
International Journal of Computer Applications Technology and Research

Volume 12–Issue 09, 01 – 06, 2023, ISSN:-2319–8656

DOI:10.7753/IJCATR1209.1001

www.ijcat.com 1

Microservices Scheduling Algorithms: A Survey Study

Ghizlane EL HORRI

Information Technology and Engineering Sciences

National School of Computer Science and Systems

Analysis Mohammed V University

 Rabat, Morocco

Mostapha ZBAKH

Information Technology and Engineering Sciences

National School of Computer Science and Systems

Analysis Mohammed V University

 Rabat, Morocco

Abstract: The development of many large and complex applications has led to the need to come up with a better solution to manage

those applications from one large system into a combination of small services that work together in a cohesive way for a widely used

application where it can be easy to deploy, configure, and scale. The popularity of microservices architecture in different fields has made

it susceptible to development, especially in task scheduling. We report on the scheduling algorithms that have been used by many

researchers and discuss their approaches. This report will help us ameliorate the flexibility of the system in future studies.

Keywords: Microservices architecture, Container, Performance Metrics, Microservices Scheduling Techniques.

I. INTRODUCTION
The microservices architecture is the solution to go from large

and complex applications to a combination of small services

that can be deployed, configured, or even scaled [1]. Many

organizations tried to solve the problem of complex

applications that consume time, energy, and cost to deploy,

configure, or scale. For this purpose, the concept of

microservices can help us divide our application into smaller,

interconnected services.

Microservices enable the user to build and maintain the

application in the easiest way possible. Before microservice

architecture, there was what we call monolithic architecture [2].

The code side of the monolithic architecture is implemented as

one large system that shares the same database, which will lead

to many problems in terms of management and the

redeployment of the whole application.

To solve those problems, we moved from monolithic

architecture into SOA architecture, which is an acronym for

service-oriented architecture [3]. This architecture separates

services into different modules that communicate with each

other via a service bus to form the whole application. The

problem in SOA architecture is the database storage that is

shared with the whole application, as well as the increase in

response time and machine load because of the interaction

between services. Which leads us to microservices architecture,

where the application is created using multiple microservices

and each has its own database.

However, there are many tools that support microservices in

building applications [4]. Docker, for instance, packages up

code and all its dependencies and libraries so that applications

can run from one computing environment to another, for

instance, from a developer’s laptop to another test environment.

There are several benefits to containers, such as the fact that

they could be lightweight because they share the same OS

without the need for a full OS instance per application.

Containers could also be portable and platform-independent;

they can support modern development and architecture, as well

as improve the utilization of application components in the

microservices architecture, for instance.

The utilization of containers should be orchestrated by another

tool. Kubernetes [4] helps containerized application to be

deployed, managed and scaled. There are multiple benefits of

orchestration, for instance preventing any unwanted access

through using firewalls for example, as well as, having flexible

operations and flexible data transfer. Furthermore, it can be

economical especially for companies.

The use of microservice architecture has been increasing in the

last few years. There are many large companies that have used

this particular architecture, such as Netflix, LinkedIn, and

Amazon [5]. The application of microservices architecture lies

in the fact that it has various benefits in terms of deployment

and scalability, as well as the fact that each microservice can be

implemented in different languages and be more flexible.

However, the increase in cloud workload, such as Internet of

Things (IoT) devices, machine learning applications, cloud

storage, and streaming audio and video services, has led to

extra demand for several cloud services. For that purpose, the

deployment of the applications should meet performance

requirements—the response time, for instance—and should

also decrease the cost of cloud resources. Many researchers

have tried to ameliorate microservices-based applications by

working on two main problems: task scheduling and auto-

scaling [1]. In the task scheduling context, tools like Docker

Swarm and Kubernetes use scheduling strategies for containers

and deploy those containers to the proper nodes. However,

scheduling can get crucial in terms of cost-efficient operation

in the cloud, which led the researchers to develop several

scheduling algorithms to fulfill many targets, such as response

time, load balancing, resource utilization, reliability, and

energy consumption [6]. Therefore, we tried in this paper to

highlight the existing scheduling algorithms as well as study

their durability and limitations.

