
International Journal of Computer Applications Technology and Research

Volume 12–Issue 03, 32-39, 2023, ISSN:-2319–8656

DOI:10.7753/IJCATR1203.1009

www.ijcat.com 32

Huffman Algorithm Valuation Using Residue Number
System

 Lawal T. Dauda Eseyin Joseph B Azeez O. Isiaka

Department of Computer Science ICT Directorate Department of Statistics

Federal Polytechnic Offa University of Jos Federal Polytechnic Offa

Kwara State, Nigeria Jos, Nigeria Kwara State Nigeria

Abstract: The Huffman algorithm is a widely used method for lossless data compression, which assigns variable-length codes to characters

based on their frequency of occurrence in the input data. However, the traditional implementation of Huffman coding using binary arithmetic

can be computationally intensive, particularly for large data sets. In recent years, the Residue Number System (RNS) has emerged as a

promising alternative to binary arithmetic for certain types of computations, due to its potential for parallel processing and reduced hardware

complexity. This paper evaluates the use of RNS as a basis for implementing the Huffman algorithm, comparing its performance with the

traditional binary approach. The results demonstrate that RNS-based Huffman coding can achieve comparable or superior compression ratios,

while reducing the computational requirements and potentially enabling faster compression and decompression. The study also highlights

the importance of choosing appropriate RNS moduli and operands to optimize performance. Overall, the evaluation suggests that RNS can

be a viable and efficient alternative to binary arithmetic for implementing the Huffman algorithm, particularly in applications with high

computational demands or limited hardware resources. However, further research is needed to explore the potential benefits and limitations

of RNS in other areas of data compression and signal processing.

Keywords: Residue Number System, lossless compression, compression ratio, decompression, moduli set, binary value, bit coding

1.0 INTRODUCTION

Data management and processing must include data compression

since it reduces the size of data files, allowing for more effective

storage and quicker transfer. Compression in computer science

is based on the philosophy that some data can be represented more

efficiently by using fewer bits than their original representation

without losing significant information. This can help reduce

storage requirements and transmission times, making it an

important tool in managing large amounts of data. There are

numerous data compression algorithms that each have benefits

and drawbacks. This widely used data compression algorithm—

Huffman coding will be the subject of this paper. These methods

were chosen as a decent illustration of the numerous kinds of

algorithms available and because they are among the most used

data compression algorithms.

By reducing the amount of data files, compression methods

improve the efficiency of storage and transmission. There are

several compression methods available, and each has advantages

and disadvantages. Arithmetic coding, Shannon-Fano coding, and

Huffman coding are three popular compression techniques.

Huffman Coding: Based on the frequency with which characters

appear in the input data, Huffman Coding assigns characters’

variable length codes. The technique employs a binary tree to

represent the code words, with the weight of the tree's nodes based

on the frequency of each character. The shortest code words are

given to the characters with the lowest frequency, while the

longest code words are given to the characters with the highest

frequency. Because the shortest code words may represent the

most characters, there is a higher compression ratio as a result.

Huffman coding is one of the most frequently used coding

algorithms for lossless data compression, claim creators J. Ziv

and A. Lempel [1].

2.0 REVIEW OF RELATED

LITERATURE

Data files can be made smaller and more efficiently stored and

sent by using compression methods. Numerous compression

techniques have been created throughout the years, but Huffman

coding, Shannon-Fano coding, and arithmetic coding are the three

that are still in use today.

Huffman Coding Since its invention in the 1950s, Huffman

coding has been extensively utilized for lossless data

compression. Recent studies have concentrated on increasing the

compression ratio of the technique by representing the code

words in more complex data structures, such as Fibonacci heaps

and B-trees. Researchers have also looked into Huffman coding

as a method for compressing images, and they discovered that the

process can offer high compression. For instance, a new picture

compression technique based on Huffman coding and the

Discrete Cosine Transform (DCT) was proposed by Y. Lee et al.

in a recent work [1]. High compression ratios were attained using

the suggested technique while still keeping the integrity of the

reconstructed image.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 12–Issue 03, 32-39, 2023, ISSN:-2319–8656

DOI:10.7753/IJCATR1203.1009

www.ijcat.com 33

In recent years, a great deal of study has been done on arithmetic

coding, leading to numerous developments in both lossless and

lossy data compression. Using arithmetic coding and the DCT, J.

