
International Journal of Computer Applications Technology and Research

Volume 12–Issue 12, 17 - 22, 2023, ISSN:-2319–8656

DOI:10.7753/IJCATR1212.1004

www.ijcat.com 17

Building Comprehensive Dataset: Android File and

Unstructured Data Collection from APKs for Enhanced

Vulnerability Detection

Jigna Rathod

Assistant Professor

Babu Madhav Institute of Information Technology

UTU

Bardoli, India

Dr. Dharmendra Bhatti

Director and Professor

Asha M. Tarsadia Institute of Computer Science

Engineering, UTU

Bardoli, India

Abstract: Google's Android platform grew to become one of the world's largest mobile systems. An Android application can use any

functionality that the platform provides. Malware may also be present in Android apps. That is why our objective in this research is to

collect files from wide malware families and use them to help us and other researchers run vulnerability detection tests. From the most

well-known Android malware projects, we gathered both benign and malicious files. This process yielded 20832 malicious files and

10856 benign files. In this study, we also disclosed the Android file collection step as well as our vulnerability identification technique.

Machine learning approaches are frequently used to identify whether an APK file is tainted, with the goal of detecting malicious apps.

We have been concentrating on machine learning approaches to discover the unknown vulnerability. To identify malware, the malware

researcher must create his or her own dataset. As part of our dataset production process, we collect Android files, do dynamic analysis,

and then extract their characteristics. We described the technique of producing data sets in this paper. The android file contains a lot of

unformatted data in the form of text or XML files, which is difficult to analyze and store. Our objective in this context is to provide a

dynamic analysis of these obtained Android files, allowing you to access the underlying information, such as system calls, network

traffic, and permission requests made by specific apps. Using Dynamic Analysis, we are attempting to manage massive amounts of

data and assure correct processing in the context of Android files. In this study, we offer MalwareDefender, a dynamic analytical tool

that handles the challenging issues of evaluating and processing massive volumes of data.

Keywords: Android; Smartphones; Malware; Vulnerability Detection; APK Files, Dataset Generation, File Collection

1. INTRODUCTION
Nowadays, the process of detecting Android Vulnerability is

based on a variety of methods, such as signatures, patterns,

resources, and components that were statically analyzed to

find known vulnerabilities [1][16], whereas machine learning

techniques are capable of discovering previously unknown or

recently discovered vulnerabilities [2]. Machine learning

methods are increasingly being used to find vulnerabilities

[1]. Machine learning approaches are proven to be less time

demanding and resource costly than nonmachine learning

methods [2].

 An APK file can be detected as malicious by a

researcher. To that purpose, a researcher must develop his or

her standard set of methods. In this situation, a researcher

would like to have access to the same dataset. The

construction of a dataset is an important aspect of the

procedure since it provides a list of features that will assist

you in determining whether this APK file is malicious or not.

It is also critical to choose the properties of the dataset since

various malicious files exploit these aspects. This assists

researchers in identifying a malicious file using exploited

characteristics. Our dataset generation procedure consists of

Android file collecting, dynamic analysis, and data extraction.

During the dynamic analysis phase, we created

MalwareDefender, an analytical tool that would examine APK

files and collect raw data like as network traffic, system calls,

and permission in real time. The chosen characteristics are

derived from the unstructured data received during the data

extraction phase via dynamic analysis.

 As part of an Android File Collection phase, we

collected 20832 malicious files from the most well-known

Android malware projects, as well as 10856 benign files from

the Google Play Store and other sites. In this article, we

discussed android file collections, the dynamic analysis of

files, and collecting unstructured data from APK files. All

characteristics are extracted from files, and the data extraction

step will result in the creation of our final dataset. The dataset

will be utilized to train and test the models throughout the

Machine Learning phase in order to research and deliver

improved outcomes. Other articles will go over the various

stages of feature extraction and machine learning.