The rest of the paper is formulated as follows: Microservices

scheduling techniques and performance metrics are introduced

in Section 2. Microservices scheduling algorithms are being

discussed in Section 3. Section 4 has a comparison of the

algorithms referred to in the previous section. Section 5 will

conclude the paper.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 12–Issue 09, 01 – 06, 2023, ISSN:-2319–8656

DOI:10.7753/IJCATR1209.1001

www.ijcat.com 2

II. MICROSERVICES SCHEDULING

TECHNIQUES AND PREFORMANCE

METRICS
The microservices architecture is widely used nowadays to

facilitate the work of many applications. However, it doesn’t

prevent the researchers from developing the microservices

architecture to be more efficient and flexible. Many researchers

tried to come up with new solutions for scheduling

microservices and reaching optimal performance. As shown in

Fig. 1, it is a generalization of how the scheduling of

microservices works [7]. The incoming requests from users are

treated by the scheduler to find the most suitable placement for

those requests using various performance metrics. Each

microservice has a specific number of container instances,

which vary depending on the user's requests. The requests may

be scheduled immediately into containers through physical

machines (PM) or into virtual machines (VM) through PM.

In this section, we first discuss the most common scheduling

algorithm categories as well as the performance metrics used

by the researchers to evaluate their algorithms.

A. Scheduling algorithms
The scheduler uses various algorithms that are categorized into

four different genres. Each one of those techniques works and

operates differently than the others to solve multiple problems,

such as scheduling problems [8].

a. Mathematical modeling
The first category finds an optimal solution using different

techniques, such as integer linear programming (ILP), where it

uses objective functions and equations that are linear as well as

constrained variables that are integer. We can also have mixed-

integer linear programming (MILP), where some variables are

not discrete. Another technique is quadratic programming

(QP), which is a technique that tries to find an objective

quadratic function with the use of constraints that can be either

linear inequality or equations. Quadratic-Constrained

Programming (QCP) utilizes an objective quadratic function

and quadratic constraints likewise [8].

b. Heuristic techniques

The next category came to solve container scheduling

problems, where most of the time it uses the bin packing

technique, which is an optimization problem that helps

minimize the number of bins, particularly by assigning items of

different weights to bins that have specific capacity and trying

to minimize the total number of used bins. This category can

also use a combination of different techniques in Docker

Swarm and Kubernetes to schedule containers to the right

nodes. The use of heuristic techniques may be fast and scalable,

but optimal solutions are not ensured [8].

c. Meta-heuristic techniques

Meta-heuristic techniques are becoming more useful to solve

optimization problems in several fields. Meta-heuristic

techniques are categorized into evolutionary algorithms such as

genetic algorithms, and swarm intelligence algorithms, such as

Ant Colony Optimization, Particle Swarm Optimization, and

many others.

As for the first category, genetic algorithms have become a

focus of interest for many researchers because they are

influenced by the theory of natural evolution. The individuals

of the evolution process are being selected using their fitness to

generate the next offspring for the following generation.

Moreover, the Ant Colony Optimization algorithms are swarm-

based search algorithms that are inspired by the behavior of

ants in searching for food. The main goal of this type is to

increase resource utilization using suitable load balancing.

Concerning Particle Swarm optimization, it is one of the robust

techniques that is influenced by the behavior of birds and helps

improve the resource utilization and load balancing of the

system [8].

d. Machine learning techniques

Machine learning algorithms allow you to build a model from

data using algorithms that obtain a predictive analysis using this

data. The use of machine learning allows computers to learn

without being programmed, i.e., existing data can be used for

future behaviors and trends. Many researchers have utilized

machine learning techniques to enhance resource utilization by

minimizing the number of computing nodes and reducing

energy consumption [8].

Figure 1 : Application example in the cluster

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 12–Issue 09, 01 – 06, 2023, ISSN:-2319–8656

DOI:10.7753/IJCATR1209.1001

www.ijcat.com 3

B. Performance metrics

In this section, we are going to introduce the most common

metrics used by researchers to evaluate the performance of the

proposed algorithms for the purpose of formulating algorithms

for more efficient container scheduling [8].

Energy efficiency: this type of metric tries to find an adequate

scheduler that minimizes the energy consumption of the whole

cluster in order to increase revenues as well as upgrade

sustainability.

Cost: the communication cost indicates the telecommunication

services rented with a variable to run the application. The more

the communication are increased, the more the cost becomes

greater.

Availability: This metric assures whether the scheduler is able

to guarantee the application's availability to the user whenever

he or she wants it.

Resource utilization: for this metric, it indicates how the

resource utilization of a work node can affect resource

efficiency in terms of memory, core, and network bandwidth.

Load balancing: this metric assures that the scheduler is able to

evenly distribute the workload across nodes in a way that it

won’t be overloaded.

Scalability: the metric guarantees that the scheduler is in a

position to provide the user with the intended service even

though there is an increase in demand on the system.

Makespan/Latency: The scheduler should minimize the

makespan or latency in such a way that the required time to run

the application from the beginning to the end is reduced.

Throughput: is calculated by dividing the total number of tasks

by the amount of time needed to execute the tasks.

