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Abstract: The development of many large and complex applications has led to the need to come up with a better solution to manage 

those applications from one large system into a combination of small services that work together in a cohesive way for a widely used 

application where it can be easy to deploy, configure, and scale. The popularity of microservices architecture in different fields has made 

it susceptible to development, especially in task scheduling. We report on the scheduling algorithms that have been used by many 

researchers and discuss their approaches. This report will help us ameliorate the flexibility of the system in future studies. 
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I. INTRODUCTION  
The microservices architecture is the solution to go from large 

and complex applications to a combination of small services 

that can be deployed, configured, or even scaled [1]. Many 

organizations tried to solve the problem of complex 

applications that consume time, energy, and cost to deploy, 

configure, or scale. For this purpose, the concept of 

microservices can help us divide our application into smaller, 

interconnected services. 

Microservices enable the user to build and maintain the 

application in the easiest way possible. Before microservice 

architecture, there was what we call monolithic architecture [2]. 

The code side of the monolithic architecture is implemented as 

one large system that shares the same database, which will lead 

to many problems in terms of management and the 

redeployment of the whole application. 

To solve those problems, we moved from monolithic 

architecture into SOA architecture, which is an acronym for 

service-oriented architecture [3]. This architecture separates 

services into different modules that communicate with each 

other via a service bus to form the whole application. The 

problem in SOA architecture is the database storage that is 

shared with the whole application, as well as the increase in 

response time and machine load because of the interaction 

between services. Which leads us to microservices architecture, 

where the application is created using multiple microservices 

and each has its own database. 

However, there are many tools that support microservices in 

building applications [4]. Docker, for instance, packages up 

code and all its dependencies and libraries so that applications 

can run from one computing environment to another, for 

instance, from a developer’s laptop to another test environment. 

There are several benefits to containers, such as the fact that 

they could be lightweight because they share the same OS 

without the need for a full OS instance per application. 

Containers could also be portable and platform-independent; 

they can support modern development and architecture, as well 

as improve the utilization of application components in the 

microservices architecture, for instance. 

The utilization of containers should be orchestrated by another 

tool. Kubernetes [4] helps containerized application to be 

deployed, managed and scaled. There are multiple benefits of 

orchestration, for instance preventing any unwanted access 

through using firewalls for example, as well as, having flexible 

operations and flexible data transfer. Furthermore, it can be 

economical especially for companies. 

The use of microservice architecture has been increasing in the 

last few years. There are many large companies that have used 

this particular architecture, such as Netflix, LinkedIn, and 

Amazon [5]. The application of microservices architecture lies 

in the fact that it has various benefits in terms of deployment 

and scalability, as well as the fact that each microservice can be 

implemented in different languages and be more flexible. 

However, the increase in cloud workload, such as Internet of 

Things (IoT) devices, machine learning applications, cloud 

storage, and streaming audio and video services, has led to 

extra demand for several cloud services. For that purpose, the 

deployment of the applications should meet performance 

requirements—the response time, for instance—and should 

also decrease the cost of cloud resources. Many researchers 

have tried to ameliorate microservices-based applications by 

working on two main problems: task scheduling and auto-

scaling [1]. In the task scheduling context, tools like Docker 

Swarm and Kubernetes use scheduling strategies for containers 

and deploy those containers to the proper nodes. However, 

scheduling can get crucial in terms of cost-efficient operation 

in the cloud, which led the researchers to develop several 

scheduling algorithms to fulfill many targets, such as response 

time, load balancing, resource utilization, reliability, and 

energy consumption [6]. Therefore, we tried in this paper to 

highlight the existing scheduling algorithms as well as study 

their durability and limitations. 

