
International Journal of Computer Applications Technology and Research

Volume 12–Issue 04, 08-11, 2023, ISSN:-2319–8656

DOI:10.7753/IJCATR1204.1003

www.ijcat.com 8

Design and Implementation of an Accelerated DMA

Controller based on AXI Bus

Deqing Cai

School of Communication

Engineering

Chengdu University of

Information Technology

Chengdu, China

Muyao Ge

School of Communication

Engineering

Chengdu University of

Information Technology

Chengdu, China

Hashi Wang

School of Communication

Engineering

Chengdu University of

Information Technology

Chengdu, China

Abstract: Because Direct Memory Access (DMA) hardly consumes processor resources when carrying high-speed data, an

accelerated DMA controller based on Advanced eXtensible Interface (AXI) bus protocol is proposed in this paper. The accelerable

part of the controller is to replace the CPU for descriptor splitting processing by hardware, which greatly improves the CPU computing

power. At the same time, the controller is equipped with eight deeply configured channels, which are used to process different types of

tasks. The design supports single transmission of data and linked list transmission type, which can verify the transmitted data and

ensure the security of data transmission. In this design, the working frequency of the controller can reach 500M, the power

consumption is 1.3mw, and the data throughput rate can reach 40Gbps, which greatly improves the data moving efficiency of the

system.

Keywords: AXI bus; High bandwidth; Accelerable; DMA controller; Data verification; Low power consumption;

1. INTRODUCTION
Direct Memory Access is a high-speed data transmission

technology that hardly consumes processor resources. In this

technology, data is directly read and written without

additional intervention of the Central Processing Unit (CPU).

The traditional microprocessor data transfer is usually

controlled by the CPU [1-3]. The CPU first copies the data of

the source address to the internal register, and then writes the

data of the register to the destination register, and the amount

of data copied has an obvious length limit [4]. With the rapid

development of large-scale integrated circuits and the rapid

increase of market demand, the above methods severely limit

the performance of CPU. In the existing SoC products, the

performance of CPU has been greatly improved, which is no

longer the key factor for the low data exchange rate in SoC

design [5-6]. Therefore, how to improve the data transmission

efficiency of the bus and the working efficiency of each slave

device has become another key factor affecting the design of a

SoC [7].

DMA technology is more and more widely used in the

existing SoC design. This technology is to carry out data

transfer through hardware, and does not require CPU to

participate all the time. During the data transfer of hardware,

CPU can handle other tasks [8]. In this way, the data migration

mode can be flexibly adjusted and the CPU performance can

be greatly exercised. After the CPU transfers the bus right to

DMA controller, DMA controller can independently complete

the data transfer and processing, and the bus right can be

returned to the CPU after the transfer is completed. In SoC

chip design, IP core reuse technology has been widely used in

order to reduce design cost and design cycle. In order to better

use the IP core reuse technology to achieve the enhancement

and expansion of the chip, the way of using the on-chip bus in

the design process is gradually recognized by the designer [9].

AMBA bus is performance microcontroller communication

standard proposed by ARM company. Due to its

characteristics of strong universality and high performance

and low power consumption, AMBA bus has become a

widely used data transmission bus protocol in SOC design.

In this paper, the design of an accelerated DMA controller

based on AXI bus adopts high performance, low power

consumption, low delay, high bandwidth in the data

transmission [10]. The design realizes single transmission and

linked list transmission data types, and the data can be

checked in the process of data transmission. Multiple channels

are designed inside the controller to store different commands

sent by the CPU. Hardware is used instead of CPU to

accelerate the analysis of DMA descriptors in the channel.

The data transmission granularity can be configured in the

DMA descriptor, which well meets the requirements of

versatility and flexibility of DMA controller.

2. OVERALL STRUCTURE DESIGN OF

ACCELERATED DMA CONTROLLER

DDR

DMA Layer

AXI4-master Common Interface

Dmaacc

CPU2Lm

CPU

DDR

Write opotion

Read Data

Mover

AXI4-master

CRC

PARSER

Common Interface

Write Data

Mover

AXI4-master

Cmd Parser

Common Interface

Common Interface

Local Memory

Common Interface

Shadow Peek

Common Interface

Dmaacc

CPU2Lm

Read opotion

Cmd Parser

Common Interface

Common Interface

DDR
Read Data

Mover

AXI4-master

CRC

PARSER

Common Interface

Write Data

Mover

AXI4-master

DDR

Hardware Device

Dmaacc

LM2CPU

Dmaacc

LM2CPU

DMA

Register

Figure 1. Overall structure of DMA controller

The DMA controller in this paper is an accelerated circuit

based on AXI bus, which mainly implements hardware

acceleration processing on the process of CPU parsing

descriptor, which replaces the traditional idea of using

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 12–Issue 04, 08-11, 2023, ISSN:-2319–8656

