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Abstract: This paper analyzes and studies the hardware programmable logic resources on small-scale FPGA chips, providing 

reasonable hardware resource support for subsequent neural network accelerator designs. A flexible 32-bit instruction set is designed 

for control by the Processing System (PS) on the Programmable Logic (PL) side, making motion state detection flexible and 

controllable. When designing the hardware side, this paper uses a resource-sharing strategy, and most of the calculation modules are 

designed using on-chip DSP resources to reduce the resource consumption of the calculation module. An innovative strategy of 

partially not caching the data between layers of the neural network is applied to reduce the demand for on-chip cache. To optimize on-

chip storage space, this article partitions the limited BRAM space on the chip in a reasonable manner and improves the efficiency of 

on-chip data reading and writing through parallel processing, thereby improving the real-time performance of the neural network. 
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1. INTRODUCTION 
Currently, the hardware platforms for computing or 

accelerating convolutional neural network algorithms mainly 

consist of four types: Central Processing Units (CPUs), 

Graphics Processing Units (GPUs), Application-Specific 

Integrated Circuits (ASICs), and Field-Programmable Gate 

Arrays (FPGAs). CPUs are general-purpose processors that 

have strong single-threaded performance and a large amount 

of cache, which is very effective for processing control flow 

and serialization tasks in neural network models. However, 

for compute-intensive tasks, CPU performance may not meet 

the requirements. GPUs are highly parallel hardware 

computing platforms designed to accelerate graphics 

rendering, but due to their highly parallel nature, they are also 

widely used to accelerate the training and inference 

computation of neural networks. Compared to CPUs, GPUs 

have stronger computing capabilities, which can greatly 

reduce the training and inference time of neural networks. 

Although GPUs have an advantage in computing power, their 

power consumption is relatively high. Therefore, energy 

consumption and heat dissipation may need to be considered 

when performing large-scale neural network computations, 

and it may be difficult to apply GPUs on embedded platforms. 

ASICs are customized integrated circuits specifically designed 

for specific applications, and their advantages lie in their high 

performance and low power consumption. In some neural 

network computations that have high requirements for 

performance and energy efficiency, ASICs can provide very 

outstanding performance. However, the design and production 

cost of ASICs is high, and they typically need to be designed 

and manufactured for specific applications. FPGAs are 

programmable logic devices that can implement specific logic 

functions through programming. They can be designed and 

optimized according to specific applications, and therefore, 

they can adapt to new neural network algorithms, models, and 

tasks faster than ASICs. Compared to GPUs and CPUs, 

FPGAs have lower latency and higher computing 

performance, and their power consumption is lower, making it 

easier to apply them on embedded platforms. Currently, 

accelerating neural network computations through FPGAs still 

faces some challenges, such as the high development cost of 

accelerators for specific convolutional neural network models, 

weak portability of accelerators designed for different FPGA 

models, and relatively few open-source materials related to 

accelerating neural network computations using FPGAs. 

These problems to some extent hinder the development of 

FPGAs as accelerators for neural network computations. 

This article studies and designs a hardware accelerator for a 

convolutional neural network model that is used for 

computing motion state detection in a software-hardware 

collaborative manner. The accelerator has the characteristics 

of flexibility, high scalability, and low power consumption, 

which makes it easy to apply to FPGAs with limited hardware 

resources. A set of instruction sets based on this hardware 

computing platform is designed so that users can flexibly 

implement various convolution calculations through different 

instructions. This article optimizes the hardware design of the 

accelerator for a specific convolutional neural network model 

used for motion state detection, using on-chip DSP resources 

to build multiplier arrays and accumulators to complete 

convolution and pooling calculations, and designs an 

activation function calculation module to enable it to run 

smoothly on FPGA platforms with limited resources. Special 

hardware design is also carried out for the reading of image 

data by the hardware computing platform, with limited on-

chip BRAM resources allocated as on-chip memory, and the 

on-chip cache is divided into multiple subspaces. 

2. THE DEVELOPMENT OF FPGA-

BASED NEURAL NETWORK 

ACCELERATORS 
In 1996, Cloutier et al. first used FPGA to perform 

calculations for convolutional neural networks. However, due 

to the limited amount and variety of resources on the FPGA at 

that time, the speed of computing convolutional neural 

networks was very slow. In 2015, Microsoft researchers used 

Intel's Stratix 10 FPGA to accelerate the convolutional neural 

network inference of the deep learning platform Caffe. They 
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used a system called Project Brainwave, which uses a large 

number of FPGAs to achieve low-latency neural network 

inference. On the ImageNet dataset, the system achieved 

higher inference performance than GPUs and has been widely 

used in fields such as speech and image recognition. In 2022, 

the National Space Science Center of the Chinese Academy of 

Sciences proposed a convolutional parallel acceleration 

scheme based on FPGA to improve the speed and energy 

efficiency of convolutional neural networks running on 

resource- and power-limited embedded platforms. They used 

the fusion of convolutional layers and batch normalization 

layers to reduce the complexity of computation, and achieved 

a peak computing performance of 52.56 GFLOPS on the 

ZCU104 platform. The performance is 4.1 times that of CPUs, 

and the energy consumption is only 9.9% of GPUs.. 