The rest of the paper is formulated as follows: Microservices 

scheduling techniques and performance metrics are introduced 

in Section 2. Microservices scheduling algorithms are being 

discussed in Section 3. Section 4 has a comparison of the 

algorithms referred to in the previous section. Section 5 will 

conclude the paper. 
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II. MICROSERVICES SCHEDULING 

TECHNIQUES AND PREFORMANCE 

METRICS  
The microservices architecture is widely used nowadays to 

facilitate the work of many applications. However, it doesn’t 

prevent the researchers from developing the microservices 

architecture to be more efficient and flexible. Many researchers 

tried to come up with new solutions for scheduling 

microservices and reaching optimal performance. As shown in 

Fig. 1, it is a generalization of how the scheduling of 

microservices works [7]. The incoming requests from users are 

treated by the scheduler to find the most suitable placement for 

those requests using various performance metrics. Each 

microservice has a specific number of container instances, 

which vary depending on the user's requests. The requests may 

be scheduled immediately into containers through physical 

machines (PM) or into virtual machines (VM) through PM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this section, we first discuss the most common scheduling 

algorithm categories as well as the performance metrics used 

by the researchers to evaluate their algorithms. 

A. Scheduling algorithms 
The scheduler uses various algorithms that are categorized into 

four different genres. Each one of those techniques works and 

operates differently than the others to solve multiple problems, 

such as scheduling problems [8]. 

a. Mathematical modeling 
The first category finds an optimal solution using different 

techniques, such as integer linear programming (ILP), where it 

uses objective functions and equations that are linear as well as 

constrained variables that are integer. We can also have mixed-

integer linear programming (MILP), where some variables are 

not discrete. Another technique is quadratic programming 

(QP), which is a technique that tries to find an objective 

quadratic function with the use of constraints that can be either 

linear inequality or equations. Quadratic-Constrained 

Programming (QCP) utilizes an objective quadratic function 

and quadratic constraints likewise [8]. 

b. Heuristic techniques 

The next category came to solve container scheduling 

problems, where most of the time it uses the bin packing 

technique, which is an optimization problem that helps 

minimize the number of bins, particularly by assigning items of 

different weights to bins that have specific capacity and trying 

to minimize the total number of used bins. This category can 

also use a combination of different techniques in Docker 

Swarm and Kubernetes to schedule containers to the right 

nodes. The use of heuristic techniques may be fast and scalable, 

but optimal solutions are not ensured [8]. 

c. Meta-heuristic techniques 

Meta-heuristic techniques are becoming more useful to solve 

optimization problems in several fields. Meta-heuristic 

techniques are categorized into evolutionary algorithms such as 

genetic algorithms, and swarm intelligence algorithms, such as 

Ant Colony Optimization, Particle Swarm Optimization, and 

many others. 

As for the first category, genetic algorithms have become a 

focus of interest for many researchers because they are 

influenced by the theory of natural evolution. The individuals 

of the evolution process are being selected using their fitness to 

generate the next offspring for the following generation. 

Moreover, the Ant Colony Optimization algorithms are swarm-

based search algorithms that are inspired by the behavior of 

ants in searching for food. The main goal of this type is to 

increase resource utilization using suitable load balancing. 

Concerning Particle Swarm optimization, it is one of the robust 

techniques that is influenced by the behavior of birds and helps 

improve the resource utilization and load balancing of the 

system [8]. 

d.  Machine learning techniques 

Machine learning algorithms allow you to build a model from 

data using algorithms that obtain a predictive analysis using this 

data. The use of machine learning allows computers to learn 

without being programmed, i.e., existing data can be used for 

future behaviors and trends. Many researchers have utilized 

machine learning techniques to enhance resource utilization by 

minimizing the number of computing nodes and reducing 

energy consumption [8]. 

Figure 1 : Application example in the cluster 
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B. Performance metrics 

In this section, we are going to introduce the most common 

metrics used by researchers to evaluate the performance of the 

proposed algorithms for the purpose of formulating algorithms 

for more efficient container scheduling [8]. 

Energy efficiency: this type of metric tries to find an adequate 

scheduler that minimizes the energy consumption of the whole 

cluster in order to increase revenues as well as upgrade 

sustainability. 

Cost: the communication cost indicates the telecommunication 

services rented with a variable to run the application. The more 

the communication are increased, the more the cost becomes 

greater. 

Availability: This metric assures whether the scheduler is able 

to guarantee the application's availability to the user whenever 

he or she wants it. 

Resource utilization: for this metric, it indicates how the 

resource utilization of a work node can affect resource 

efficiency in terms of memory, core, and network bandwidth. 

