
International Journal of Computer Applications Technology and Research

Volume 12–Issue 04, 12-15, 2023, ISSN:-2319–8656

DOI:10.7753/IJCATR1204.1004

www.ijcat.com 12

A Convolutional Neural Network Accelerator Based on

FPGA

Jincheng Zou

School of Communication

Engineering

Chengdu University of

Information Technology

Chengdu, China

Qing Tang

School of Communication

Engineering

Chengdu University of

Information Technology

Chengdu, China

Congcong He

School of Communication

Engineering

Chengdu University of

Information Technology

Chengdu, China

Abstract: This paper analyzes and studies the hardware programmable logic resources on small-scale FPGA chips, providing

reasonable hardware resource support for subsequent neural network accelerator designs. A flexible 32-bit instruction set is designed

for control by the Processing System (PS) on the Programmable Logic (PL) side, making motion state detection flexible and

controllable. When designing the hardware side, this paper uses a resource-sharing strategy, and most of the calculation modules are

designed using on-chip DSP resources to reduce the resource consumption of the calculation module. An innovative strategy of

partially not caching the data between layers of the neural network is applied to reduce the demand for on-chip cache. To optimize on-

chip storage space, this article partitions the limited BRAM space on the chip in a reasonable manner and improves the efficiency of

on-chip data reading and writing through parallel processing, thereby improving the real-time performance of the neural network.

Keywords: FPGA; Accelerator; Neural Network; Real-time; Instruction

1. INTRODUCTION
Currently, the hardware platforms for computing or

accelerating convolutional neural network algorithms mainly

consist of four types: Central Processing Units (CPUs),

Graphics Processing Units (GPUs), Application-Specific

Integrated Circuits (ASICs), and Field-Programmable Gate

Arrays (FPGAs). CPUs are general-purpose processors that

have strong single-threaded performance and a large amount

of cache, which is very effective for processing control flow

and serialization tasks in neural network models. However,

for compute-intensive tasks, CPU performance may not meet

the requirements. GPUs are highly parallel hardware

computing platforms designed to accelerate graphics

rendering, but due to their highly parallel nature, they are also

widely used to accelerate the training and inference

computation of neural networks. Compared to CPUs, GPUs

have stronger computing capabilities, which can greatly

reduce the training and inference time of neural networks.

Although GPUs have an advantage in computing power, their

power consumption is relatively high. Therefore, energy

consumption and heat dissipation may need to be considered

when performing large-scale neural network computations,

and it may be difficult to apply GPUs on embedded platforms.

ASICs are customized integrated circuits specifically designed

for specific applications, and their advantages lie in their high

performance and low power consumption. In some neural

network computations that have high requirements for

performance and energy efficiency, ASICs can provide very

outstanding performance. However, the design and production

cost of ASICs is high, and they typically need to be designed

and manufactured for specific applications. FPGAs are

programmable logic devices that can implement specific logic

functions through programming. They can be designed and

optimized according to specific applications, and therefore,

they can adapt to new neural network algorithms, models, and

tasks faster than ASICs. Compared to GPUs and CPUs,

FPGAs have lower latency and higher computing

performance, and their power consumption is lower, making it

easier to apply them on embedded platforms. Currently,

accelerating neural network computations through FPGAs still

faces some challenges, such as the high development cost of

accelerators for specific convolutional neural network models,

weak portability of accelerators designed for different FPGA

models, and relatively few open-source materials related to

accelerating neural network computations using FPGAs.

These problems to some extent hinder the development of

FPGAs as accelerators for neural network computations.