3. ACCELERATOR BASED ON FPGA 

3.1 Convolution Calculation Module 
This article presents three parallel multiplier arrays designed 

for simultaneously computing convolution operations on three 

channels in a convolutional neural network. Each parallel 

multiplier array consists of 25 8-bit width multipliers 

generated by DSPs, with a one-clock cycle delay in the output 

of the multiplier. To prevent overflow in the output results, 

the multiplier's output width is set to 16 bits. With this design, 

the parallel computing module can output the results of 75 

multiplication operations in two clock cycles at the highest 

speed. 
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Figure. 1  Convolution computing module 

In the convolution operation of a neural network, after 

completing the multiplication operation of a convolution 

kernel, the output results of the multiplier need to be 

accumulated to obtain a complete output result of the 

convolution kernel. This article designs a unified accumulator 

structure using DSPs to construct a stack of adders. The inputs 

of the first-layer adder consist of two data, while the inputs of 

the remaining adders come from the calculation results of the 

previous-layer adder and a new data. After the accumulation 

is completed, the result is output through a register to ensure 

stability, thereby saving the on-chip buffer space required for 

the accumulation process. 
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Figure. 2  Accumulator 

In order to efficiently perform convolution operations, the 

feature maps and weight parameters need to be input into 

parallel multipliers. Since the data is output from BRAM in a 

serial manner, a separate parallel data generation module is 

designed in this paper for data parallelization. This module 

converts the data of the feature maps output from BRAM and 

the data of the convolutional neural network model 

parameters into parallel data by using shift registers. 

Specifically, when the data output from BRAM is valid, the 

control logic outputs a data valid signal. Upon receiving the 

data valid signal, this module stores the data and performs 

shifting operations. When this module has stored all the data 

to be calculated for a convolution kernel, it puts the parallel 

data into the corresponding FIFO. 

8-bit Data 3 8-bit Data 2 8-bit Data 1

8-bit Data 

Input

Data Output  

Figure. 3  Parallel data module 

3.2 Activation Function Calculation 

Module 
This article uses Hard-Sigmoid and Hard-Swish as activation 

functions. These activation functions are different piecewise 

linear functions. Compared with traditional activation 

functions, piecewise linear activation functions can not only 

retain the information of the original signal but also introduce 

non-linear characteristics, enabling the network to better adapt 

to various complex input data. Moreover, they do not involve 

complex exponential calculations that are unfriendly to 

FPGA. Therefore, the structure of the activation function 

calculation module in this article can be designed to be 

relatively lightweight. 
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Figure. 4  Activation function calculation 
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3.3 Instruction 
The instruction set designed in this article adopts a 32-bit 

width, which is the same as the register width of the ARM 

Cortex-A9 processor. Using one register can store all 

instruction information, thus reducing the hardware resource 

consumption on the programmable logic side. This instruction 

set covers the basic information required to perform one 

convolutional neural network calculation, including the 

calculation operation type, input feature map size, input 

channel number, output channel number, convolution kernel 

size, padding size, stride size, and so on. Among them, the bit 

width used for the calculation operation type is 4 bits. 
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Figure. 5  Instruction composition 

3.4 Memory on Chips 
There is programmable BRAM memory in FPGA, which is a 

dual-port memory based on on-chip resources of FPGA. It can 

achieve high-bandwidth and low-latency storage access.  
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Figure. 5  RAM on-chips 

The data structure of the on-chip RAM storage space is shown 

in the following table. 

Table 1. The data structure for storing data in RAM 

RAM Width(bit) Depth Capacity(Mb) 

FM-RAM1 8 102400 0.78125 

FM-RAM2 8 102400 0.78125 

FM-RAM3 8 102400 0.78125 

P-RAM 8 20480 0.15625 

FMC-RAM1 8 53248 0.40625 

FMC-RAM2 8 53248 0.40625 

FMC-RAM3 8 53248 0.40625 

 

 

4. ANALYSIS OF RESULTS 
The development environment for the convolutional neural 

network accelerator designed for motion state detection in this 

article is Xilinx's Vivado 2018.3. The experimental platform 

uses the XC7Z020-CLG400-2 chip from the ZYNQ-7000 

series. 

 

Figure. 6  Simulation waveform of the convolution calculation 

In order to evaluate the error caused by quantized 8-bit 

parameters in this article, the following figure shows the error 

in each interval when performing operations on quantized 8-

bit data for Hard-Swish and Hard-Sigmoid. 

 

Figure. 7 Error of activation function 

The Hard-Swish and Hard-Sigmoid activation functions have 

fixed value ranges, resulting in relatively small errors outside 

the range of [-3, 3]. Based on statistics, the average error 

caused by the Hard-Sigmoid within the range of [-3, 3] is 

6.197×10-4, while the average error caused by the Hard-Swish 

is 8.135×10-4.  

The improved LeNet-5 was tested on the MNIST dataset, and 

the inference results were validated using both hardware 

computation and simulation.  

Table 2. The data structure for storing data in RAM 

 LeNet-5 

Original model 96.5% 

Accelerator 96.1% 

 

To ensure the operational efficiency of the convolutional 

neural network accelerator and improve the real-time 

performance of motion detection, it is necessary to increase 

the operating frequency of the accelerator within a reasonable 

range. In this article, the entire convolutional neural network 

accelerator was tested using clock frequencies of 150MHz, 

180MHz, and 200MHz, respectively. 
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Table 3. The performance of accelerator 

Clock frequency(MHz) Performance Power(W) 

150 10.60GOPS 3.293 

180 12.67GOPS 3.354 

200 14.12GOPS 3.401 

 

5. CONCLUSION 
This paper investigates the acceleration of convolutional 

neural networks based on FPGAs, and proposes a motion state 

detection platform with high flexibility and lower power 

consumption, and runs on top of a chip of limited size, highly 

utilizing the on-chip BRAM and DSP resources, making it 

advantageous for embedded devices. 
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