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Abstract: Traditional data analysis methods have limitations that result in many valuable tax insights being overlooked in routine tax 

data processing. However, with machine learning techniques, it is feasible to uncover insights that traditional methods fail to capture. 

Establishing a correlation between historical and future tax data has been a challenging topic, with no effective methods for resolution. 

Although various models, based on linear and non-linear data, exist for forecasting, they often produce significant errors when applied 

to tax data predictions. 
This paper addresses the non-linear characteristics and volatility of tax data, proposing an enhanced Long Short-Term Memory 

(LSTM) model. In contrast to the conventional LSTM model, this improved model boasts a higher prediction accuracy. The 

enhancement involves interpolating the input data and fusing the interpolated data back into the original dataset, aiming to augment the 

accuracy of the output. In our experimental phase, genuine tax data was used for forecasting, and the superiority of the enhanced 

LSTM model over the traditional one was visually demonstrated through charts. 

Upon predicting tax data for two companies and comparing the outcomes to actual scenarios, it was observed that the proposed 

enhanced LSTM model significantly reduced the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) by 13.65% and 

14.49%, respectively, compared to the traditional LSTM model. This indicates the distinct advantage of the improved LSTM model in 

enhancing the accuracy of tax data predictions. 

 

Keywords: data analysis methods, tax data, LSTM, accuracy,data predictions. 
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1. INTRODUCTION 

1.1 Research Background 
Utilizing the LSTM model to analyze tax data introduces an 

approach harnessing the power of Long Short-Term Memory 

neural networks to process and interpret data across diverse 

scenarios [1]. In today's society, the handling and analysis of 

tax data have become increasingly critical [2]. Tax data, 

brimming with valuable insights, holds significance for 

governmental departments, enterprises, and research 

institutions. However, traditional methods of analyzing tax 

data present certain limitations, preventing many important 

tax insights from being fully leveraged. Concurrently, the rise 

of contemporary technologies like machine learning and deep 

learning offers new methodologies for a better understanding 

and analysis of tax data. 

Compared to traditional data analysis methods, the LSTM 

model showcases notable advantages in predicting tax data. 

Representing a hallmark of deep learning, the LSTM model, 

equipped with superior sequential modeling capabilities, 

effectively captures temporal dependencies in tax data, aiding 

precise future tax trend and variation predictions [3]. Being a 

nonlinear model, the LSTM contrasts traditional linear models 

by aptly handling complex nonlinear relations in tax data, 

thereby enhancing prediction accuracy and reliability [4]. 

Given the massive and diverse nature of tax data, the LSTM 

model, with its parallel computational abilities and versatility 

across data types, efficiently manages large datasets, 

facilitating comprehensive tax data analysis. Furthermore, its 

capability to seize and utilize long-term data dependencies is 

pivotal for analyzing prolonged trends and cyclical shifts in 

tax data. The real-time and adaptive features of the LSTM 

model enable on-the-fly parameter updates to navigate the 

evolving tax environment and influx of new data, proving to 

be highly adaptable in practical applications. 

1.2 Existing Challenges 
Traditional tax data analysis techniques are riddled with 

significant limitations, encompassing data complexity, 

handling nonlinear relations, capturing long-term trends, and 

real-time responsiveness. Tax data, inherently complex, 

consists of a plethora of data types and features. Conventional 

methods often falter in effectively addressing this data 

diversity, resulting in information loss or diminished analysis 

accuracy. Tax data embodies intricate nonlinear relations, 

potentially influenced by multifaceted factors like economic 

fluctuations and policy shifts. Classical linear models fall 

short in grasping these sophisticated nonlinear dynamics, 

leading to errors in predictions and analyses. Additionally, 

capturing long-term trends and cyclical changes, essential in 

tax data, remains a challenge for traditional techniques. Real-

time analysis stands as one of the linchpins in tax data 

interpretation; with a continuous stream of new data, the 

analytical approach necessitates real-time adaptability to 

maintain accuracy and relevance [5]. 