Load balancing: this metric assures that the scheduler is able to 

evenly distribute the workload across nodes in a way that it 

won’t be overloaded. 

Scalability: the metric guarantees that the scheduler is in a 

position to provide the user with the intended service even 

though there is an increase in demand on the system. 

Makespan/Latency: The scheduler should minimize the 

makespan or latency in such a way that the required time to run 

the application from the beginning to the end is reduced. 

Throughput: is calculated by dividing the total number of tasks 

by the amount of time needed to execute the tasks. 

Security: This metric tries to assure that the scheduler has the 

ability to protect data and services from attacks or software 

bugs. 

III. MICROSERVICE SCHEDULING 

ALGORITHMS 
In this section, we introduce the latest scheduling 

algorithms proposed by researchers and discuss the 

strengths and limitations of those algorithms. 

The authors in [9] proposed an approach called Least Waste, 

Fast First (LWFF). The concept of this model is to schedule 

microservices instances in the workload queue 𝑆 to nodes 

represented by 𝑁. The authors represented the scheduling using 

the mapping function 𝑠𝑐ℎ𝑒𝑑 ∶ 𝑆 → 𝑁. The scheduling 

algorithm developed by the authors is formulated in the form 

of a complex variant of the knapsack problem. 

The knapsack problem is a combinatorial optimization 

problem; the idea is to pack a set of items, that have a value and 

a weight, into a knapsack that has particular capacity under the 

condition of having a maximized value of the items inside the 

knapsack. In the scheduling algorithm proposed by the authors, 

the nodes are going to be packed by microservices instances. 

The nodes are associated with two computational resources, 

memory limitation 𝑀𝐸𝑀𝑗 and CPU limitation 𝐶𝑃𝑈𝑗, as well as 

2-dimensional capacity vector that has memory and CPU 

capacity [9]. 

Afterwards, the authors tried to formulate the memory and CPU 

utilization of each node in a time interval by using equations 

(1) and (2), as well as define the average utilization of the 

cluster since each node has different resource capacities by 

using equations (3) and (4). 

 

𝑚𝑒𝑚_𝑢𝑡𝑖𝑙(𝑛𝑗 , ∆𝑡) =

∑ (𝑚𝑒𝑚𝑖.𝑝𝑎𝑟𝑡(𝑟𝑢𝑛𝑡𝑖𝑚𝑒𝑗
𝑖,∆𝑡))

{∀ 𝑠𝑖→ 𝑛𝑗}

𝑀𝐸𝑀𝑗 .∆𝑡
   (1) 

𝑐𝑝𝑢_𝑢𝑡𝑖𝑙(𝑛𝑗 , ∆𝑡) =

∑ (𝑐𝑝𝑢𝑖.𝑝𝑎𝑟𝑡(𝑟𝑢𝑛𝑡𝑖𝑚𝑒𝑗
𝑖,∆𝑡))

{∀ 𝑠𝑖→ 𝑛𝑗}

𝐶𝑃𝑈𝑗.∆𝑡
                (2) 

  𝑚𝑒𝑚_𝑢𝑡𝑖𝑙(∆𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =
∑ 𝑀𝐸𝑀𝑗 .𝑚𝑒𝑚_𝑢𝑡𝑖𝑙(𝑛𝑗,∆𝑡)
𝑝
𝑗=1

∑ 𝑀𝐸𝑀𝑗
𝑝
𝑗=1

                          (3) 

 𝑐𝑝𝑢_𝑢𝑡𝑖𝑙(∆𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =
∑ 𝐶𝑃𝑈𝑗.𝑐𝑝𝑢_𝑢𝑡𝑖𝑙(𝑛𝑗,∆𝑡)
𝑝
𝑗=1

∑ 𝐶𝑃𝑈𝑗
𝑝
𝑗=1

                                (4) 

 

Thereafter, the authors attempted to introduce a profit function 

that will be used later as an objective function to be maximized. 

The equation (5) defines the profit function as a vector using 

equations (3) and (4). 