Security: This metric tries to assure that the scheduler has the

ability to protect data and services from attacks or software

bugs.

III. MICROSERVICE SCHEDULING

ALGORITHMS
In this section, we introduce the latest scheduling

algorithms proposed by researchers and discuss the

strengths and limitations of those algorithms.

The authors in [9] proposed an approach called Least Waste,

Fast First (LWFF). The concept of this model is to schedule

microservices instances in the workload queue 𝑆 to nodes

represented by 𝑁. The authors represented the scheduling using

the mapping function 𝑠𝑐ℎ𝑒𝑑 ∶ 𝑆 → 𝑁. The scheduling

algorithm developed by the authors is formulated in the form

of a complex variant of the knapsack problem.

The knapsack problem is a combinatorial optimization

problem; the idea is to pack a set of items, that have a value and

a weight, into a knapsack that has particular capacity under the

condition of having a maximized value of the items inside the

knapsack. In the scheduling algorithm proposed by the authors,

the nodes are going to be packed by microservices instances.

The nodes are associated with two computational resources,

memory limitation 𝑀𝐸𝑀𝑗 and CPU limitation 𝐶𝑃𝑈𝑗, as well as

2-dimensional capacity vector that has memory and CPU

capacity [9].

Afterwards, the authors tried to formulate the memory and CPU

utilization of each node in a time interval by using equations

(1) and (2), as well as define the average utilization of the

cluster since each node has different resource capacities by

using equations (3) and (4).

𝑚𝑒𝑚_𝑢𝑡𝑖𝑙(𝑛𝑗 , ∆𝑡) =

∑ (𝑚𝑒𝑚𝑖.𝑝𝑎𝑟𝑡(𝑟𝑢𝑛𝑡𝑖𝑚𝑒𝑗
𝑖,∆𝑡))

{∀ 𝑠𝑖→ 𝑛𝑗}

𝑀𝐸𝑀𝑗 .∆𝑡
 (1)

𝑐𝑝𝑢_𝑢𝑡𝑖𝑙(𝑛𝑗 , ∆𝑡) =

∑ (𝑐𝑝𝑢𝑖.𝑝𝑎𝑟𝑡(𝑟𝑢𝑛𝑡𝑖𝑚𝑒𝑗
𝑖,∆𝑡))

{∀ 𝑠𝑖→ 𝑛𝑗}

𝐶𝑃𝑈𝑗.∆𝑡
 (2)

 𝑚𝑒𝑚_𝑢𝑡𝑖𝑙(∆𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =
∑ 𝑀𝐸𝑀𝑗 .𝑚𝑒𝑚_𝑢𝑡𝑖𝑙(𝑛𝑗,∆𝑡)
𝑝
𝑗=1

∑ 𝑀𝐸𝑀𝑗
𝑝
𝑗=1

 (3)

 𝑐𝑝𝑢_𝑢𝑡𝑖𝑙(∆𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =
∑ 𝐶𝑃𝑈𝑗.𝑐𝑝𝑢_𝑢𝑡𝑖𝑙(𝑛𝑗,∆𝑡)
𝑝
𝑗=1

∑ 𝐶𝑃𝑈𝑗
𝑝
𝑗=1

 (4)

Thereafter, the authors attempted to introduce a profit function

that will be used later as an objective function to be maximized.

The equation (5) defines the profit function as a vector using

equations (3) and (4).

𝑝𝑟𝑜𝑓𝑖𝑡(𝑠𝑖 , 𝑛𝑗) = (𝑚𝑒𝑚_𝑢𝑡𝑖𝑙(∆𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑐𝑝𝑢_𝑢𝑡𝑖𝑙(∆𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) (5)

Eventually, the scheduling problem is being formulated by the

authors using a bi-objective optimization problem as follows:

∀𝑠𝑗 ∈ 𝑆 ∧ ∀𝑛𝑗 ∈ 𝑁 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑝𝑟𝑜𝑓𝑖𝑡(𝑠𝑖 , 𝑛𝑗)

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∀𝑡𝑖𝑚𝑒 𝑡 ∧ ∀𝑛𝑗 ∈ 𝑁

{

 ∑ 𝑚𝑒𝑚𝑖 ≤ 𝑀𝐸𝑀𝑗
∀𝑠𝑖→𝑛𝑗 𝑖𝑛 𝑡

∑ 𝑐𝑝𝑢𝑖 ≤ 𝐶𝑃𝑈𝑗
∀𝑠𝑖→𝑛𝑗 𝑖𝑛 𝑡

At the beginning, to choose the microservices, the authors

apply the approach first come, first served (FCFS), afterwards,

the algorithm will allocate the service to the suitable node by

achieving three phases: filtering, producing the Pareto set, and

choosing the final solution. At first, the algorithm will generate

a set of feasible nodes that meet the requirements of a specific

service, and then it will runs a comparison based on a profit

equation for all the nodes in the set of feasible nodes.