 Big Data comprises huge volumes of uncategorized

data that can be stored in a number of formats such as text

files, photos, audio, video, and so on [3]. Unstructured data

has no explicit structure; instead, it consists of its internal

structure [4]. The Android files are made up of text and XML

files, each with its unique structure. There are 20832

malicious files and 10856 benign files in the Android file

gathering phase. As a result, keeping and storing a huge

amount of Android files is a big data problem, and executing

dynamic analysis is a task in and of itself. In this part, we are

attempting to manage a big quantity of data regarding

Android files and ensure that they are appropriately handled

by using dynamic analysis.

 There is no dynamic analytic tool available to do

this study. To that end, we've developed MalwareDefender, a

sophisticated analysis tool that will be used by each

application to perform tasks such as running it, keeping track

of its current operation, and collecting raw data such as

International Journal of Computer Applications Technology and Research

Volume 12–Issue 12, 17 - 22, 2023, ISSN:-2319–8656

DOI:10.7753/IJCATR1212.1004

www.ijcat.com 18

system calls generated by an application, network traffic

captured by applications, and permission requests from each

functioning application. We discussed how our dynamic

analysis tool works in our prior publication [5].

 This document includes the sections listed below.

Section 2 of our Generalized Detection System describes the

full vulnerability detection procedure. Section 3 describes the

android file gathering step. Section 4 describes the many

difficulties we experienced while collecting data. Section 5

describes the limitations of the file gathering procedure.

Section 6 describes the architecture flow of the dynamic

analysis tool. Section 7 contains the paper's conclusion.

2. Overall Process of Vulnerability

Detection
The overall process for detecting vulnerabilities is explained

in this section. The architecture of vulnerability detection for

android is explained in Figure 1. There are four main phases

of this process.

 Android File Collection

 Monitoring Component (Dynamic Analysis)

 Data Extraction and Generation

 Machine Learning

The first and second phases of this paper are the

collection of android files and the monitoring component. The

next set of papers will deal with further phases. All android

files are collected during the Android File Collection phase.

Many popular android malware projects such as Drebin [6],

AndroZoo [7], AndroPRAGuard [8] and MalDroid2020 [10]

are used to collect these malicious files. Collection of benign

files are available from the Canadian University of

Cybersecurity [9] and Google Play, as well as ApkPure.com

[11].

Figure 1 Proposed Architecture of Android Vulnerability

Detection

The APK file format is an Android Package file type that is

used to launch programs on Android-powered devices. The

APK file includes the Java code required to run the program,

as well as AndroidManifest.xml, resources, assets, and other

files. Java code is compiled into bytecodes, which are

subsequently stored as Dalvik executable files (.dex files).

The Android operating system uses the Dalvik Virtual

Machine (DVM) to run .dex files.

 For the Monitoring component, we created an

Android app named MalwareDefender. MalwareDefender is

an Android software that monitors and records the state and

performance of the system. It is written in Java and uses the

Monkey Runner tool to perform 5000 random events each app

launch. The Strace and tcpdump utilities have been introduced

to gather system call logs and monitor network traffic. We

obtained a total of 10066 sets of original data by doing

dynamic analysis on all active apps. A component

responsible for attribute creation will gather data from

permissions, system calls, and network traffic. Selected

characteristics are used as input in the data extraction and

creation process. A dataset of chosen characteristics is built

from the unstructured data acquired through dynamic analysis.

The final dataset includes key aspects such as permissions,

system calls, and network traffic. This dataset is utilized in the

machine learning phase to categorize malware and benign

programs, where different supervised algorithms, feature

reduction and extraction approaches, and ensembling

techniques are used. We will train a dataset using machine

learning, and then apply all algorithms to the tests based on

the taught data to produce more precise findings for

vulnerability detection. This will help us understand the

vulnerability detection system better.

3. Android Files Collection
The overall collection process for the android files is

explained in this section. The first step in preparation of the

dataset is to collect android files, which is explained here.