𝑝𝑟𝑜𝑓𝑖𝑡(𝑠𝑖 , 𝑛𝑗) = (𝑚𝑒𝑚_𝑢𝑡𝑖𝑙(∆𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑐𝑝𝑢_𝑢𝑡𝑖𝑙(∆𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)           (5) 

Eventually, the scheduling problem is being formulated by the 

authors using a bi-objective optimization problem as follows: 

∀𝑠𝑗 ∈ 𝑆 ∧ ∀𝑛𝑗 ∈ 𝑁 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑝𝑟𝑜𝑓𝑖𝑡(𝑠𝑖 , 𝑛𝑗) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∀𝑡𝑖𝑚𝑒 𝑡 ∧  ∀𝑛𝑗 ∈ 𝑁 

{
 
 

 
 ∑ 𝑚𝑒𝑚𝑖 ≤ 𝑀𝐸𝑀𝑗
∀𝑠𝑖→𝑛𝑗 𝑖𝑛 𝑡

∑ 𝑐𝑝𝑢𝑖 ≤ 𝐶𝑃𝑈𝑗
∀𝑠𝑖→𝑛𝑗 𝑖𝑛 𝑡

 

At the beginning, to choose the microservices, the authors 

apply the approach first come, first served (FCFS), afterwards, 

the algorithm will allocate the service to the suitable node by 

achieving three phases: filtering, producing the Pareto set, and 

choosing the final solution. At first, the algorithm will generate 

a set of feasible nodes that meet the requirements of a specific 

service, and then it will runs a comparison based on a profit 

equation for all the nodes in the set of feasible nodes. 

Furthermore, to allocate each service to the proper node, the 

authors calculate the memory utilization and CPU utilization of 

the whole cluster. Next, the algorithm will calculate the profit 

vector of each decision that has been made to use it next in the 

Pareto set that has the non-dominated solutions after removing 

all the dominated solutions. In the next step, the solution that 

has the least execution time will be taken from the Pareto set to 

assign the service to the selected host as a final step [9]. 

To evaluate the efficiency of the proposed algorithm, the authors 
compared it with another two scheduling algorithms, which are 
Spread and Binpack. The spread approach tries to select the 
nodes with the least load, while Binpack maximizes the 
utilization of the nodes. At first, the authors compared the 
average utilization of memory and CPU in clusters between the 
three algorithms using nine different classes on six different 
nodes from AWS EC2, they concluded that the LWFF algorithm 
overcomes the two other algorithms by having the best memory 
and CPU utilization simultaneously. 

The authors worked on different metrics to evaluate their 
algorithm. The first metric is scheduling latency and its effect 
on the execution time of services. The authors discovered that 
the latency of the other two algorithms is lower than the LWFF 
algorithm. On the other hand, the execution time of the LWFF 
algorithm is faster than the other two. The authors measured the 
throughput of the active nodes per second for the three 
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algorithms and concluded that LWFF has the highest throughput 
of the other algorithms. According to the metrics presented 
earlier, the authors concluded that their approach is the best 
choice for scheduling microservice instances into nodes [9]. 

Other researchers [10] suggest a model for multi-objective 
resource scheduling for vehicle-to-everything (V2X) 
microservices based on the edge container cloud architecture. 
The scheduling model that the authors worked on is the multiple 
fitness genetic algorithm (MFGA). 

At first, the authors quantify three major factors: microservices 
calling distance, resource utilization, and resource utilization 
balancing. As for the microservices calling distance, the authors 
formulated an equation (6) that helps determine the calls 
between containers and measures how many calls have been 
made between containers. The calling distance generated 
between containers should be as short as possible than across 
physical hosts to meet the users’ needs. 

{
  
 

  
 𝑑(𝑘𝑖 , 𝑘𝑗) = {

1, 𝑐𝑎𝑙𝑙𝑠 𝑎𝑐𝑟𝑜𝑠𝑠 𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 ℎ𝑜𝑠𝑡𝑠 
 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠 𝑖 𝑎𝑛𝑑 𝑗

0, 𝑒𝑙𝑠𝑒

𝐷𝑖𝑗 = ∑ 𝑑(𝑘𝑖 , 𝑘𝑗)
𝑚−1
𝑗=1

𝐷𝑖 = 𝐷𝑖𝑗 + 𝐷𝑗𝑖
𝐷 = ∑ 𝐷𝑖

𝑚
𝑖=1

         (6) 

The next factor, which is resource utilization, is being 
introduced by the authors using the first equation (7) that defines 
the total number of physical hosts held by deploying containers 
with microservices. Then comes formula (8), which indicates 
the overall resource utilization rate of physical hosts that are 
triggered to deploy container microservices. It is necessary to 
occupy the shortest number of physical hosts to successfully use 
the computing resource and minimize energy consumption. 