Furthermore, to allocate each service to the proper node, the

authors calculate the memory utilization and CPU utilization of

the whole cluster. Next, the algorithm will calculate the profit

vector of each decision that has been made to use it next in the

Pareto set that has the non-dominated solutions after removing

all the dominated solutions. In the next step, the solution that

has the least execution time will be taken from the Pareto set to

assign the service to the selected host as a final step [9].

To evaluate the efficiency of the proposed algorithm, the authors
compared it with another two scheduling algorithms, which are
Spread and Binpack. The spread approach tries to select the
nodes with the least load, while Binpack maximizes the
utilization of the nodes. At first, the authors compared the
average utilization of memory and CPU in clusters between the
three algorithms using nine different classes on six different
nodes from AWS EC2, they concluded that the LWFF algorithm
overcomes the two other algorithms by having the best memory
and CPU utilization simultaneously.

The authors worked on different metrics to evaluate their
algorithm. The first metric is scheduling latency and its effect
on the execution time of services. The authors discovered that
the latency of the other two algorithms is lower than the LWFF
algorithm. On the other hand, the execution time of the LWFF
algorithm is faster than the other two. The authors measured the
throughput of the active nodes per second for the three

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 12–Issue 09, 01 – 06, 2023, ISSN:-2319–8656

DOI:10.7753/IJCATR1209.1001

www.ijcat.com 4

algorithms and concluded that LWFF has the highest throughput
of the other algorithms. According to the metrics presented
earlier, the authors concluded that their approach is the best
choice for scheduling microservice instances into nodes [9].

Other researchers [10] suggest a model for multi-objective
resource scheduling for vehicle-to-everything (V2X)
microservices based on the edge container cloud architecture.
The scheduling model that the authors worked on is the multiple
fitness genetic algorithm (MFGA).

At first, the authors quantify three major factors: microservices
calling distance, resource utilization, and resource utilization
balancing. As for the microservices calling distance, the authors
formulated an equation (6) that helps determine the calls
between containers and measures how many calls have been
made between containers. The calling distance generated
between containers should be as short as possible than across
physical hosts to meet the users’ needs.

{

 𝑑(𝑘𝑖 , 𝑘𝑗) = {

1, 𝑐𝑎𝑙𝑙𝑠 𝑎𝑐𝑟𝑜𝑠𝑠 𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 ℎ𝑜𝑠𝑡𝑠
 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠 𝑖 𝑎𝑛𝑑 𝑗

0, 𝑒𝑙𝑠𝑒

𝐷𝑖𝑗 = ∑ 𝑑(𝑘𝑖 , 𝑘𝑗)
𝑚−1
𝑗=1

𝐷𝑖 = 𝐷𝑖𝑗 + 𝐷𝑗𝑖
𝐷 = ∑ 𝐷𝑖

𝑚
𝑖=1

 (6)

The next factor, which is resource utilization, is being
introduced by the authors using the first equation (7) that defines
the total number of physical hosts held by deploying containers
with microservices. Then comes formula (8), which indicates
the overall resource utilization rate of physical hosts that are
triggered to deploy container microservices. It is necessary to
occupy the shortest number of physical hosts to successfully use
the computing resource and minimize energy consumption.

𝑍 = ∑ 𝑃𝑖
𝑛
𝑖=1 (7)

𝑈 =
∑ ∑ ∑ 𝑝𝑖×𝑘𝑖𝑗×𝑟𝑗𝑙

𝑠
𝑙=1

𝑚
𝑗=1

𝑛
𝑖=1

∑ ∑ 𝑝𝑖×𝑐𝑖𝑙
𝑠
𝑙=1

𝑛
𝑖=1

 (8)

Where 𝑘𝑖𝑗 indicates whether the container 𝑗 is placed in host 𝑖
or not, as for 𝑝𝑖 specify if the host is activated or not. For 𝑟𝑗𝑙 and

𝑐𝑖𝑙 are respectively the resources requested by microservices
container and the type of resources that the host can supply. The
authors worked with four types of resources which are CPU,
memory, disk, and bandwidth.

The resource utilization balancing for a server is defined using
equation (9), as is the resource utilization balancing for the
entire edge cloud, as denoted in equation (9). The authors claim
that the smaller the values, the more load is balanced.