3.1 File Collection Procedure
This section describes the architectural flow of the

Android file gathering process. The user opens the Android

File collection module, inputs a URL, and requests a

malicious or benign file download. This module connects to a

website via a specified URL, and if the connection is

successful, the website connects to the server and sends the

user-supplied file request for download. The server responds

with the website's file path, and lastly, the malicious or benign

file is downloaded and saved to a physical place. Malware or

benign files are selected based on global Android Malware

databases and website data. In our article, we evaluated and

detailed some well-known datasets of Android malware as

well as a few benign datasets. Other researchers quote, use,

and refer to the majority of those data sets. Furthermore,

because these databases include a wide spectrum of malware

families, our study is extremely dependable, implying that the

results we collected are as well. The Android malware dataset

may be acquired from the Drebin dataset, which is a well-

known initiative [6]. The Androzoo dataset has a vast number

of applications that are constantly growing [7] [12].

AndroPRAGuard's database contains 10479 applications from

various families, as well as examples from the MalGenome

and ContagioMinidump datasets [8]. The old samples may be

found in Drebin, AndroZoo, and AndroPRAguard. So, for

recent samples, we gathered samples from the MalDroid2020

[10] dataset. The preceding procedure resulted in the

collection of roughly 20832 Malware programs. Drebin has

been used to download about 5490 programs [6]. AndroZoo

has around 4000 programs downloaded [7]. AndroPRAGuard

has been used to download 5953 apps [8]. From

MalDroid2020 [10] around 5389 applications are

downloaded. In view of the variety of malware families

included in this dataset, as well as a number of recently

discovered malicious files, we chose these popular Android

Malware Datasets to run our process.

Benign applications were acquired from databases, the

Google Play Store, and other places. We collected around

6500 benign applications from the Canadian University of

International Journal of Computer Applications Technology and Research

Volume 12–Issue 12, 17 - 22, 2023, ISSN:-2319–8656

DOI:10.7753/IJCATR1212.1004

www.ijcat.com 19

Cyber Security dataset [9]. The Google Play store has

received 356 app downloads. We gathered around 4000

benign applications from websites [11]. We choose the

official Google Play Store, various well-known datasets, and

well-known internet domains for benign file download. Table

1 summarizes the total number of Android applications

downloaded from each market place.

Table 1 Android Files Summary

Popular Datasets

No. of

files

downl

oad

File Type
Total

Files

Drebin 5490

Malicious 20832
Androzoo 4000

AndroPRAGuard 5953

MalDroid2020 5389

Google Play Store 356

Benign 10856
Canadian University

of Cyber Security
6500

Websites 4000

4. Challenges in Data Collection
During the collection of APK files from various android

marketplaces, we have encountered a number of challenges

and obstacles. Some general issues include the following:

1. Request to grant access to the Datasets: The data

for Android Malware and Benign APK are easily

accessible, however they cannot be downloaded

directly. To be authorized for this reason, we must

request a dataset by sending an email, and

researchers of the datasets will enable us to obtain

them in exchange for API keys, passwords, or

downloading URLs. Requests are used to retrieve

datasets from Drebin [6], AndroZoo [7],

AndroPRAGuard [8], MalDroid2020 [10], and The

Canadian University of Cyber Security [9]. These

datasets, which include many different types of

malwares and a large number of files, are being

used by researchers all around the world in their

study.

2. Manual Download of Files: When we obtained the

researcher's API key to download the files, we were

not permitted to download the bulk files at the same

time in Androzoo [7] [12]. Androzoo [7] gives an

excel file with all of the infected files' details,

including SHA256, Package Name, File Size, Date,

and Time. The SHA256 value is unique to each file.

Androzoo [7] allows you the freedom to download

any malicious file you choose. You may also

download new malicious files as well as from the

past. A collection of malware files can be created

based on one's preferences and needs. To download

each file manually, we have followed the following

steps.

1. File Download link:

https://androzoo.uni.lu/api/download?apikey=$

{APIKEY}&sha256=${SHA256}

 2. Use the API key acquired from AndroZoo

[7][12].