This article studies and designs a hardware accelerator for a

convolutional neural network model that is used for

computing motion state detection in a software-hardware

collaborative manner. The accelerator has the characteristics

of flexibility, high scalability, and low power consumption,

which makes it easy to apply to FPGAs with limited hardware

resources. A set of instruction sets based on this hardware

computing platform is designed so that users can flexibly

implement various convolution calculations through different

instructions. This article optimizes the hardware design of the

accelerator for a specific convolutional neural network model

used for motion state detection, using on-chip DSP resources

to build multiplier arrays and accumulators to complete

convolution and pooling calculations, and designs an

activation function calculation module to enable it to run

smoothly on FPGA platforms with limited resources. Special

hardware design is also carried out for the reading of image

data by the hardware computing platform, with limited on-

chip BRAM resources allocated as on-chip memory, and the

on-chip cache is divided into multiple subspaces.

2. THE DEVELOPMENT OF FPGA-

BASED NEURAL NETWORK

ACCELERATORS
In 1996, Cloutier et al. first used FPGA to perform

calculations for convolutional neural networks. However, due

to the limited amount and variety of resources on the FPGA at

that time, the speed of computing convolutional neural

networks was very slow. In 2015, Microsoft researchers used

Intel's Stratix 10 FPGA to accelerate the convolutional neural

network inference of the deep learning platform Caffe. They

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 12–Issue 04, 12-15, 2023, ISSN:-2319–8656

DOI:10.7753/IJCATR1204.1004

www.ijcat.com 13

used a system called Project Brainwave, which uses a large

number of FPGAs to achieve low-latency neural network

inference. On the ImageNet dataset, the system achieved

higher inference performance than GPUs and has been widely

used in fields such as speech and image recognition. In 2022,

the National Space Science Center of the Chinese Academy of

Sciences proposed a convolutional parallel acceleration

scheme based on FPGA to improve the speed and energy

efficiency of convolutional neural networks running on

resource- and power-limited embedded platforms. They used

the fusion of convolutional layers and batch normalization

layers to reduce the complexity of computation, and achieved

a peak computing performance of 52.56 GFLOPS on the

ZCU104 platform. The performance is 4.1 times that of CPUs,

and the energy consumption is only 9.9% of GPUs..

3. ACCELERATOR BASED ON FPGA

3.1 Convolution Calculation Module
This article presents three parallel multiplier arrays designed

for simultaneously computing convolution operations on three

channels in a convolutional neural network. Each parallel

multiplier array consists of 25 8-bit width multipliers

generated by DSPs, with a one-clock cycle delay in the output

of the multiplier. To prevent overflow in the output results,

the multiplier's output width is set to 16 bits. With this design,

the parallel computing module can output the results of 75

multiplication operations in two clock cycles at the highest

speed.

Parallel Data

Module
DSP DSPDSP DSP DSP

DSP DSPDSP DSP DSP

DSP DSPDSP DSP DSP

DSP DSPDSP DSP DSP

Parallel Data

Module

Accumulator

FIFO FIFO

DSP DSPDSP DSP DSP

Feature Map Parameters

Result

Memorizer

Conv Conv Conv

Figure. 1 Convolution computing module

In the convolution operation of a neural network, after

completing the multiplication operation of a convolution

kernel, the output results of the multiplier need to be

accumulated to obtain a complete output result of the

convolution kernel. This article designs a unified accumulator

structure using DSPs to construct a stack of adders. The inputs

of the first-layer adder consist of two data, while the inputs of

the remaining adders come from the calculation results of the

previous-layer adder and a new data. After the accumulation

is completed, the result is output through a register to ensure

stability, thereby saving the on-chip buffer space required for

the accumulation process.

DATA1 DATA2

Adder

（DSP）

Adder

（DSP）

DATA3 DATA4

Adder

（DSP）

The output of the adder

DATA5

Adder

（DSP）
Register

Result

Figure. 2 Accumulator

In order to efficiently perform convolution operations, the

feature maps and weight parameters need to be input into

parallel multipliers. Since the data is output from BRAM in a

serial manner, a separate parallel data generation module is

designed in this paper for data parallelization. This module

converts the data of the feature maps output from BRAM and

the data of the convolutional neural network model

parameters into parallel data by using shift registers.