{

 𝑁𝑖 = √
1

𝑠
∑ (𝑢𝑖,𝑙 − 𝑢𝑖)

2𝑠
𝑖=1

𝑁 = √
1

𝑧
∑ 𝑝𝑖 ∑ (𝑢𝑖,𝑙 − 𝑢𝑖)

𝑠
𝑙=1

𝑠
𝑖=1

 (9)

Where 𝑢𝑖,𝑙 is the utilization of type 𝑙 resources on host 𝑖, and 𝑢𝑖
is the average utilization of all resources on the physical host 𝑖.

Using those three factors, the authors introduced the goal of this
study under the formula of an objective function, as shown in
equation (10).

𝑚𝑎𝑥𝐴𝑖𝑚(𝑎𝑖𝑚1, 𝑎𝑖𝑚2, 𝑎𝑖𝑚3) = max (
1

𝐷
,
𝑈

𝑍
,
1

𝑁
) (10)

After introducing the three factors, the authors combined those
factors to come up with a solution to the scheduling problem.
The first step in the MFGA algorithm is chromosome coding,
where the code divides the containers into H groups using
resource utilization, and then each group is allocated to a
particular host. Next, the authors defined a fitness function,

which has a value that indicates if the solution to the problem is
weak or not. The function is calculated using weight parameters,
which are microservice dependencies, resource utilization, and
resource utilization balancing [10].

Afterwards, the gene evaluation function is created to evaluate
the load balance of hosts. The authors mentioned that the
function accelerates the algorithm’s convergence as well as
improves the performance of each machine. The function uses
the same parameters as the previous function.

Another operation is generated by the authors, which is a
crossover operation. The crossover operation uses the gene
evaluation function on each host to speed up the convergence of
the algorithm and also reach the crossover efficiency of the task
set. For that purpose, the authors determined three main steps
for this operator. The first step is to select the initial solutions,
then exchange the most adaptable genes. Afterwards, it will
delete the same microservices container from the new
chromosome. The final step is to re-add the containers that are
missing because of gene exchange using the fitness function and
the gene evaluation function. The authors have grouped all the
steps mentioned above to formulate the MFGA algorithm [10].

To evaluate their algorithm, the author used the tool CloudSim
as well as three other algorithms: the round-robin algorithm
(RR), the most-utilization first algorithm (MF), and the first
come, first served algorithm (FCFS). At first, the authors made
a comparison concerning the number of hosts occupied by the
four algorithms, and they concluded that MFGA is the algorithm
that used fewer hosts compared to the others. As for resource
utilization, MFGA has the highest values among the four
algorithms. The authors also made a comparison of
microservices calling distance and concluded that MFGA has
the smallest calling distance among the four algorithms, and the
same result goes for resource utilization balancing. The authors
came to the conclusion that the MFGA algorithm has better
performance than the RR algorithm, the MF algorithm, and the
FCFS algorithm [10].

The authors in [11] used another approach, which also consists
of an optimization problem. The authors in this article worked
on two algorithms: the first is a scheduling algorithm, and the
second is an auto-scaling algorithm. Our concern is the
scheduling algorithm proposed by the authors under the name
Urgency-based Workflow Scheduling (UWS).

At first, the authors tried to formulate the scheduling problem
into a task scheduling scheme as defined in (11). Afterwards, the
authors defined the optimization probing the execution time and
finish time when a task is allocated to a microservice instance,
as well as calculating the lease start time, the lease finish time
caused by deploying containers into the VM, and the earliest
start time for executing a task in the microservice instance at a
timestamp. Then the authors introduced the optimization
problem, which is defined as minimizing the cost of VMs by
meeting the deadline constraints of all requests using the
formula (12).

𝑀 = {𝑚𝑖,𝑗,𝑘,𝑙⃒ 𝑚𝑖,𝑗,𝑘,𝑙 = (𝑡𝑖 ,𝑊𝐹𝑙 , 𝑚𝑠𝑗,𝑘 , 𝑆𝑇(𝑡𝑖 ,𝑚𝑠𝑗,𝑘))}

(11)

Where 𝑚𝑖,𝑗,𝑘,𝑙 denotes that task 𝑡𝑖 which belongs to the

workflow 𝑊𝐹𝑙 is allocated to the instance 𝑚𝑠𝑗,𝑘 starting from

the start time 𝑆𝑇(𝑡𝑖 ,𝑚𝑠𝑗,𝑘).

min 𝑐𝑜𝑠𝑡

𝑠. 𝑡. 𝑟𝑡𝑙 ≤ 𝐷𝑙 , ∀𝑊𝐹𝑙 (12)