DOI:10.7753/IJCATR1204.1003

www.ijcat.com 9

software to process descriptor and further improves the

efficiency of data moving. As shown in the figure 1, the

controller can be divided into write operation and read

operation according to command types. It can be divided into

external interface circuit and internal logic circuit of controller

by function. Therefore, the accelerated DMA controller

peripheral interface circuit designed in this paper includes

master interface module based on AXI bus, which is used for

request and transmission in the process of data moving. The

internal circuit of the controller mainly includes the hardware

module which can accelerate the parsing descriptor, the multi-

channel monitoring and arbitration module, the DMA

descriptor processing module, the data request and processing

module, the data verification module, the data move status

information module and the register module.

3. CIRCUIT STRUCTURE DESIGN

3.1 THE CIRCUIT OF ACCELERATED

PARSER DESCRIPTOR
All_status CUT_IDEAL

HOST_ADDR_GET

CUT0_SGL_WR

CUT0_META

CUT0_META_WR

Cfg_dmaacc_en ==0

Cut_start

Mata_vld

Remain_len >=lba

CUT0_SGL

UPDATE0_SGL_ADDR0

ENTRY_ADDR_GET

CUT0_INIT

Remain_len <0

Split:Sba_list_num&sba_list_addr

Split:Host0addr,real_dw_len

PART_LEN_GET

REMAIN_LEN_CHK

0

Split:Entry_data_addr&entry_meta_addr

&remain_len

CUT0_SGL_1

UPDATA0_META_A

DDR0

0<Remain_len <lba_size

CUT0_SGL_WR_1

UPDATE0_SGL_ADDR_1

CUT1_SGL_0

CUT1_SGL_WR_0

UPDATE1_SGL_ADDR_0

REMAIN_LEN_CHK

1

CUT2_SGL_WR

CUT2_META

CUT2_META_WR

Mata_vld

CUT2_SGL

UPDATE2_SGL_ADDR0

UPDATA2_META_A

DDR0

Remain_len >=lba

SGL_CUTTING_OVER

CUT2_SGL_INIT

Remain_len =0

Remain_len =0

CUT0_META_1

CUT0_META_WR_1

UPDATA0_META_A

DDR_1

UPDATE1_REMAIN_LEN1

Figure 2. Split the DMA command state transition graph

As shown in Figure 2, this module is the core circuit for

accelerating analytic descriptors in the accelerable controller,

and the logic for accelerating processing descriptors is

implemented by the state machine logic in the figure above,

and corresponding command processing is carried out

according to different command types. We can find in Figure

2, the core idea of this module is to split and reassemble DMA

descriptors by hardware on behalf of the CPU, allowing the

CPU to handle other tasks in the meantime. The module has a

FIFO data cache module, which is used to synchronize DMA

requests from software or other hardware modules. Then, the

internal state machine is triggered to read, parse, split and

store the descriptors inside the FIFO. There are 8 independent

channels in the module, which can be deeply configurable,

used to store the DMA descriptors and Entry information after

splitting, in order to meet the needs of processing different

types of DMA commands. The number of DMA requests

received by each channel and the response after processing are

maintained by the pointer inside the channel.

3.2 MULTI-CHANNEL MONITORING

CIRCUIT

Lm2shadow

Cmd Parser Local_memory

Loc_ga_rptr[i]

Local_mem_FS
M

Loc_sc_rptr[i]

compare

comparelm2shadow

Ga_wptr[i
]

Sc_wptr
[i]

Ga_wptr[i]

Sc_wptr[i]

Fsm_sta
rt

Fsm_sta
rt

Ga_rptr[i]

sc_rptr[i]

Ga_bmp[i]

Sc_bmp[i]

Figure 3. Channel monitoring module design diagram

As shown in Figure 3, the core of this module is to design

multiple monitoring circuits to work in parallel, which is used

to monitor the change of all channel read and write Pointers in

DMA controller. If the pointer changes, the state machine will

be triggered to acquire tasks in the corresponding channel, and

then the DMA controller will be further triggered to work, and

the acquired commands and channel pointers will be analyzed

and processed. We can find in Figure 3, at the same time, the

monitoring circuit further calculates the remaining DMA

commands in the channel according to the changes of the

pointer, compares the pointer data maintained locally with

that in the channel, and determines the state of all channels. If

the Pointers maintained by both are consistent, the channel is

in idle state; on the contrary, the corresponding channel is

undergoing data processing. Finally, the read pointer of the

channel is updated to Local Memory module.