Specifically, when the data output from BRAM is valid, the

control logic outputs a data valid signal. Upon receiving the

data valid signal, this module stores the data and performs

shifting operations. When this module has stored all the data

to be calculated for a convolution kernel, it puts the parallel

data into the corresponding FIFO.

8-bit Data 3 8-bit Data 2 8-bit Data 1

8-bit Data

Input

Data Output

Figure. 3 Parallel data module

3.2 Activation Function Calculation

Module
This article uses Hard-Sigmoid and Hard-Swish as activation

functions. These activation functions are different piecewise

linear functions. Compared with traditional activation

functions, piecewise linear activation functions can not only

retain the information of the original signal but also introduce

non-linear characteristics, enabling the network to better adapt

to various complex input data. Moreover, they do not involve

complex exponential calculations that are unfriendly to

FPGA. Therefore, the structure of the activation function

calculation module in this article can be designed to be

relatively lightweight.

A

B

A

B

#1 cycle

(x)*(x), (A)*(x)

#2 cycle

(x2)+(Ax)

#3 cycle

(x2+Ax)/B

#1 cycle

(A)+(x)

#2 cycle

(x+A)/B

Hard-Swish Hard-Sigmoid

Figure. 4 Activation function calculation

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 12–Issue 04, 12-15, 2023, ISSN:-2319–8656

DOI:10.7753/IJCATR1204.1004

www.ijcat.com 14

3.3 Instruction
The instruction set designed in this article adopts a 32-bit

width, which is the same as the register width of the ARM

Cortex-A9 processor. Using one register can store all

instruction information, thus reducing the hardware resource

consumption on the programmable logic side. This instruction

set covers the basic information required to perform one

convolutional neural network calculation, including the

calculation operation type, input feature map size, input

channel number, output channel number, convolution kernel

size, padding size, stride size, and so on. Among them, the bit

width used for the calculation operation type is 4 bits.

type of

instruction

4-bit 7-bit

Feature map

size

9-bit

Input channel

number

9-bit

Filter

number

1
-b

it

1
-b

it

1
-b

it

Filter size, fill,

step size

32-bit
Figure. 5 Instruction composition

3.4 Memory on Chips
There is programmable BRAM memory in FPGA, which is a

dual-port memory based on on-chip resources of FPGA. It can

achieve high-bandwidth and low-latency storage access.

RAM3

RAM2

RAM1

Feature map RAM

RAM

Parameter RAM

RAM3

RAM2

RAM1

Feature map cache RAM

RAM on-chip

CPUDDR3

Calculate

AXI-Full Slave

Figure. 5 RAM on-chips

The data structure of the on-chip RAM storage space is shown

in the following table.

Table 1. The data structure for storing data in RAM

RAM Width(bit) Depth Capacity(Mb)

FM-RAM1 8 102400 0.78125

FM-RAM2 8 102400 0.78125

FM-RAM3 8 102400 0.78125

P-RAM 8 20480 0.15625

FMC-RAM1 8 53248 0.40625

FMC-RAM2 8 53248 0.40625

FMC-RAM3 8 53248 0.40625

4. ANALYSIS OF RESULTS
The development environment for the convolutional neural

network accelerator designed for motion state detection in this

article is Xilinx's Vivado 2018.3. The experimental platform

uses the XC7Z020-CLG400-2 chip from the ZYNQ-7000

series.

Figure. 6 Simulation waveform of the convolution calculation

In order to evaluate the error caused by quantized 8-bit

parameters in this article, the following figure shows the error

in each interval when performing operations on quantized 8-

bit data for Hard-Swish and Hard-Sigmoid.

Figure. 7 Error of activation function

The Hard-Swish and Hard-Sigmoid activation functions have

fixed value ranges, resulting in relatively small errors outside

the range of [-3, 3]. Based on statistics, the average error

caused by the Hard-Sigmoid within the range of [-3, 3] is

6.197×10-4, while the average error caused by the Hard-Swish

is 8.135×10-4.