1.3 Proposed Solution 
To address the aforementioned challenges, this paper presents 

an enhanced LSTM network model tailored for tax data 

analysis. Considering the nonlinear attributes and volatility of 

tax data, this refined model, compared to its traditional LSTM 

counterpart, boasts heightened prediction accuracy. The 

enhancement involves interpolating the model's input data and 

integrating the post-interpolation data back into the primary 

dataset, aiming to elevate output data accuracy. Through this 

methodology, the complex nonlinear relationships within tax 

data can be better understood, facilitating more precise future 

tax trend predictions. With these advancements, tax data can 

be analyzed more effectively, yielding accurate forecasts and 

profound insights. 

1.4 Paper Structure 
This paper proposes an improved LSTM model, 

demonstrating superior accuracy in real-world tax data 

prediction compared to the conventional LSTM model. The 

paper's contributions are as follows: 

(1) We employ the traditional LSTM model to forecast based 

on real tax data, presenting the respective predictive results 

visually in Chapter 4. Comparative results of predictions 

against actuals, as well as evaluation metrics like Mean 

Absolute Error (MAE) and Root Mean Square Error (RMSE), 

are discussed [6,7]. 

(2) Through interpolation of input data and integrating this 

interpolated dataset as a segment of the primary input, an 

advanced LSTM model is derived and applied for predictions. 

Final comparative results, along with evaluation metrics MAE 

and RMSE, are outlined, juxtaposing the accuracy with that of 

the conventional LSTM model. 

(3) Conclusively, performance evaluations of both LSTM 

models are conducted. Chapter 6 culminates with an in-depth 

summary of the characteristics of both LSTM models, 

emphasizing the merits of the proposed enhanced LSTM 

model and its quantified advantages. 

2. RELATED WORK 
In this chapter, we mainly introduce traditional data analysis 

and forecasting methods and delve into the application of 

machine learning in tax data prediction. We highlight the 

current challenges and explore the latest methods to address 

these challenges. 

2.1 Traditional Data Analysis Methods 
In the realm of traditional data analysis, the processing of tax 

data often relies on conventional methods from fields such as 

statistics and economics. These methods encompass time 

series analysis, regression analysis, and hypothesis testing 

[8,9,10]. Time series analysis is extensively utilized to discern 

temporal trends and cyclical variations in tax data, yet it 

generally struggles with handling intricate nonlinear 

relationships. Regression analysis is frequently employed to 

investigate causal relationships in tax data, but its capability to 

model interactions among multiple variables and nonlinear 

relationships is limited. Hypothesis testing methods are used 

to verify assumptions about tax data, but they may overlook 

the intricacies and uncertainties inherent in the data. 

2.2 Application of Machine Learning in 

Tax Data Prediction 
With the advent of machine learning and deep learning, an 

increasing number of studies have started to explore their 

applications in tax data analysis. Machine learning models, 

such as decision trees, random forests, and support vector 

machines, have been utilized for the classification and 

prediction of tax data [11,12,13]. They serve purposes like 

classification, regression, and forecasting in the context of tax 

data. Compared to traditional methods, machine learning 

models are adept at capturing complex relationships within 
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the data, thereby enhancing the accuracy and reliability of tax 

predictions. However, they still grapple with dependencies on 

data feature engineering and challenges in handling time 

series data. 

3. LSTM MODEL AND MODELING 

BASED ON TAX DATA 
In the previous chapter, we discussed traditional data analysis 

methods and the application of machine learning in tax data 

prediction. In this chapter, we delve deeper into the LSTM 

model and its modeling based on tax data, including both 

traditional LSTM models and modified versions. We will also 

introduce methods of numerical interpolation processing and 

discuss how to train and forecast using these models to better 

comprehend how to utilize them to enhance the prediction 

accuracy and reliability of tax data. 

3.1 LSTM Model Based on Tax Data 
In the context of tax data, time series data can be visualized 

as sequences with continuous time steps, where each step 

encompasses an observation, such as tax revenue or economic 

indicators. In this section, we explore the traditional LSTM 

model tailored for tax data, which is a variant of Recurrent 

Neural Networks (RNN) and is widely used for sequence data 

modeling [14]. The LSTM model aims to address challenges 

faced by conventional RNNs when dealing with long 

sequence data and long-term dependencies. To counteract the 

shortcomings of RNNs, LSTM introduces a specialized gating 

mechanism, comprising input gates, forget gates, and output 

gates, along with internal memory cells [15]. The role of these 

gates is to control the flow of information, allowing LSTM to 

capture long-term dependencies more effectively. The forget 

gate permits the model to selectively forget previous 

information, while the input and output gates decide when to 

introduce new information and when to produce outputs. 