3.3 READ DATA REQUEST CIRCUIT

Dma cmd bufferCmd Parser

Entry buffer

Data param

buffer

Entry read

request

Entry read

completion

Bulk data read

request

Local

Memory

Bulk data buffer
Bulk data read

completion

DDR

CRC_parser

Entry_ptr Req_entry

READ DATA

MOVER

Figure 4. Read data request state transition diagram

As shown in Figure 4, this module mainly caches the

command information from other module into the internal

cache, then parses the command information in the cache area,

and initiates an Entry information request to Local Memory

according to the storage address of the Entry information

contained in the parsed information. Store the requested Entry

information in the local Entry Buffer. When the internal state

machine detects new data in the Entry Buffer, we can find in

Figure 4, it will parse and process the entry in the local buffer.

The internal logic of the module will obtain the actual address

and data length of the data, and then trigger the control circuit

of the state machine to send a request for origin data to the

DDR. When the data request is complete, the data and control

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 12–Issue 04, 08-11, 2023, ISSN:-2319–8656

DOI:10.7753/IJCATR1204.1003

www.ijcat.com 10

information are synchronized, and then transmitted to the

others module for processing.

3.4 DATA VERIFICATION CIRCUIT

B
it

1
5

B
it

1
4

B
it

1
3

B
it

1
2

B
it

1
1

B
it

1
0

B
it

0
9

B
it

0
8

B
it

0
7

B
it

0
6

B
it

0
5

B
it

0
4

B
it

0
3

B
it

0
2

B
it

0
1

B
it

0
0

Data_in

CRC16/CCITT
Hardware Modle

XOR Symble

Figure 5. CRC16-CCITT check hardware model

 As shown in Figure 5, the data verification method used in

this design is Cycle redundancy Check (CRC) algorithm. The

module through the hardware way to describe the circuit. The

basic idea of CRC check is to use linear coding theory, that is

according to the K-bit binary sequence transmitted at the

sending end of data, to generate a set of check codes for check

according to certain check rules, whose bit width is r, that is

CRC codes. In the process of data transmission, CRC codes

are added to the tail of user data to form a new set of binary

sequences. At the receiving end, according to the data

information and CRC code verification rules, to determine

whether the data transmission in the process of error. If there

is no remainder in the result of data verification at the

receiving side, it indicates that the data transmission is

correct. Otherwise, the error location of the transmitted data

can be inferred according to the remainder. The figure above

shows the hardware circuit model under the CRC16-CCITT

protocol.

3.5 WRITE DATA TRANSMISSION

CIRCUIT
C_BULU_BUF_RAM_EG

RESS_IDEL

C_BULU_BUF_RAM_EG

RESS_INI

Raw_bulk_av(!axi_full) & sgl_buf_ram_av &

sgl_buf_dwlen_ram_av &bulk_cpl_ram_av &

sgl_pointer_cpl_halt==0

Raw_bulk_av & raw_bulk_gap_cnt>0&sgl_buf_ram_av &

sgl_buf_dwlen_ram_av &bulk_cpl_ram_av & bulk_buf_ram_av

Bulk_dw_cnt(EGRESS_DATA:incr 4)

>= raw_bulk_len_m1(dw_len of sgl)

C_BULU_BUF_RAM_EG

RESS_DATA

Raw_bulk_ga

p_cnt

C_BULU_BUF_RAM_EGRE

SS_NEXT_SGL

C_BULU_BUF_RAM_EGRE

SS_CHUNKEND

C_BULU_BUF_RAM_EGRE

SS_BULKEND

Sgl_buf_ram_dr[EOBULK

]

Sgl_buf_ram_dr[EOCHU

NK]

C_state==EGRESS_

INI

entry_read_d

one

data_read_done

Figure 6. Write data transfer state transition diagram

The working principle of this module is the same as that of the

data reading request module. we can find in Figure 6, The

core logic of this circuit is mainly to cache the command

information from the command parser module into the

internal cache area of this module, and then parse the

command in the cache area. Then a request for Entry

information is sent to the Local Memory according to the

destination address information of entry stored in the DMA

command. The verified data and the entry information

returned by the request are synchronized and matched through

the state machine inside the module, and the information is

written to the destination through the AXI bus. The above

state machine used for data transmission is shown in Figure 6.