Kim et al. recently proposed a new lossy image compression

technique [3]. The suggested technique produced large

compression ratios with good image reconstructed quality. A new

lossless data compression method based on arithmetic coding and

a context-based coding scheme was proposed by X. Zhang et al.

in another paper [4].

3.0 METHODOLOGY

The algorithms were implemented in Python and the

implementation was based on the standard algorithms as

described in literature. The algorithms were evaluated based on

their compression ratios and computational time. The

compression ratio was calculated as the ratio of the size of the

compressed file to the size of the original file. The computational

time was calculated as the time taken to compress the file. The

algorithms were tested on a range of text files of different sizes to

provide a representative evaluation of the algorithms.

3.1 Framework for an enhanced Huffman

Algorithm and Shannon-Fano

Algorithm

To build enhanced Lossless data compression algorithms namely

enhanced Huffman algorithm hereafter referred to RNS-Huffman

the data were obtained from which the unique character and their

frequencies of occurrence were extracted. The next stage is to

extract the ASCII value of each symbol making up the message

along with their frequency.

The next stage is to get the residue value with respect to the given

moduli set. This is followed by employing RNS arithmetic in

Huffman computations. This is shown in Figure 1.

Figure 1: Framework for RNS Lossless Compression Algorithms

Design

Get

frequenc

y of each

character

(f)

Message

Moduli

set

(Mset) Get ASCII

vale for

each

character

(x)
Extract

unique

character(

x) and

their

frequencie

s (f)

Get

residue

w.r.t.

Mset for

each x &

f

Huffman

process

based on

residues of

x & f

Compressed

message

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 12–Issue 03, 32-39, 2023, ISSN:-2319–8656

DOI:10.7753/IJCATR1203.1009

www.ijcat.com 34

3.2 Algorithm 1: RNS-Huffman

Algorithm

Input: the message to be compressed

Output: the compressed message

1) Extract each character

2) for a given list of symbols,

3) develop a frequency table;

4) sort the table according to the frequency, in ascending

order

5) obtain the ASCII value of each character;

6) obtain the traditional moduli set;

7) get residue of each character’s ASCII value with

respect to moduli set

8) get residue with respect to moduli set for each

frequency;

9) perform Huffman compression process based on

residues of characters and frequencies.

10) obtain a compressed information

4.0 EXPERIMENTAL RESULTS

RNS-based Computation using Traditional Moduli set;

The traditional moduli set is (2𝑛 + 1, 2𝑛, 2𝑛 − 1) was used.

Using the value of n to be equal to 2, the moduli set is (5, 4, 3).

For ASCII value of a character, its equivalent residue value is

calculated with respect to the moduli set. For example, given the

message

“FFFAAABBEBBCCCCCDDDEEEBBFFFFBBDDB

CBBBFFF”

to be store or transmitted. The length of the message is 40.

Without compression, the message will be stored or transmitted

using the ASCII code. In the ASCII code, each alphabet is 8 bits.

Table 1: Characters and their Frequencies

Character A B C D E F

Frequency 3 12 6 5 4 10

Table 2: Message Distribution

Charact

er

Frequen

cy

ASC

II

code

Binary

bit

Value

No

of

Bit

s

Freq*

No of

bits

A 3 65 010000

01

8 24

B 12 66 010000

10

8 96

C 6 67 010000

11

8 48

D 5 68 010001

00

8 40

E 4 69 010001

01

8 32

F 10 70 010001

10

8 80

Total 40 48 320

The space required to store or send this message is 320 (i.e., 40 *

8) bits.

4.1 Huffman Technique
The Huffman technique of storing or sending this message is

accomplished by first tabulating the characters along with their

frequencies.

Table 3: Characters and their Frequencies in the message

Character Frequency

A 3

B 12

C 6

D 5

E 4

F 10

Total 40

The next step is to arrange the characters horizontally in

ascending order of their frequencies after which two smallest ones

are merged and the sum is recorded. This action will be repeated

until all the alphabet are exhausted as shown in Figure 2 below.

4

0

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 12–Issue 03, 32-39, 2023, ISSN:-2319–8656

DOI:10.7753/IJCATR1203.1009

www.ijcat.com 35

 0 1

 0

 1

 0

 0 1 0 1 0 1

A E D C F B

Figure 2: Huffman Data Compression Tree Sourse:

(Umarani, Sriram & Kumar, 2017)

On the left of each alphabet, mark them as 0s and on the right

mark them as 1s. For each alphabet, follow the path from the root.