𝑍 = ∑ 𝑃𝑖
𝑛
𝑖=1                                                (7) 

𝑈 =
∑ ∑ ∑ 𝑝𝑖×𝑘𝑖𝑗×𝑟𝑗𝑙

𝑠
𝑙=1

𝑚
𝑗=1

𝑛
𝑖=1

∑ ∑ 𝑝𝑖×𝑐𝑖𝑙
𝑠
𝑙=1

𝑛
𝑖=1

                       (8) 

Where 𝑘𝑖𝑗  indicates whether the container 𝑗 is placed in host 𝑖 
or not, as for 𝑝𝑖 specify if the host is activated or not. For 𝑟𝑗𝑙 and 

𝑐𝑖𝑙  are respectively the resources requested by microservices 
container and the type of resources that the host can supply. The 
authors worked with four types of resources which are CPU, 
memory, disk, and bandwidth. 

The resource utilization balancing for a server is defined using 
equation (9), as is the resource utilization balancing for the 
entire edge cloud, as denoted in equation (9). The authors claim 
that the smaller the values, the more load is balanced. 

{
 

 𝑁𝑖 = √
1

𝑠
∑ (𝑢𝑖,𝑙 − 𝑢𝑖)

2𝑠
𝑖=1

𝑁 = √
1

𝑧
∑ 𝑝𝑖 ∑ (𝑢𝑖,𝑙 − 𝑢𝑖)

𝑠
𝑙=1

𝑠
𝑖=1

          (9) 

Where 𝑢𝑖,𝑙 is the utilization of type 𝑙 resources on host 𝑖, and 𝑢𝑖 
is the average utilization of all resources on the physical host 𝑖. 

Using those three factors, the authors introduced the goal of this 
study under the formula of an objective function, as shown in 
equation (10). 

𝑚𝑎𝑥𝐴𝑖𝑚(𝑎𝑖𝑚1, 𝑎𝑖𝑚2, 𝑎𝑖𝑚3) = max (
1

𝐷
,
𝑈

𝑍
,
1

𝑁
)  (10) 

After introducing the three factors, the authors combined those 
factors to come up with a solution to the scheduling problem. 
The first step in the MFGA algorithm is chromosome coding, 
where the code divides the containers into H groups using 
resource utilization, and then each group is allocated to a 
particular host. Next, the authors defined a fitness function, 

which has a value that indicates if the solution to the problem is 
weak or not. The function is calculated using weight parameters, 
which are microservice dependencies, resource utilization, and 
resource utilization balancing [10]. 

Afterwards, the gene evaluation function is created to evaluate 
the load balance of hosts. The authors mentioned that the 
function accelerates the algorithm’s convergence as well as 
improves the performance of each machine. The function uses 
the same parameters as the previous function. 

Another operation is generated by the authors, which is a 
crossover operation. The crossover operation uses the gene 
evaluation function on each host to speed up the convergence of 
the algorithm and also reach the crossover efficiency of the task 
set. For that purpose, the authors determined three main steps 
for this operator. The first step is to select the initial solutions, 
then exchange the most adaptable genes. Afterwards, it will 
delete the same microservices container from the new 
chromosome. The final step is to re-add the containers that are 
missing because of gene exchange using the fitness function and 
the gene evaluation function. The authors have grouped all the 
steps mentioned above to formulate the MFGA algorithm [10]. 

To evaluate their algorithm, the author used the tool CloudSim 
as well as three other algorithms: the round-robin algorithm 
(RR), the most-utilization first algorithm (MF), and the first 
come, first served algorithm (FCFS). At first, the authors made 
a comparison concerning the number of hosts occupied by the 
four algorithms, and they concluded that MFGA is the algorithm 
that used fewer hosts compared to the others. As for resource 
utilization, MFGA has the highest values among the four 
algorithms. The authors also made a comparison of 
microservices calling distance and concluded that MFGA has 
the smallest calling distance among the four algorithms, and the 
same result goes for resource utilization balancing. The authors 
came to the conclusion that the MFGA algorithm has better 
performance than the RR algorithm, the MF algorithm, and the 
FCFS algorithm [10]. 