The data transmission process of the state machine can be

roughly divided into two parts. First, according to the control

information in the entry, the data within each entry is

transmitted; then, according to the effective identifier of the

control information, the data transmission of the entire

command is completed by the state machine.

3.6 FIXED PRIORITY ARBITRATED

CIRCUIT
The monitoring circuit of this module will monitor the update

of internal commands of all channels at the same time. If

multiple channels receive new data moving commands at the

same time, and the DMA controller only processes commands

of a specific channel each time, the preemption of hardware

resources by multiple channels will be involved. In this case,

the quorum module is required to determine which channel

uses the hardware resources. Because in this scenario,

different channels correspond to different hardware devices,

the arbitration module in this design adopts the arbitrator with

fixed priority, that is, the priority of each channel is fixed. If

multiple channels simultaneously initiate resource occupation

requests, the channel with higher priority will be granted the

channel use right.

4. ANALYSIS OF SIMULATION

RESULTS

Figure 7. Data simulation results

The design follows the collaborative verification method of

hardware and software, and uses the VCS simulation software

to build the verification environment. It mainly verifies the

single data transmission mode, linked list data transmission

mode, accelerated analytic descriptor function, multi-channel

monitoring function, arbitration function and interface

transmission function of DMA controller. Through the report,

we can find that the above functions are consistent with the

expected hardware behavior. The data can be moved

normally. This Design is based on SMIC's 0.18um process

library and synthesizes the controller with Design compiler

software. The working frequency of the controller can reach

500M, the power consumption is 1.3mw, and the data

throughput rate can reach 40Gbps.

5. CONCLUSIONS
In this paper, an accelerated DMA controller interface circuit

based on AXI bus is designed, which has the characteristics of

high bandwidth and low power consumption. In the read and

write transmission circuit, there are 8 independent channels,

and the channel depth can be flexibly configured. In order to

meet different command requirements, and based on the

SMIC 180nm process comprehensive implementation. The

performance of design satisfies the expected index.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 12–Issue 04, 08-11, 2023, ISSN:-2319–8656

DOI:10.7753/IJCATR1204.1003

www.ijcat.com 11

6. REFERENCES
[1] Ahmed M A,Aljumah A,Ahmad M G ． Design and

Implementation of a Direct Memory Access Controller

for Embedded Applications． International Journal of

Technology,2019,10(2)：309-319 .

[2] Qiao Lufeng,Wang Zhigong. Design of DMA controller

for multichannel PCI bus frame engine and data link

manager [C].New York,USA.2002.P1481-1485.

[3] Zou Y Y,Chen M,Wei K L．Design of Custom AXI4 IP

Based on AXI4 Proto-col.Applied Mechanics and

Materials,2014, (3634):2326-2330.

[4] Markatos, E.P. and Katevenis,M.G.H. “User-level DMA

without operating system kernel modification” High-

Performance Computer Architecture, 1997. Third

International Symposium on 1-5 Feb. 1997 P322-331.

[5] Kim, D.and Managuli, R.and Kim, Y.“Data cache and

direct memory access in programming mediaprocessors”,

Micro,IEEE,Volume:21 Academic Publishers, 1998.

[6] Kidav J U,Sivamangai N M,Pillai MP,et al．FPGA and

prototype of cycle stealing DMA array signal processor

for ultrasound sector imaging sys-tems Microprocessors

and Microsystems,2019,64(64)：53-72.

[7] Saluja H,Grover N.Memory Controller and Its Interface

using AMBA 2.0 ． IJEM-International Journal of

Engineering and Manufacturing ,2019,9(4)：33-44.

[8] A. F. Harvey, National Instruments. DMA Fundamentals

on Various PC Platforms Application Note 011, 1991.

[9] J. Corben, A. Rubini and G. Kroah-Hartman, "Linux

device drivers", O’Reilly Media, 2005.

[10] C. Bohm, H. Kavianipour, D. Nygren, C. Robson, C.

Wernhoff and G. Wikstrom, "A low energy muon trigger

for icecube", Proc. Conf. Rec. 2008 IEEE Nucl. Sci.

Symp., pp. 2784-2787.

http://www.ijcat.com/