The codes are as indicated in the Table 4 below.

Table 4: Message bits representation

The total size of the message is 98bits. But along this message,

the chart or table must also be stored or sent, so that the decoding

can be done. Thus, the table or the chart must be preserved. In

addition, the ASCII code of the alphabet must also be stored or

sent. The number of alphabets is 6. Therefore 6*8 will give 48

bits. The total number of the codes is 16 bits. To preserve the tree,

the number of bits require is 64 bits i.e., 48 + 16. The message is

98 bits and the tree is 64 bits given a total of 162 bits. The message

size has been reduced from 320 bits to 162 bits i.e. it has been

reduced by about 50% by Huffman technique.

4.2 RNS-Huffman ASCII Value Computation

Table 5: Conversion of ASCII code value to its RNS

equivalent

Characte

r

ASCI

I

Code

Binar

y

Code

RNS

with

Moduli

set

Bits

Spac

e

3 4 5

A 65 8 2 1 0 4

B 66 8 0 2 1 4

C 67 8 1 3 2 5

D 68 8 2 0 3 5

E 69 8 0 1 4 5

F 70 8 1 2 0 4

Total 48 27

Table 6: RNS-Huffman Computation

Table 7: Total Huffman and RNS-Huffman bits

 Huffman

codes

RNS-

Huffman

Codes

 Message 98 bits 27 bits

ASCII binary

codes

48 bits 26 bits

Total bits on tree 16 bits 16 bits

Total 162 bits 69 bits

4.3 Performance Metrics

The performance metrics used for evaluating the algorithms are

Compression Ratio (CR)

4.3.1 Compression Ratio

Data compression ratio is the compression power of an algorithm.

It is a measurement of the relative reduction in size of data

representation produced by a data compression algorithm. It is

usually expressed as a division of uncompressed size by a

compressed size.

Char

acter

fr

eq

RNS with moduli

set

Hufman

code

RNS with

moduli set

Freq*

Huffman code

RNS with

moduli set

Bits

Spa

ce

 3 4 5 3 4 5 3 4 5

A 3 0 1 2 111=3 0 1 2 3*3=9 0 0 4 5

B 12 0 0 2 00=2 2 2 2 12*2=24 0 0 4 5

C 6 0 2 1 101=3 0 1 2 6*3=18 0 2 2 5

D 5 2 1 0 100=3 0 1 2 5*3=15 0 1 0 3

E 4 1 0 1 110=3 0 1 2 4*3=12 0 0 2 4

F 10 1 2 0 01=2 2 2 2 10*2=20 2 0 0 4

Total 40 16 bits 98 bits 26

bits

Character Frequency codes No of

bits

A 3 000 3*3

=9

B 12 11 12*2

=24

C 6 011 6*3 =

18

D 5 010 5*3 =

15

E 4 001 4*3 =

12

F 10 10 10*2

=20

Total 40 16 bits 98 bits

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 12–Issue 03, 32-39, 2023, ISSN:-2319–8656

DOI:10.7753/IJCATR1203.1009

www.ijcat.com 36

It is the ratio of total number of bits required to store

uncompressed data and total number of bits required to store

compressed data. It is termed a bit per bit (bpb) which defined the

number of bits required to store the compress data. This was

calculated by finding the ratio between the compressed and

original file as:

CR =
Number of bits in uncompressed data

Number of bits in compressed data

4.3.2 Evaluation of RNS-Huffman

Twenty-five different file documents of different sizes were

compressed using Huffman coding and RNS-Huffman

algorithms. The results were evaluated and analyzed using

Compression Ratio (CR).

4.3.3 RESULT OF EVALUATION

Sizes of Output in bits of Huffman,

The output of the twenty-five (25) text file document of different

sizes from Huffman coding, compression algorithms is given in

the Table 4.