These mechanisms help alleviate the vanishing gradient 

problem while retaining sensitivity to long-term 

dependencies. 

 

Figure. 1Comparison between LSTM model and traditional 

RNN model 

The architecture of a traditional LSTM (Long Short-Term 

Memory) model includes an input layer, hidden layers, and an 

output layer. The input layer typically consists of input nodes 

representing time steps and other relevant features. The 

hidden layers are composed of multiple LSTM units, each of 

which has its own internal state (memory cell) and output 

gate. The design of these LSTM units allows them to capture 

long-term dependencies in sequential data, which helps in 

making more accurate predictions of future trends and 

changes. 

The training process of a traditional LSTM model typically 

involves steps such as data preparation, model construction, 

model training, and model prediction. First, time series data is 

prepared in a format suitable for model input. Then, an LSTM 

model is constructed with a clear definition of its architecture 

and parameters. Subsequently, the model is trained using 

historical tax data by fine-tuning its weights and parameters 

through the minimization of a loss function to better fit the 

data. Finally, the trained LSTM model can be used for 

predicting future tax data. Although traditional LSTM models 

perform well in handling time series data, they may encounter 

performance bottlenecks when dealing with complex 

nonlinear relationships and noisy data. Therefore, the 

development of improved LSTM models to enhance 

performance becomes necessary. 

3.2 Improved LSTM Model Based on Tax 

Data 
Building upon the traditional LSTM model, we have 

introduced an enhancement known as data interpolation, 

which demonstrates improved performance when dealing with 

tax data [16]. In this enhanced LSTM model, we calculate the 

average of the past two time steps' data and insert this average 

as a new data point into the input data. This process is referred 

to as data interpolation, and its purpose is to smooth the 

original data, reduce noise in the data, and enhance the 

training and prediction capabilities of the model. Data 

interpolation aids in improving the LSTM model's ability to 

capture the characteristics of the data when dealing with 

complex nonlinear relationships. By introducing the average 

value, we can reduce spikes and fluctuations in the data, 

enabling the model to learn the data patterns more stably. This 

is particularly useful when handling time series data like tax 

data, which exhibits periodicity and trends. The improved 

LSTM model can more accurately capture these trends and 

periodic changes, thereby enhancing the accuracy of tax data 

predictions. 
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Figure. 2Loss Comparison between LSTM Model and Improved 

LSTM Model 

Figure 2 displays the loss curves during the training process of 

the traditional LSTM model and the improved LSTM model. 

It can be observed that the loss trends of both models are 

similar, but the improved LSTM model exhibits greater 

stability in some cases. This indicates that the improved 

model fits the data better during training, reducing the 

influence of fluctuations and noise. By introducing the 

enhancement of data interpolation, we can make better use of 

the information in tax data, gain a deeper understanding of the 

nonlinear relationships within the data, and enhance the 

model's performance. 

3.3  Model Training and Prediction 

In the process of building the improved LSTM model, the 

training and prediction steps are of critical importance, 

forming the foundation for the final tax data predictions. 

Model training is a complex process that begins with data 

preparation, including cleaning and preprocessing the raw tax 

time series data to ensure its suitability for input into the 

LSTM model. The model construction phase involves 

defining the LSTM architecture and selecting its parameters, 

including input dimensions, the number of hidden units, and 

output dimensions. The choice of the loss function and 

optimizer is also crucial; the appropriate loss function directly 

affects the model's performance, while the optimizer selection 

impacts the speed and stability of the training process. 

For the input dimension, we selected 1 to represent a single 

feature (taxable amount), and the hidden dimension (i.e., the 

number of hidden units) was set to 50. We used Mean 

Squared Error (MSE) as the loss function and the Adaptive 

Moment Estimation (Adam) optimizer to optimize the model's 

weights and parameters. Using the trained LSTM model, we 

performed sliding window predictions on the entire dataset to 

obtain future predictions. 