3. Select the SHA256 value from the Excel file and

replace it in the link.

4. Paste the entire URL into the browser.

For instance,

https://androzoo.uni.lu/api/download?apikey=f60e3

0400dbecb3eda905972548fb8b971ef07710bf96b8d

358567d01a741ce8&sha256=0000003B455A6C7A

F837EF90F2EAFFD856E3B5CF49F5E271914

5. The API Key will remain the same, but the

SHA256 value for each APK file will be different.

So, for each APK, change the SHA256 value and

copy-paste the URL to download it.

5. Limitations of File Collection Process
The total amount of Malware Files acquired by this method

imposes some limitations also. They are as follows

1. It is not possible for a researcher to identify a

Malware Family from a single Malware file. We do

not disclose any more information on the Malware

Files.

2. The Malware Files we have collected span the years

2011 to 2021.

3. We have only gathered files that are openly

available.

6. Dynamic Analysis of Android Files
The different challenges to unstructured data extraction and

the dynamic analysis phase are discussed in this section.

6.1 Challenges of Unstructured Data

Mining
In the realm of big data, there is a massive volume of

unstructured and heterogeneous data to deal with [13-15].

This is because unstructured data does not have specified

schema or models and has its own internal structure, rendering

traditional RDBMS unsuitable for storing it [3][4]. Big data is

concerned with three Vs: 1) Volume, 2) Velocity, and 3)

Variety [13][15].

 Volume: This is a large number of datasets, which

are complex in their data structure. The challenge

with volume is to handle the complexity of the data

structure [13][15].

 Velocity: The need to handle the pace with which

new datasets are created or old datasets are updated

is referred to as velocity. This aspect pertains to data

generated by machines, such as mobile device

sensors. The issue with velocity is coping with the

streaming system's limited capacity while obtaining

valuable information from continual fresh dataset

production [13] [15].

 Variety: Datasets come from a range of sources and

can be in a variety of formats, including text, audio,

video, graphs, sensors, and so on. [13][15]. The

variety of data provides more information for

https://androzoo.uni.lu/api/download?apikey=f60e30400dbecb3eda905972548fb8b971ef07710bf96b8d358567d01a741ce8&sha256=0000003B455A6C7AF837EF90F2EAFFD856E3B5CF49F5E271914
https://androzoo.uni.lu/api/download?apikey=f60e30400dbecb3eda905972548fb8b971ef07710bf96b8d358567d01a741ce8&sha256=0000003B455A6C7AF837EF90F2EAFFD856E3B5CF49F5E271914
https://androzoo.uni.lu/api/download?apikey=f60e30400dbecb3eda905972548fb8b971ef07710bf96b8d358567d01a741ce8&sha256=0000003B455A6C7AF837EF90F2EAFFD856E3B5CF49F5E271914
https://androzoo.uni.lu/api/download?apikey=f60e30400dbecb3eda905972548fb8b971ef07710bf96b8d358567d01a741ce8&sha256=0000003B455A6C7AF837EF90F2EAFFD856E3B5CF49F5E271914

International Journal of Computer Applications Technology and Research

Volume 12–Issue 12, 17 - 22, 2023, ISSN:-2319–8656

DOI:10.7753/IJCATR1212.1004

www.ijcat.com 20

problem solutions. The issue with diversity is

merging numerous systems to accept different sorts

of data [15].

The framework for large data analysis and mining is depicted

in Figure 2. Tier 1 data mining procedures for large datasets

necessitate the use of expensive computer units and clusters

for data processing and comparison [13]. To achieve high

speed, big data processors rely on cluster computers, and data

mining activities are done using parallel programming tools

such as Map-Reduce [13]. Tier 2 focuses on data security and

subject expertise. Data privacy may be achieved by restricting

data access such that sensitive data is only available to

particular persons. The second way to preserve data privacy is

to anonymize data fields so that sensitive information is not

connected with a specific record [13]. Tier 3 is focused with

algorithms for massive data mining. Deep analysis, which is

quite difficult, is necessary for the creation of the algorithms

[15]. Mining algorithms are self-contained and work

decentralized [13]. Big data mining necessitates the use of

machine learning and data mining technologies that need a

large amount of computational power and resources [13]. As a

result, in big data analysis and mining, each layer covers all of

the complicated issues.