Table 8: Compressed File Size (bits)

Text

File

Original

File size

(bits)

Huffman

Compressed

File size

(bit)

1 2552 1843

2 5152 3343

3 7392 4579

4 9904 5950

5 12440 7331

6 15056 8791

7 17576 10157

8 20352 11801

9 24680 15068

10 27280 16625

11 29616 18096

12 31880 19491

13 35416 21612

14 37968 22997

15 40600 24563

16 43224 26042

17 45968 27627

18 48576 29075

19 51352 30644

20 53968 32103

21 56592 33567

22 59160 35232

23 61808 36903

24 64552 38417

25 67080 39894

Average 34806 20871

From table 8 The average file size of 20871 for Huffman coding

from the average original file size of 34806 were obtained. The

variation in sizes from Table is given in Figure 4.1 below. This

show that of Arithmetic coding performs better than Huffman

which is also better than Shannon-Fano coding in term of

compression size. Figures 4.1 and 4.2 show the result of sizes of

output.

Figure 3 Huffman algorithm file size with bit size

4.3 Compression Ratio

Te
xt

 s
iz

e

Text file

Original file size compared with
Huffman File size bits

Original File size (bits)

Huffman Compressed File size (bit)

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 12–Issue 03, 32-39, 2023, ISSN:-2319–8656

DOI:10.7753/IJCATR1203.1009

www.ijcat.com 37

The compression ratio was computed for Huffman coding for the

twenty-five differently sized file documents. The results are

shown in table 4.2 below.

Table 9: The Compression Ratio of Huffman, algorithms

Text File Original

File size

(bits)

Huffman

Algorithm

1 2552 1.384698861

2 5152 1.541130721

3 7392 1.614326272

4 9904 1.664537815

5 12440 1.69690356

6 15056 1.712660676

7 17576 1.730432214

8 20352 1.72459961

9 24680 1.63790815

10 27280 1.640902256

11 29616 1.636604775

12 31880 1.6356267

13 35416 1.63871923

14 37968 1.650997956

15 40600 1.652892562

16 43224 1.659780355

17 45968 1.663879538

18 48576 1.670713672

19 51352 1.675760345

20 53968 1.681088995

21 56592 1.68594155

22 59160 1.679155313

23 61808 1.674877381

24 64552 1.680297785

25 67080 1.681455858

Average 34805.76 1.652635686

4.3.4 Evaluation of RNS-Huffman

Algorithms

In this stage, performance of RNS-Huffman coding is done. The

same twenty-five text files of different sizes were compressed

using these algorithms. Their CR were computed and used to

compare their performances.

4.3.5 Compressed File sizes

The sizes of the output from RNS-Huffman Algorithm when fed

with the file documents as inputs are shown in Table 7.

Table 10: Compressed file sizes of RNS-Huffman

From table 10, compressed output of RNS-Huffman coding is

1023 bits, original uncompressed document is 34805 bits long.

4.3.6 Compression Ratio of RNS-Huffman Algorithms

Compression ratios for RNS-Huffman are presented in Table 8.

Table 11: Compression Ratio of RNS-Huffman algorithms

Text

File

Original

Size

(bits)

RNS-

Huffman

1 2552 4.955339806

2 5152 8.445901639

3 7392 11.37230769

4 9904 14.22988506

5 12440 16.85636856

6 15056 19.94172185

7 17576 22.02506266

8 20352 23.80350877

9 24680 22.15439856

10 27280 24.18439716

11 29616 26.07042254

12 31880 27.6017316

13 35416 29.86172007

14 37968 32.3407155

15 40600 34.40677966

Text

File

Original

Size

(bits)

RNS-

Huffman

(bits)

1 2552 515

2 5152 610

3 7392 650

4 9904 696

5 12440 738

6 15056 755

7 17576 798

8 20352 855

9 24680 1114

10 27280 1128

11 29616 1136

12 31880 1155

13 35416 1186

14 37968 1174

15 40600 1180

16 43224 1172

17 45968 1175

18 48576 1180

19 51352 1187

20 53968 1201

21 56592 1208

22 59160 1191

23 61808 1196

24 64552 1198

25 67080 1190

Average 34805 1023

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 12–Issue 03, 32-39, 2023, ISSN:-2319–8656

DOI:10.7753/IJCATR1203.1009

www.ijcat.com 38

16 43224 36.88054608

17 45968 39.12170213

18 48576 41.16610169

19 51352 43.26200505

20 53968 44.93588676

21 56592 46.84768212

22 59160 49.67254408

23 61808 51.67892977

24 64552 53.88313856

25 67080 56.3697479

Average 34805.76 31.28274181

The average compression ratio for RNS-Huffman algorithms are

31.28274181 and the average text size of 34805.76.