Regarding the prediction results, we conducted experimental 

validation using real tax data from XX city for the years 2019 

to 2020. We used the taxable amount for the corresponding 

months in these two years to predict the taxable amount for 

each month in 2021. We performed predictions using both the 

LSTM model and the improved LSTM model, and we 

visualized the differences between the two models using line 

graphs and bar charts for Mean Absolute Error (MAE) and 

Root Mean Square Error (RMSE). The improvement in 

performance was quantified by the difference in MAE and 

RMSE values. 

4. SIMULATION AND DISCUSSION 
In this chapter, we will provide a detailed overview of the 

experimental setup, present the results, and discuss the 

implications of the experimental findings. Firstly, we will 

outline the experimental settings, including data sources and 

the specific objectives of the prediction task. Subsequently, 

we will showcase the experimental results and quantitatively 

evaluate the performance improvement of the enhanced 

LSTM model using metrics such as MAE and RMSE. 

4.1 Experimental Setup 
The experiments in this study are based on real tax data 

sourced from XX city's tax records. The objective of the 

experiments is to use historical tax data (data from 

corresponding months in 2019 to 2020) to predict future tax 

data (taxable amounts for each month in 2021). In the 

experiments, we employed two different LSTM models: the 

traditional LSTM model and the improved LSTM model, to 

compare their performance. 

The input dimension for the experiments was set to 1 to 

represent a single feature (taxable amount), and the hidden 

dimension (i.e., the number of hidden units) was set to 50. 

The loss function used was MSE, and the Adam algorithm 

was selected to optimize the model's weights and parameters. 

For the traditional LSTM model, the input consisted of data 

from corresponding months in 2019 to 2020 (e.g., taxable 

amounts for January 2019 and 2020 to predict data for 

January 2021). For the improved LSTM model, the input 

dimension, hidden dimension, loss function, and optimization 

algorithm remained consistent, but we introduced an 

additional set of interpolated data into the input, namely, the 

average of data from corresponding months in 2019 to 2020, 

resulting in 12 new data points. Consequently, we increased 

the number of input data points from 2 to 3, with the aim of 

smoothing the original data and reducing spikes and 

fluctuations to improve prediction accuracy. 
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4.2 Experimental Results 
This study conducted experiments using real tax data to 

compare the performance of the traditional LSTM model with 

an enhanced LSTM model in tax data prediction. By 

analyzing the predictive outcomes of both models, several key 

findings were obtained. Firstly, we employed the traditional 

LSTM model to predict the tax data for corresponding months 

from 2019 to 2020, followed by a comparison with the actual 

taxable amounts for each month in 2021. We also performed 

the same prediction task using the improved LSTM model. 

The following are the main findings from the experimental 

results: 

 
Figure. 3Comparison between LSTM Model Predictions and Actual 

Data for CompanyA 

 

Figure. 4Comparison between Enhanced LSTM Model Predictions 

and Actual Data for Company A 

For Company A, in Figure 3, we observe a comparison 

between the predictions of the traditional LSTM model and 

the actual data. It is evident that the general trend is similar, 

but there is a significant disparity in numerical values. In 

Figure 4, the enhanced LSTM model's predictions are 

compared to the actual data, showing an improvement in 

addressing the issue of substantial numerical disparities. 

 

 

 

Figure. 5Comparison between LSTM Model Predictions and Actual 

Data for Company B 

 

Figure. 6Comparison between LSTM Model Predictions and Actual 
Data for Company B 

The above figures represent the forecast results based on tax 

data for Company B. In Figure 5, we can observe the 

comparison between the predictions of the traditional LSTM 

model and the actual data, especially noting a significant 

numerical disparity in the later months. Figure 6 shows the 

comparison between the predictions of the enhanced LSTM 

model and the actual data, demonstrating a relative 

improvement in addressing the issue of substantial numerical 

disparities between predicted and actual tax data. 

4.3 Experimental Evaluation 
In this section, we will present the performance evaluation 

results of our proposed enhanced LSTM model for tax 

revenue prediction. To assess the effectiveness of the model, 

we employed two commonly used performance evaluation 

metrics: Mean Absolute Error (MAE) and Root Mean Square 

Error (RMSE). These metrics provide valuable insights into 

the accuracy and precision of the model's predictions. 