The authors in [11] used another approach, which also consists 
of an optimization problem. The authors in this article worked 
on two algorithms: the first is a scheduling algorithm, and the 
second is an auto-scaling algorithm. Our concern is the 
scheduling algorithm proposed by the authors under the name 
Urgency-based Workflow Scheduling (UWS). 

At first, the authors tried to formulate the scheduling problem 
into a task scheduling scheme as defined in (11). Afterwards, the 
authors defined the optimization probing the execution time and 
finish time when a task is allocated to a microservice instance, 
as well as calculating the lease start time, the lease finish time 
caused by deploying containers into the VM, and the earliest 
start time for executing a task in the microservice instance at a 
timestamp. Then the authors introduced the optimization 
problem, which is defined as minimizing the cost of VMs by 
meeting the deadline constraints of all requests using the 
formula (12). 

𝑀 = {𝑚𝑖,𝑗,𝑘,𝑙⃒ 𝑚𝑖,𝑗,𝑘,𝑙 = (𝑡𝑖 ,𝑊𝐹𝑙 , 𝑚𝑠𝑗,𝑘 , 𝑆𝑇(𝑡𝑖 ,𝑚𝑠𝑗,𝑘))}  

(11) 

Where 𝑚𝑖,𝑗,𝑘,𝑙 denotes that task 𝑡𝑖 which belongs to the 

workflow 𝑊𝐹𝑙 is allocated to the instance 𝑚𝑠𝑗,𝑘 starting from 

the start time 𝑆𝑇(𝑡𝑖 ,𝑚𝑠𝑗,𝑘). 

min 𝑐𝑜𝑠𝑡  

𝑠. 𝑡.     𝑟𝑡𝑙 ≤ 𝐷𝑙 , ∀𝑊𝐹𝑙                                                  (12) 

Where 𝑐𝑜𝑠𝑡 = ∑ 𝑝𝑟𝑖𝑐𝑒𝑥 ∗ ⌈
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑥

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
⌉𝑣𝑚𝑥∈𝑉𝑀  and 𝑟𝑡𝑙 =

𝑚𝑎𝑥𝑡𝑖∈𝑊𝐹𝑙{𝐴𝐹𝑇(𝑡𝑖)} − 𝑇. 
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Eventually, the authors presented the algorithm by 
calculating in the first place the cost-effective configuration 
(CE) of each type of microservice using the statistical 
information of the computation workload of tasks. Then, the 
urgency-based workflow scheduling algorithm UWS is 
performed based on the CE. Moreover, in the algorithm, the 
deadline allocates a sub-deadline for each task according to the 
CE. The scheduling urgency is being calculated in the urgency 
calculation, and tasks are being prioritized according to their 
scheduling urgency. The task mapping will select the proper 
service instance for each task in the order of priority. As a final 
step, the set contains all newly created service instances [11]. 

The authors introduced another metric beside the objective 
function, which is the success ratio, which defines the ratio 
between the number of workflows that meet the deadline and 
the overall number of scheduled workflows. The success ratio is 
presented under the following formula (13). 

𝑟𝑎𝑡𝑖𝑜 =
∑ 𝑠𝑢𝑐𝑐𝑖𝑊𝐹𝑙∈𝑊𝐹

|𝑊𝐹|
                                              (13) 

Where 𝑠𝑢𝑐𝑐𝑖 = {
1    𝑟𝑡𝑙 ≤ 𝐷𝑙 
0    𝑟𝑡𝑙 > 𝐷𝑙

. 