Where 𝑐𝑜𝑠𝑡 = ∑ 𝑝𝑟𝑖𝑐𝑒𝑥 ∗ ⌈
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑥

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
⌉𝑣𝑚𝑥∈𝑉𝑀 and 𝑟𝑡𝑙 =

𝑚𝑎𝑥𝑡𝑖∈𝑊𝐹𝑙{𝐴𝐹𝑇(𝑡𝑖)} − 𝑇.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 12–Issue 09, 01 – 06, 2023, ISSN:-2319–8656

DOI:10.7753/IJCATR1209.1001

www.ijcat.com 5

Eventually, the authors presented the algorithm by
calculating in the first place the cost-effective configuration
(CE) of each type of microservice using the statistical
information of the computation workload of tasks. Then, the
urgency-based workflow scheduling algorithm UWS is
performed based on the CE. Moreover, in the algorithm, the
deadline allocates a sub-deadline for each task according to the
CE. The scheduling urgency is being calculated in the urgency
calculation, and tasks are being prioritized according to their
scheduling urgency. The task mapping will select the proper
service instance for each task in the order of priority. As a final
step, the set contains all newly created service instances [11].

The authors introduced another metric beside the objective
function, which is the success ratio, which defines the ratio
between the number of workflows that meet the deadline and
the overall number of scheduled workflows. The success ratio is
presented under the following formula (13).

𝑟𝑎𝑡𝑖𝑜 =
∑ 𝑠𝑢𝑐𝑐𝑖𝑊𝐹𝑙∈𝑊𝐹

|𝑊𝐹|
 (13)

Where 𝑠𝑢𝑐𝑐𝑖 = {
1 𝑟𝑡𝑙 ≤ 𝐷𝑙
0 𝑟𝑡𝑙 > 𝐷𝑙

.

To observe the performance of the algorithm, the
authors tried to work with four different workflow
applications: Montage, LIGO, GENOME, and SIPHT.
The number of tasks is about 50 per workflow. Regarding
the information about the workflows, it is given in DAX
format files that have the name, computation workload,
data transfer amount, and dependencies between tasks, as
well as using 8 different types of VMs with different
prices. The authors picked two workflow scheduling
algorithms which are ProLiS and IC-PCPD2 to make a
comparison between their algorithm and the two
algorithms. Afterwards, the authors implemented the
three algorithms into the four workflows and observed the
variation of each metric. As for the success ratio, the
authors concluded that this metric is increasing for the
three algorithms; however, the UWS has the highest rank
among the other two for all the workflow applications. On
the other hand, the authors confirm that their algorithm
has the superior value of finding a number of feasible
solutions with different workflows. Concerning the cost,
the authors observed that it has a lower value compared
to the other algorithms, which makes it the most
appropriate algorithm for scheduling microservices [11].

Another algorithm has been proposed in [7]. The authors
propose a multi-objective optimization model that aims to
solve scheduling problems. The objective here is to
improve the system by reducing the network transmission
overhead through microservices, balancing the load of
clusters, and ameliorating the reliability of cluster
services. At first, to reduce the network transmission
overhead among microservices, the authors introduced
three factors: the network distance between nodes, the
number of requests between microservices, and the
quantity of data transmission. The authors utilized the
equation (14) to calculate data transmission overhead.

 𝐶𝑂𝑀𝑀(𝑋) =

∑ ∑
𝑥𝑗

𝑆𝑐𝑎𝑙𝑒𝑖
∑ ∑

𝑥𝑘,𝑙

𝑆𝑐𝑎𝑙𝑒𝑘
𝐿𝑖𝑛𝑘(𝑚𝑠𝑖 ,𝑚𝑠𝑘) ∗𝑚𝑠𝑘∈𝐶𝑂𝑁_𝑆𝐸𝑇𝐼

𝑛
𝑙=1∧𝑙≠𝑗

𝑚
𝑖=1

𝑛
𝑗=1

∗ 𝑇𝑟𝑎𝑛𝑠(𝑚𝑠𝑖 , 𝑚𝑠𝑘) ∗ 𝐷𝑖𝑠𝑡(𝑝𝑚𝑗 , 𝑝𝑚𝑙) (14)

The authors moved on to load balancing the system,
where they presented equation (15) that helps in

maximizing the resource utilization rate within the nodes,
in which the resource utilization reflects the load
balancing of the system. This means an unbalanced
resource load with high resource utilization will lead to
the worst load within the system.