Tier 1: Data Accessing and Computing

Tier 2: Data Privacy and Domain Knowledge

Tier 3: Big Data Mining Algorithms

Figure 2 The Framework for Big Data Analysis and Mining

To solve all of the challenges connected with

unstructured data analysis and mining, we proposed a

dynamic analysis tool (MalwareDefender) that does dynamic

file analysis, creates unstructured data in.xls,.csv, and .pcap

files, and saves the files on the device. These data are then

sent to a local system with enough capacity for further

processing. It solves all of the issues involved with dealing

with data volume, velocity, and variety.

6.2 Dynamic Analysis Phase
MalwareDefender in Java is a program that does a

dynamic examination of all APKs that are now executing. It

looks for features like permission, system calls, and network

traffic in the present program. These attributes are saved in a

variety of file formats, including .xls,.csv, and .pcap, and

Wireshark is then used to analyze the .pcap files to extract

additional network traffic information. This allows for the

effective extraction of certain features from Android apps.

Figure 3 depicts the architectural flow of dynamic

analysis tool and its operation, which entails the sequential

implementation of the following steps:

 The release of MalwareDefender, an Android

application built by us, will signal the beginning of

the data extraction approach based on dynamic

analysis.

 When MalwareDefender is launched, it will provide

a complete list of all programs presently installed on

the device.

 Run the required application to extract features from

the one that is already executing.

 If the app is correctly launched, Monkey Runner

will generate 5000 random actions; else, a list of

installed applications will be displayed for the user

to pick and run a new one.

 During a 20-minute random event produced by

Monkey Runner, MalwareDefender will monitor

and collect system calls, app permissions, and

network activity.

 The app should be terminated and deleted from the

background after 20 minutes.

 After exiting the current app, MalwareDefender

saves permission, system calls, and network traffic

data to the device in.xls, .cls, and .pcap formats,

respectively.

 If you have access to all three files on your

smartphone, save them to your local system for

additional investigation. If this is not the case,

restart the application to extract the data.

 The data extraction app will go through each

application and extract all of its attributes.

Once all this unstructured data is gathered, data

extraction and mining will be carried out. The data extraction

and mining phase will be discussed in another paper.

7. CONCLUSION
To determine if an APK file is malware or not, a researcher

needs to first create a dataset. We discussed the dataset

production process, which included Android File Collection,

Monitoring Component (Dynamic Analysis), Data Extraction

and generation, and the Machine Learning Phase. We

investigated the Android File collection phase in this paper

and presented a dynamic analysis tool (MalwareDefender)

that we designed to do dynamic analysis of running

applications. During the Android File Collection phase, we

collected 20832 malicious files and 10856 benign ones. We

also discussed some of the issues faced during data collection

as well as some of the data collection limits.

We finished the collecting of Malware and Benign

files for dataset construction during the Android File

gathering Phase. We also reviewed the architectural flow of

our recommended dynamic analysis tool and illustrated the

whole Android File Collection procedure. Mining

International Journal of Computer Applications Technology and Research

Volume 12–Issue 12, 17 - 22, 2023, ISSN:-2319–8656

DOI:10.7753/IJCATR1212.1004

www.ijcat.com 21

characteristics from APK files and generating the dataset

needs dynamic file analysis. We performed a dynamic

analysis on all 10066 APK files, implying that our final

dataset would contain 10066 records that machine learning

algorithms will use to train the model. The next papers will go

into the stages of data extraction and generation, as well as

machine learning.