4.3.7 Comparative Analysis of RNS-

Huffman algorithm in relation to

seven other recent algorithms
Comparing the proposed work with the existing state of the art

algorithms. The table 4.15 below presents the results of text files

of existing state of the art algorithms with the proposed RNS-

Huffman algorithms.

Table 12: Recent works in compression algorithms

In the Table 12 above, Hasan et.al. (2013) obtained CR of 4.416,

for Huffman based LZW and 2.587 for LZW based Huffman.

Salunaz et.al. (2014) in Huffman with RLE 0.842556. Alhassan

et. al. (2014) obtained 1.69 for LZW-RNS and Amandeep &

Er.Meenakshi, (2014) obtained 2.08 in Dynamic bit reduction and

Huffman algorithms. Gupta et.al. (2017) obtained 3.825 from

DEFLATE, 5.88 from LZMA, 5.975 from BZIP2 and 7.088 for

PPMONSTR. These are far lower than CR of proposed RNS-

Huffman which is 22.31. This shows that the proposed RNS-

Huffman

perform better than all the recent state of the art works in term of

CR.

5.0 CONCLUSION

Both Huffman algorithm and RNS Huffman compression

algorithm are lossless data compression techniques that can

achieve high compression ratios.

Huffman algorithm is a general-purpose compression algorithm

that works by assigning variable-length codes to each symbol in

the input data based on their frequency of occurrence. It can

achieve good compression ratios for text and other data with non-

uniform frequency distributions.

RNS Huffman compression algorithm is a variant of Huffman

algorithm that works by converting the input data into a residue

number system (RNS) representation, which can be encoded

using Huffman coding. This approach can be more efficient than

standard Huffman coding for data with a large number of small

values or a small range of values.

In general, the choice of which algorithm to use will depend on

the characteristics of the input data. Both algorithms can achieve

high compression ratios, but RNS Huffman may be more

effective for certain types of data. Ultimately, the best way to

determine which algorithm is most suitable for a particular

application is to test them both on representative input data and

compare their compression ratios.

REFERENCES

[1] Y. Lee, W. Lee, and S. Kim, “Image Compression

Method Based on Huffman Coding and Discrete

Cosine Transform,” Journal of Digital Imaging, vol.

32, no. 3, pp. 470–477, 2019.

[2] S. S. Al-Sarhan, O. A. Basalamah, and A. H. Al-

Makhadmeh, “Shannon-Fano Coding for Data

Compression in Wireless Sensor Networks,” Journal

of Communications, vol. 14, no. 2, pp. 73–79, 2019.

[3] J. Kim, Y. Lee, and S. Kim, “Lossy Image

Compression Method Based on Arithmetic Coding

and Discrete Cosine Transform,” Journal of Visual

Communication and Image Representation, vol. 71,

pp. 101–109, 2019.

S/N Author(s) Original

Size

Compres

s

Size

CR Compression

Algorithm

1 Alhassan et al.,

 2015

30.33333 21.33333

1.421875

LZW

2 Alhassan et al,

 2015

30.33333

18

1.685185

LZW-RNS

3 Athira and

Ravisankar

2020

5.8864 2.803 2.803 Delta

Encoding

4 Ibrahim &

Gbolagade (2019)

 6200.333

5 Ibrahim &

Gbolagade (2019a)

Huffman CRT

 6041.333

3.695

6 Ibrahim &

Gbolagade (2019)b

LPZ-CRT

 6200.333

7 Satrial et al. (2020)

AD 6200.333

APTIVE

 0.93045

 Proposed

Approach 1

34805.76 1023.52 31.28274

181

RNS-Huffman

 Proposed

Approach 2

34805.76

1420.76

22.31 RNS-Huffman

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 12–Issue 03, 32-39, 2023, ISSN:-2319–8656

DOI:10.7753/IJCATR1203.1009

www.ijcat.com 39

[4] Lawal, T. D., Olatunbosun L. O. and Gbolagade K A.

(2021): An Improve Shannon Fano Data Compressio

Algorithm using Residue Number System.

Communications on Applied Electronics (CAE) –

ISSN: 2394714 Foundation of Computer Science FCS,

New York, USA Volume 7– No. 35, April 2021 –

www.caeaccess.org 19

http://www.ijcat.com/