𝑅𝐸𝑆𝑅𝐶𝐶𝑂𝑁𝑆(𝑋)

=
1

𝜎1 + 𝜎2
𝑚𝑎𝑥1≤𝑗≤𝑛max (∑𝑥𝑖,𝑗

𝐿𝑖𝑛𝑘𝑖 × 𝐶𝑎𝑙𝑅𝑒𝑞𝑠𝑡𝑖
𝑆𝑐𝑎𝑙𝑒𝑖 × 𝐶𝑎𝑙𝑅𝑒𝑞𝑠𝑡𝑗

𝑚

𝑖=1

𝜎1,

∑ 𝑥𝑖,𝑗
𝐿𝑖𝑛𝑘𝑖×𝐶𝑎𝑙𝑅𝑒𝑞𝑠𝑡𝑖

𝑆𝑐𝑎𝑙𝑒𝑖×𝐶𝑎𝑙𝑅𝑒𝑞𝑠𝑡𝑗

𝑚
𝑖=1 𝜎2) (15)

The other factor is request failure within the cluster, where the
authors tried to calculate the average number of request failures
to evaluate the cluster services using equation (16).

𝐿𝐼𝑁𝐾𝐹𝐴𝐼𝐿(𝑋) = ∑ ∑ 𝐹𝑎𝑖𝑙𝑗 × 𝑥𝑖,𝑗
𝐿𝑖𝑛𝑘𝑖

𝑆𝑐𝑎𝑙𝑒𝑖

𝑚
𝑖=1

𝑛
𝑗=1 (16)

The authors used those three factors to present their multi-
objective function under the constraints of resource capacity and
microservice deployment requirements using the formula (17).

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶𝑂𝑀𝑀(𝑋)

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑅𝐸𝑆𝑅𝐶_𝐶𝑂𝑁𝑆(𝑋)

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐿𝐼𝑁𝐾_𝐹𝐴𝐼𝐿(𝑋)

𝑠. 𝑡. ∑ 𝑥𝑖,𝑗
𝐿𝑖𝑛𝑘𝑖

𝑆𝑐𝑎𝑙𝑒𝑖
𝐶𝑎𝑙_𝑅𝑒𝑠𝑡𝑖 ≤ 𝐶𝑎𝑙_𝑅𝑒𝑠𝑡𝑗

𝑚
𝑖=1 ∀𝑝𝑚𝑗(17)

∑ 𝑥𝑖,𝑗
𝐿𝑖𝑛𝑘𝑖

𝑆𝑐𝑎𝑙𝑒𝑖
𝑆𝑡𝑟𝑅𝑒𝑠𝑡𝑖 ≤ 𝑆𝑡𝑟𝑅𝑒𝑠𝑡𝑗

𝑚
𝑖=1 ∀𝑝𝑚𝑗

𝑥𝑖,𝑗 = {
1 𝑖𝑓 𝑚𝑠𝑖 ∈ 𝑎𝑙𝑙𝑜𝑐(𝑚𝑝𝑗)

0 𝑖𝑓 𝑚𝑠𝑖 ∉ 𝑎𝑙𝑙𝑜𝑐(𝑚𝑝𝑗)

 ∑ 𝑥𝑖,𝑗 = 𝑆𝑐𝑎𝑙𝑒𝑖 , ∀𝑚𝑠𝑖
𝑛
𝑗=1

∑ 𝑥𝑖,𝑗 = 1
𝑚
𝑖=1 ∀𝑝𝑚𝑗

Afterwards, the authors explained how the ant colony
optimization algorithm works. The latter is performing the
feeding process of an ant to help schedule microservices, in
which the algorithm applies several steps to reach the goal. The
first step is placing a variable ant into the microservice, and then
the ant chooses a path with a definite probability to attain the
node that satisfy the constraints of the model. The allocation of
microservices is linked to the number of containers in the
cluster, and if the node that was selected is different each time,
then the microservice will be put in the tabu list. As for the next
step, the ant will return to the next microservice and perform the
second step again. Eventually, the ants will complete allocating
all the microservices, and the algorithm finishes when the
maximum number of iterations is reached [7].

To compare the algorithms mentioned above, the authors took
three related algorithms for scheduling: Multiopt, GA_MOCA,
and Spread algorithm where each of those algorithms is a multi-
objective container scheduling that considers different factors
such as CPU usage, threshold distance, memory usage, balanced
use of resource utilization, and so on. The authors made a
comparison between the four algorithms using three factors:
network transmission, cluster load balancing, and reliability of
services. As for the network transmission overhead result with
different numbers of user requests, the authors algorithm shows
the best outcome took entire consideration of the network data
transmission between microservices as well as network distance
among nodes and optimized the scheduling using the ant colony
algorithm. Concerning the result for resource load in the cluster,
the algorithm proposed by the authors has the best performance
in terms of resource utilization of nodes and load distribution of
each resource. At last, the result of the reliability of the cluster

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 12–Issue 09, 01 – 06, 2023, ISSN:-2319–8656

DOI:10.7753/IJCATR1209.1001

www.ijcat.com 6

is being measured by the number of failures for microservices
requests, where the algorithm made by the authors has the best
performance among the other algorithms in view of the fact that
the algorithm utilized the average number of failures to allocate
the microservices with more requests to the nodes with lower
for improving the reliability of the cluster [7].