The improved LeNet-5 was tested on the MNIST dataset, and

the inference results were validated using both hardware

computation and simulation.

Table 2. The data structure for storing data in RAM

 LeNet-5

Original model 96.5%

Accelerator 96.1%

To ensure the operational efficiency of the convolutional

neural network accelerator and improve the real-time

performance of motion detection, it is necessary to increase

the operating frequency of the accelerator within a reasonable

range. In this article, the entire convolutional neural network

accelerator was tested using clock frequencies of 150MHz,

180MHz, and 200MHz, respectively.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 12–Issue 04, 12-15, 2023, ISSN:-2319–8656

DOI:10.7753/IJCATR1204.1004

www.ijcat.com 15

Table 3. The performance of accelerator

Clock frequency(MHz) Performance Power(W)

150 10.60GOPS 3.293

180 12.67GOPS 3.354

200 14.12GOPS 3.401

5. CONCLUSION
This paper investigates the acceleration of convolutional

neural networks based on FPGAs, and proposes a motion state

detection platform with high flexibility and lower power

consumption, and runs on top of a chip of limited size, highly

utilizing the on-chip BRAM and DSP resources, making it

advantageous for embedded devices.

6. REFERENCES
[1] Krogh A. What are artificial neural networks?[J]. Nature

biotechnology, 2008, 26(2): 195-197.

[2] Collobert R, Weston J. A unified architecture for natural

language processing: Deep neural networks with

multitask learning[C]//Proceedings of the 25th

international conference on Machine learning. 2008:

160-167.

[3] Erhan D, Szegedy C, Toshev A, et al. Scalable object

detection using deep neural networks[C]//Proceedings of

the IEEE conference on computer vision and pattern

recognition. 2014: 2147-2154.

[4] Li D, Chen X, Becchi M, et al. Evaluating the energy

efficiency of deep convolutional neural networks on

CPUs and GPUs[C]//2016 IEEE international

conferences on big data and cloud computing

(BDCloud), social computing and networking

(SocialCom), sustainable computing and

communications (SustainCom)(BDCloud-SocialCom-

SustainCom). IEEE, 2016: 477-484.

[5] Qiu J, Wang J, Yao S, et al. Going deeper with

embedded fpga platform for convolutional neural

network[C]//Proceedings of the 2016 ACM/SIGDA

international symposium on field-programmable gate

arrays. 2016: 26-35.

[6] Choquette J, Giroux O, Foley D. Volta: Performance and

programmability[J]. Ieee Micro, 2018, 38(2): 42-52.

[7] DiCecco R, Lacey G, Vasiljevic J, et al. Caffeinated

FPGAs: FPGA framework for convolutional neural

networks[C]//2016 International Conference on Field-

Programmable Technology (FPT). IEEE, 2016: 265-268.

[8] Hu J, Shen L, Sun G. Squeeze-and-excitation

networks[C]//Proceedings of the IEEE conference on

computer vision and pattern recognition. 2018: 7132-

7141.

[9] Han S, Mao H, Dally W J. Compressing deep neural

networks with pruning, trained quantization and huffman

coding. arXiv 2015[J]. arXiv preprint arXiv:1510.00149,

2015, 305.

[10] Zhang C, Li P, Sun G, et al. Optimizing FPGA-based

accelerator design for deep convolutional neural

networks[C]//Proceedings of the 2015 ACM/SIGDA

international symposium on field-programmable gate

arrays. 2015: 161-170.

[11] Ma Y, Suda N, Cao Y, et al. Scalable and modularized

RTL compilation of convolutional neural networks onto

FPGA[C]//2016 26th international conference on field

programmable logic and applications (FPL). IEEE, 2016:

1-8.

http://www.ijcat.com/