Figure 3 MalwareDefender – Architectural Flow of Dynamic

Analysis Tool

8. ACKNOWLEDGMENTS
We would like to acknowledge our two students Mr. Bhargav

Patel and Mr. Parth Desai of BMIIT, UKA Tarsadia

University who helped us in manually downloading the files

from AndroZoo [7] and performing dynamic analysis of each

APK file using our implemented tool. They downloaded

around 4000 files from AndroZoo [7] and perform dynamic

analysis of around 1000 APKs dedicating their time for this

task.

9. REFERENCES
[1] Agrawal, P., & Trivedi, B. (2019, February). A survey on

android malware and their detection techniques. In 2019

IEEE International conference on electrical, computer

and communication technologies (ICECCT) (pp. 1-6).

IEEE.

[2] Alqahtani, E. J., Zagrouba, R., & Almuhaideb, A. (2019,

June). A survey on android malware detection techniques

using machine learning algorithms. In 2019 Sixth

International Conference on Software Defined Systems

(SDS) (pp. 110-117). IEEE.

[3] Kanimozhi, K. V., & Venkatesan, M. (2015).

Unstructured data analysis-a survey. International

Journal of Advanced Research in Computer and

Communication Engineering, 4(3), 223-225.

[4] Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey.

Mobile networks and applications, 19, 171-209.

[5] Rathod, J., & Bhatti, D. (2022, March). Vulnerability

detection in the android application based on dynamic

analysis. In Proceedings of Third International

Conference on Intelligent Computing, Information and

Control Systems: ICICCS 2021 (pp. 287-302).

Singapore: Springer Nature Singapore.

[6] Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H.,

Rieck, K., & Siemens, C. E. R. T. (2014, February).

Drebin: Effective and explainable detection of android

malware in your pocket. In Ndss (Vol. 14, pp. 23-26).

Brown, L. D., Hua, H., and Gao, C. 2003. A widget

framework for augmented interaction in SCAPE.

[7] University of Luxembourg. (n.d.). Androzoo home.

Retrieved April 9, 2019, from https://androzoo.uni.lu/

[8] Android PRAGuard Dataset | PRA Lab. (n.d.). Retrieved

May 19, 2019, from

http://pralab.diee.unica.it/en/AndroidPRAGuardDataset

[9] CICMalAnal 2020 | Datasets | Research | Canadian

Institute for Cybersecurity | UNB. (n.d.). Retrieved July

15, 2020, from MalDroid 2020 | Datasets | Research |

Canadian Institute for Cybersecurity | UNB

[10] Retrieved July 15, 2020, from MalDroid 2020 | Datasets |

Research | Canadian Institute for Cybersecurity | UNB

[11] Android Files Download. (n.d.). Retrieved Feb 19, 2019,

from https://apkpure.com

[12] Allix, K., Bissyandé, T. F., Klein, J., & Le Traon, Y.

(2016, May). Androzoo: Collecting millions of android

apps for the research community. In Proceedings of the

13th international conference on mining software

repositories (pp. 468-471).

[13] Wu, X., Zhu, X., Wu, G. Q., & Ding, W. (2013). Data

mining with big data. IEEE transactions on knowledge

and data engineering, 26(1), 97-107.

[14] Chen, J., Chen, Y., Du, X., Li, C., Lu, J., Zhao, S., &

Zhou, X. (2013). Big data challenge: a data management

perspective. Frontiers of computer Science, 7, 157-164.

https://apkpure.com/

International Journal of Computer Applications Technology and Research

Volume 12–Issue 12, 17 - 22, 2023, ISSN:-2319–8656

DOI:10.7753/IJCATR1212.1004

www.ijcat.com 22

[15] Fan, W., & Bifet, A. (2013). Mining big data: current

status, and forecast to the future. ACM SIGKDD

explorations newsletter, 14(2), 1-5.

[16] Solanky, M. J., & Bhatti, D. (2019). A review on several

vulnerabilities’ detection techniques in Android Mobile.