To observe the performance of the algorithm, the 
authors tried to work with four different workflow 
applications: Montage, LIGO, GENOME, and SIPHT. 
The number of tasks is about 50 per workflow. Regarding 
the information about the workflows, it is given in DAX 
format files that have the name, computation workload, 
data transfer amount, and dependencies between tasks, as 
well as using 8 different types of VMs with different 
prices. The authors picked two workflow scheduling 
algorithms which are ProLiS and IC-PCPD2 to make a 
comparison between their algorithm and the two 
algorithms. Afterwards, the authors implemented the 
three algorithms into the four workflows and observed the 
variation of each metric. As for the success ratio, the 
authors concluded that this metric is increasing for the 
three algorithms; however, the UWS has the highest rank 
among the other two for all the workflow applications. On 
the other hand, the authors confirm that their algorithm 
has the superior value of finding a number of feasible 
solutions with different workflows. Concerning the cost, 
the authors observed that it has a lower value compared 
to the other algorithms, which makes it the most 
appropriate algorithm for scheduling microservices [11]. 

Another algorithm has been proposed in [7]. The authors 
propose a multi-objective optimization model that aims to 
solve scheduling problems. The objective here is to 
improve the system by reducing the network transmission 
overhead through microservices, balancing the load of 
clusters, and ameliorating the reliability of cluster 
services. At first, to reduce the network transmission 
overhead among microservices, the authors introduced 
three factors: the network distance between nodes, the 
number of requests between microservices, and the 
quantity of data transmission. The authors utilized the 
equation (14) to calculate data transmission overhead. 

  𝐶𝑂𝑀𝑀(𝑋)      =

∑ ∑
𝑥𝑗

𝑆𝑐𝑎𝑙𝑒𝑖
∑ ∑

𝑥𝑘,𝑙

𝑆𝑐𝑎𝑙𝑒𝑘
𝐿𝑖𝑛𝑘(𝑚𝑠𝑖 ,𝑚𝑠𝑘) ∗𝑚𝑠𝑘∈𝐶𝑂𝑁_𝑆𝐸𝑇𝐼

𝑛
𝑙=1∧𝑙≠𝑗

𝑚
𝑖=1

𝑛
𝑗=1

∗ 𝑇𝑟𝑎𝑛𝑠(𝑚𝑠𝑖 , 𝑚𝑠𝑘) ∗ 𝐷𝑖𝑠𝑡(𝑝𝑚𝑗 , 𝑝𝑚𝑙)                           (14)                                                                                             

The authors moved on to load balancing the system, 
where they presented equation (15) that helps in 

maximizing the resource utilization rate within the nodes, 
in which the resource utilization reflects the load 
balancing of the system. This means an unbalanced 
resource load with high resource utilization will lead to 
the worst load within the system. 

𝑅𝐸𝑆𝑅𝐶𝐶𝑂𝑁𝑆(𝑋)

=
1

𝜎1 + 𝜎2
𝑚𝑎𝑥1≤𝑗≤𝑛max (∑𝑥𝑖,𝑗

𝐿𝑖𝑛𝑘𝑖 × 𝐶𝑎𝑙𝑅𝑒𝑞𝑠𝑡𝑖
𝑆𝑐𝑎𝑙𝑒𝑖 × 𝐶𝑎𝑙𝑅𝑒𝑞𝑠𝑡𝑗

𝑚

𝑖=1

𝜎1, 

∑ 𝑥𝑖,𝑗
𝐿𝑖𝑛𝑘𝑖×𝐶𝑎𝑙𝑅𝑒𝑞𝑠𝑡𝑖

𝑆𝑐𝑎𝑙𝑒𝑖×𝐶𝑎𝑙𝑅𝑒𝑞𝑠𝑡𝑗

𝑚
𝑖=1 𝜎2)                                          (15) 

The other factor is request failure within the cluster, where the 
authors tried to calculate the average number of request failures 
to evaluate the cluster services using equation (16). 

