or Json task setup, we thought that 

some fluidity was lost in translation. It is quite valuable to be able 

to meta-program, subclass and use import libraries while writing 

pipelines in code (Python, IDEs). Remember that as long as you 

create Python that reads these configurations, you can still author 

jobs in any language or markup. 

Airflow can be used for running in just a few commands, 

however the full architecture consists of the following elements: 

 

A comprehensive CLI (command line interface) for testing, 

running, backfilling, describing, and clearing DAG components. 

An online tool for exploring the definition, dependencies, status, 

metadata, and logs of your DAGs. The Flask Python web 

framework serves as the foundation for the web server, which 

comes packed with Airflow. 

A metadata repository which the Airflow uses to maintain track 

of tasks and jobs statuses and other permanent data, often a 

MySQL or Postgres database. 

A group of workers that distributes the execution of the task 

instances for the jobs. 

The instances of the tasks that are prepared to run are launched 

by scheduler processes. 
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Fig 2: Airflow architecture 

 

There are a few things to consider: 

SQL database is used by Airflow to hold metadata about the data 

pipelines that are being used. This is shown as Postgres in the picture 

above, which is very popular with Airflow. MySQL is one of the 

alternative databases that Airflow supports. 

- Web Server and Scheduler: The Scheduler and Airflow web server 

are independent programmes that communicate with the 

aforementioned database while running locally (in this scenario). 

- The Executor is depicted separately above since it is frequently 

referenced in Airflow and in the documentation, although it actually 

runs inside the Scheduler and is not a separate process. 

- The Worker(s) are independent processes that also communicate 

with the metadata repository and other elements of the Airflow 

architecture. 

- Airflow.cfg is the configuration file for Airflow, and the Web 

server, Scheduler, and Workers may all access it. 

- DAGs are the Python code-containing DAG files that represent the 

data pipelines that Airflow will perform. These files must be 

accessible by the Web Server, Scheduler, and Workers, and their 

location is specified in the Airflow configuration file. 

A DAG defines your process in this manner, but keep in mind that 

we haven't specified what we actually want to do—A, B, and C could 

refer to anything. Perhaps A prepares the data that B will use to 

evaluate it while C emails. It's also possible that A keeps track of 

your whereabouts so that B can open your garage door and C can 

turn on your house lights. The DAG's role is to ensure that whatever 

its constituent activities accomplish occurs at the proper time, in the 

proper order, or with the proper handling of any unanticipated 

complications; it is not important what those jobs actually do. 

 

4. PROPOSED FRAMEWORK 
 

The framework which we are discussing in this paper is primarily 

built using Node JS. The framework is built in such a way that even 

a person with least programming experience can build an ETL 

pipeline. Most of the logic which has to be implemented should be 

done using SQL.  

ETL Stack 

It is an ETL (Extract/Transform/Load) Stack written in NodeJS. 

Extract useful data out of raw data, Transform to usable metrics 

(aggregations) and Load to Enterprise data lake. 

 

ETL Job 

An ETL Job (configured as JSON file) is a set of interdependent 

tasks which run as a single unit of work. It is a logical unit of 

work - Hourly Viewership metrics, Daily Ad-Analytics 

metrics. 

ETL Task 

A Task is a single piece of independent work unit - Compute 

hourly sessions from Beacon data for example. It can depend 

on other task(s) to run. 

Big data computation 

Most tasks work with a source as Data lake, compute on data 

from lake and put back computed data into data lake. Some 

cases, they put the data/metrics back to the end-user reporting 

system.  

Tools Used 

- Athena  

Athena is a partition supported realtime big data crunching 

system using Facebook’s PrestoDB underneath. You can write 

a SQL query which runs on the data on S3. It can extract, filter, 

aggregate, group data to create metrics. 

- Data lake(S3) 

S3 is big data storage system to store objects, logs, records in 

formats like JSON, Parquet, CSV, Regex parsable text records. 

- Postgres 

RDBMS database used to store the end-user facing reporting 

metrics with right indices to fetch data faster. Analytics portal 

and APIs can use this database to provide reports and 

visualizations to customers 

 

The framework allows us to create a pipeline which is often     

referred to as a job. This job will have many interdependent 

tasks. The tasks are the individual work items which carry out 

a specific function. All these tasks are joined and interlinked to 

create a pipeline.  

 

All the jobs in the framework are automated using cron 

schedules so that without any human intervention all the jobs are 

running at prescribed time. From extraction of information till 

loading the useful information into the database is automated. 

And the data in the database is used to build dashboards, send 

reports, monitoring and alerting etc. 

 

The picture below Figure 3 shows the basic architecture of the 

whole process of how the ETL pipeline is working. 

 

 
          Fig 3: Basic Architecture  

   The architecture displays how the data is extracted from 

different data sources or deployments. All this data is stored in 

Amazon S3, which is the data warehouse. The data which is 

needed for the pipeline is extracted from the data warehouse and 

specific transformations are applied to the raw data using Amazon 

Athena. The transformed data is then loaded into the database. 

From the database the data is queried and displayed into the 

dashboard. 
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    5.  METHODOLOGY 

The following discussion touches upon the methodology of how 

the pipeline is implemented from the first step of extraction to 

the last step of displaying the data. 

 

 

Fig 4: Flow Chart of the methodology 

Figure 4 represents the flow of events happening while building 

a pipeline:  

Log Collection  

The log data or the raw data is collected from different data 

sources or deployments and stored in the Data Warehouse. 