MAE is a metric that measures the average magnitude of 

errors between model predictions and actual observations. It is 

calculated by averaging the absolute differences between the 

predicted values and the actual values for each data point. A 

lower MAE indicates that the model's predictions are closer to 

the actual observed values, suggesting that the model better 

captures underlying patterns in tax revenue data. The 

formula(1) for MAE is as follows: 

MAE =
1

n
 |Yactual-Ypredicted|

n
i=1 (1) 
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Where, n represents the total number of data points. Yactual 

represents the actual tax revenue value. Ypredicted  represents 

the predicted tax revenue value. 

RMSE is another widely used metric that takes into account 

the squared errors between predicted values and actual values, 

providing a measure of the magnitude of these errors. RMSE 

is particularly sensitive to large errors because it involves the 

square of the differences, penalizing significant deviations 

from actual values. The calculation formula(2) for RMSE is as 

follows: 

RMSE =  
1

𝑛
 |𝑌𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 |
𝑛
𝑖=1 (2)          

Where, n represents the total number of data points. Yactual 

represents the actual tax revenue value. Ypredicted  represents 

the predicted tax revenue value. Using MAE and RMSE as 

performance evaluation metrics allows for a reasonably 

accurate quantification of performance variations. 

 

 

 

Figure. 7MAE and RMSE Metrics for Predictive Results 

From Figure 7, we can observe the numerical comparison of 

performance evaluation metrics for the two companies under 

the two LSTM models. It is evident that under the improved 

LSTM model predictions, both MAE and RMSE show a 

decrease. In the case of Company B, the reduction in both 

metrics is more pronounced, and lower MAE and RMSE 

values indicate a better fit between predicted and actual data. 

Therefore, the enhanced LSTM model demonstrates superior 

predictive performance compared to the traditional LSTM 

model. 

4.4 Advantages of the Enhanced LSTM 

Model 
Based on the results and discussions from this experiment, we 

have identified several key advantages of the enhanced LSTM 

model compared to the traditional LSTM model when dealing 

with tax data. These improvements are primarily reflected in 

the following aspects: 

Data Interpolation: The enhanced LSTM model incorporates 

data interpolation, which smoothes the raw data and reduces 

noise in the data, thereby enhancing the model's training and 

prediction capabilities. Data interpolation helps the improved 

model better capture the features of the data, especially when 

dealing with complex nonlinear relationships. 

Better Fitting: By introducing data interpolation, the enhanced 

LSTM model can better fit the complex nonlinear 

relationships within tax data, leading to more accurate 

predictions of future tax trends. The improved model achieves 

a better fit to the data during the training process, reducing the 

impact of fluctuations and noise. 

Performance Enhancement: Experimental results demonstrate 

a performance improvement of the enhanced LSTM model 

compared to the traditional LSTM model in tax data 

prediction. The average reductions in MAE and RMSE are 

13.65% and 14.49%, respectively. This indicates that the 

improved model more accurately captures the characteristics 

and trends in tax data. 

These advantages highlight the effectiveness of the enhanced 

LSTM model in enhancing predictive accuracy and handling 

complex tax data, making it a valuable tool for tax revenue 

forecasting. 

5. CONCLUSION 
In this study, we explored the application of traditional data 

analysis methods and machine learning in tax data analysis 

and prediction. We introduced traditional data analysis 

methods, including time series analysis, regression analysis, 

and hypothesis testing, along with their limitations when 

dealing with tax data. Subsequently, we delved into machine 

learning models, particularly the LSTM (Long Short-Term 

Memory) model, and its application in tax data prediction. We 

proposed an enhanced LSTM model that incorporates data 

interpolation to smooth raw data, reduce noise, and improve 

the model's training and prediction capabilities. 

The experimental results demonstrate that the enhanced 

LSTM model outperforms the traditional LSTM model in tax 

data prediction tasks. Through data interpolation, the model 

better captures the nonlinear relationships within tax data, 

reduces prediction errors, and enhances predictive accuracy. 

The average reductions in Mean Absolute Error (MAE) and 

Root Mean Square Error (RMSE) are 13.65% and 14.49%, 

respectively, indicating the superiority of the improved model 

in tax revenue prediction. 
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