IV. MICROSERVICES SCHEDULING

ALGORITHMS COMPARAISON
The container scheduling problem has become a major obstacle
to effectively managing runtime cloud resources. The
examination of microservice scheduling techniques has led to
the conclusion that not all the algorithms can address the factor
performance of the cluster; consequently, many challenges still
remain to be solved as research opportunities. After introducing
the scheduling algorithms in the previous section, we can
observe that for each algorithm, it has its own scheduling factors
that can vary from one algorithm to another, as well as each
algorithm has its own parameter settings. However, the
algorithms tried to solve a specific optimization problem using
an objective function to properly improve the cluster. The first
article tried to solve an optimization problem by maximizing the
profit of using the memory and CPU of the resource, which
leads to better throughput. As for the second article, they tried
to maximize a multi-objective function in order to increase the
chances of resource utilization, as well as adjust the load
balancing of the cluster and the calling distance between
microservices. The other multi-objective problem is concerned
with the minimization of the cost and, on the other hand, the
increment of the success ratio in the cluster. The last algorithm
worked on minimizing three objective functions, which are
network transmission, resource utilization, and the number of
failures for microservice requests. As cited, each algorithm
works with different multi-objective functions that have a
different purpose in finding the ultimate solution.

V. CONCLUSION
The utilization of containers has become the focus of attention
lately, and for that reason, many researchers are trying to find an
efficient solution to various problems that prevent the
improvement of the application. In this article, we introduce a
comprehensive survey concerning microservice scheduling
techniques. At the beginning, we tried to classify the scheduling
techniques into four categories, and then we examined the most
common performance metrics used by researchers. Afterwards,
we presented four different algorithms that work with a multi-
objective optimization problem, yet each one of the algorithms
has its own objective function to work with. Eventually, we
made a comparison between the four algorithms to observe the
similarities between them. We confirm that this survey is
intended to provide a future perspective regarding ameliorating
the usage of applications within the cloud computing
community.

VI. REFERENCES
[1] Mohammed Khatiri, 26 Nov 2020, Task scheduling on

heterogeneous multi-core, pp. 87-96.

[2] Haihua Gu, Xiaoping Li, Muyao Liu, Shuang Wang,22 July 2021,
Scheduling method with adaptive learning for microservice
workflows with hybrid resource provisioning.

[3] Raja Mubashir Munaf, Jawwad Ahmed, Faraz Khakwani and
Tauseef Rana, 2019, Microservices Architecture: Challenges and
Proposed Conceptual Design.

[4] Markos Viggiato, Ricardo Terra, Henrique Rocha, Marco Tulio
Valente, September 2018, Microservices in Practice: A Survey
Study

[5] Işıl Karabey Aksakalli, Turgay Çelik, Ahmet Burak Can, Bedir
Tekinerdoğan, 2021, Deployment and communication patterns in
microservice architectures: A systematic literature review.

[6] Gabriel Araújo, Arthur Sabino, Luiz Lima, Vandirleya Costa,
Carlos Brito, Paulo Rego, Iure Fé, Francisco Airton Silva, Energy
Consumption in Microservices Architectures: A Systematic
Literature Review.

[7] MIAO LIN, JIANQING XI, WEIHUA BAI, AND JIAYIN WU,
24 June 2019, Ant Colony Algorithm for Multi-Objective
Optimization of Container-Based Microservice Scheduling in
Cloud.

[8] Imtiaz Ahmad, Mohammad Gh. AlFailakawi, Asayel AlMutawa,
Latifa Alsalman, 11 March 2021, Container scheduling
techniques: A Survey and assessment.

[9] Hamid Mohammadi Fard, Radu Prodan, Felix Wolf, 30
December 2020, Dynamic Multi-objective Scheduling of
Microservices in the Cloud.

[10] Yanjun Shi, Yijia Guo, Lingling Lv and Keshuai Zhang, 15
October 2020, An Efficient Resource Scheduling Strategy for
V2X Microservice Deployement in Edge Servers.

[11] Sheng Wang, Zhijun ding, Changjun Jiang, 2020, Elastic
Scheduling for Microservice Applications in Clouds.

http://www.ijcat.com/