Data Pre-processing 

The raw data or the logs which are collected can be any format, 

usually the logs will be in a Json format. The data is processed 

and converted to csv format with the useful data in it. The pre-

processed data is again stored in Amazon S3. 

Extraction 

Using Amazon Athena, few useful pre-processed data is 

queried and used in the pipeline for getting some insights upon 

that data. 

Perform Aggregation and transformation   

The raw data is aggregated and then transformed to get desired 

output using the query engine which is the Amazon Athena. 

Loading 

The final transformed data is loaded into the database, and 

stored over there. 

Automation 

The whole process is automated using cron schedulers. The 

process is scheduled at a particular time, depending on the 

frequency of which the process should be run. Accordingly the 

process is scheduled and automated. 

Dashboard 

A dashboard is built upon the data in the postgres to provide 

business insights to the customers. The dashboard can also be 

used for monitoring and alerting the development team if there 

are any data discrepancies. 

 

 

  6. RESULTS AND DISCUSSION 

In a perfect world, data analysts have access to all the information 

they need and don't have to worry about how or where it is stored 

since analytics just function. 

The reality of analytics has been far more convoluted up until 

recently. Building and maintaining flimsy ETL (Extract, 

Transform, Load) pipelines that pre-aggregated and filtered data 

down to a consumable level was required in order to access data 

because expensive data storage and underpowered data 

warehouses made this impossible. ETL software providers 

compete based on how specialised and adaptable their data 

pipelines were. 

We are now getting closer to the analysts' ideal thanks to 

technology. Fragile ETL pipelines are a thing of the past thanks 

to practically free cloud data storage and significantly more 

powerful contemporary columnar cloud data warehouses. Extract 

and load the raw data into the destination, then transform it after 

the load, is the modern data architecture. Numerous advantages 

result from this distinction, including improved adaptability and 

usability. 

 

7. CHALLENGES 
The challenges involved on this framework are: 

- Retries for Failures: NO Retries for failed jobs. Manual 

retries should be done for failed jobs  

- No Cross-job Dependency: A task can depend on other 

task(s) in the same job, but can’t       depend on a task of 

another job. 

- Non-parsable Logs: Logs collected from ETL Jobs are not 

parsable. So debugging requires manual analysis of Logs. 

- Too many Slack notifications: Slack notifications are too 

many - causing more ignorance for   failed jobs. 

 

8.  CONCLUSION 

Technology trends are aware that processing, storage, and 

bandwidth are now accessible to anyone. The price of 

computation has decreased over time due to technological 

advancements. Similarly, the price of a gigabyte has dropped 

from around $1 million to a few cents in a period of about 35 

years. Data warehouses can now hold significantly higher data 

volume as a result of these drastic cost reductions. It is no longer 

necessary for organisations to pre-aggregate and, in the process, 

delete a significant amount of source data. This makes it 

possible for analysts to do analysis that is both deeper and more 

thorough than previously. Despite the World Wide Web not 

existing until 1991, internet transport costs have drastically 

fallen. It fell from approximately $1,200 per Mpbs to a few 

cents in less than twenty years. The cloud, or the utilisation of 

remote, decentralised, web-enabled computer resources, is the 

result of the convergence of these three cost-reduction 

developments. A wide variety of cloud-native applications and 

services have also emerged as a result of cloud technology. 

Many firms adopt a manual, ad hoc approach to data integration; 

in fact, 62 percent utilise spreadsheets like Google Sheets and 

Excel to combine data from several files and visualise the 

information. 2 In order to do this, files must be downloaded, 

values must be manually changed or cleaned, intermediate files 

must be created, and other similar operations. 

Ad hoc data integration has a number of disadvantages, to 

mention a few: 

⚫ only suitable for very modest data amounts 

⚫ Slow 

⚫ Human error prone 

⚫ Not safe enough for critical information 

⚫ Often not reproducible 

Maintaining the boundaries between distinct data sources' silos 

while filling in the gaps with "federated" queries, which directly 
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query various source systems and integrate data in real time, is 

a more long-term solution. Organizations can use SQL query 

engines like Presto to accomplish this. This federated 

approach's drawback is that it has a lot of moving pieces and 

performs poorly with big amounts of data. The truth is that a 

methodical, repeatable strategy to data integration—a data 

stack—is necessary for a scalable, sustainable approach to 

analytics. 

 

      9.  FUTURE WORK 

The framework can be improved in many ways. A few 

updates   which are thought to be added are : 

- Run in Pods: Dockerize, build for Kubernetes and Run Jobs 

and Tasks in   Kubernetes. Different ETL tasks require different 

sized/resourced Pods. 

- Parsable Logs: Collect Logs from ETL Jobs and parse them 

to understand what is failing and reason for failing 

- Automated Retries: Retry a failing job for n number of 

times (already exists for few type of tasks) at job level and 

various time periods (retry a job after 1 hour if daily job failed) 

- ETL Dashboard: ETL Dashboard to show the progress of 

the job execution, what is failing, one click retries etc. 

- Non-NodeJs Tasks: Few tasks are better to run in other 

languages - Shell script, Python etc. Wrapper for such tasks to 

embed into NodeJS Job/Task Framework 

- Monitoring Support: Monitor Analytics Pipeline also as a 

first grade component - Raise alerts for failures, handle/recover 

from failures etc. 

- Cost and Stats: Costs of Athena and other operations at fine 

grain level, building stats dashboard etc. 
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