𝐿𝐼𝑁𝐾𝐹𝐴𝐼𝐿(𝑋) = ∑ ∑ 𝐹𝑎𝑖𝑙𝑗 × 𝑥𝑖,𝑗
𝐿𝑖𝑛𝑘𝑖

𝑆𝑐𝑎𝑙𝑒𝑖

𝑚
𝑖=1

𝑛
𝑗=1           (16) 

The authors used those three factors to present their multi-
objective function under the constraints of resource capacity and 
microservice deployment requirements using the formula (17). 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶𝑂𝑀𝑀(𝑋)  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑅𝐸𝑆𝑅𝐶_𝐶𝑂𝑁𝑆(𝑋)  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐿𝐼𝑁𝐾_𝐹𝐴𝐼𝐿(𝑋)  

𝑠. 𝑡.     ∑ 𝑥𝑖,𝑗
𝐿𝑖𝑛𝑘𝑖

𝑆𝑐𝑎𝑙𝑒𝑖
𝐶𝑎𝑙_𝑅𝑒𝑠𝑡𝑖 ≤ 𝐶𝑎𝑙_𝑅𝑒𝑠𝑡𝑗 

𝑚
𝑖=1   ∀𝑝𝑚𝑗(17) 

∑ 𝑥𝑖,𝑗
𝐿𝑖𝑛𝑘𝑖

𝑆𝑐𝑎𝑙𝑒𝑖
𝑆𝑡𝑟𝑅𝑒𝑠𝑡𝑖 ≤ 𝑆𝑡𝑟𝑅𝑒𝑠𝑡𝑗  

𝑚
𝑖=1   ∀𝑝𝑚𝑗  

𝑥𝑖,𝑗 = {
1       𝑖𝑓 𝑚𝑠𝑖 ∈ 𝑎𝑙𝑙𝑜𝑐(𝑚𝑝𝑗)

0      𝑖𝑓   𝑚𝑠𝑖 ∉ 𝑎𝑙𝑙𝑜𝑐(𝑚𝑝𝑗)
     

 ∑ 𝑥𝑖,𝑗 = 𝑆𝑐𝑎𝑙𝑒𝑖 ,   ∀𝑚𝑠𝑖
𝑛
𝑗=1   

∑ 𝑥𝑖,𝑗 = 1
𝑚
𝑖=1     ∀𝑝𝑚𝑗  

Afterwards, the authors explained how the ant colony 
optimization algorithm works. The latter is performing the 
feeding process of an ant to help schedule microservices, in 
which the algorithm applies several steps to reach the goal. The 
first step is placing a variable ant into the microservice, and then 
the ant chooses a path with a definite probability to attain the 
node that satisfy the constraints of the model. The allocation of 
microservices is linked to the number of containers in the 
cluster, and if the node that was selected is different each time, 
then the microservice will be put in the tabu list. As for the next 
step, the ant will return to the next microservice and perform the 
second step again. Eventually, the ants will complete allocating 
all the microservices, and the algorithm finishes when the 
maximum number of iterations is reached [7]. 

To compare the algorithms mentioned above, the authors took 
three related algorithms for scheduling: Multiopt, GA_MOCA, 
and Spread algorithm where each of those algorithms is a multi-
objective container scheduling that considers different factors 
such as CPU usage, threshold distance, memory usage, balanced 
use of resource utilization, and so on. The authors made a 
comparison between the four algorithms using three factors: 
network transmission, cluster load balancing, and reliability of 
services. As for the network transmission overhead result with 
different numbers of user requests, the authors algorithm shows 
the best outcome took entire consideration of the network data 
transmission between microservices as well as network distance 
among nodes and optimized the scheduling using the ant colony 
algorithm. Concerning the result for resource load in the cluster, 
the algorithm proposed by the authors has the best performance 
in terms of resource utilization of nodes and load distribution of 
each resource. At last, the result of the reliability of the cluster 

http://www.ijcat.com/


International Journal of Computer Applications Technology and Research 

Volume 12–Issue 09, 01 – 06, 2023, ISSN:-2319–8656 

DOI:10.7753/IJCATR1209.1001 

www.ijcat.com  6 

is being measured by the number of failures for microservices 
requests, where the algorithm made by the authors has the best 
performance among the other algorithms in view of the fact that 
the algorithm utilized the average number of failures to allocate 
the microservices with more requests to the nodes with lower 
for improving the reliability of the cluster [7]. 

IV. MICROSERVICES SCHEDULING 

ALGORITHMS COMPARAISON 
The container scheduling problem has become a major obstacle 
to effectively managing runtime cloud resources. The 
examination of microservice scheduling techniques has led to 
the conclusion that not all the algorithms can address the factor 
performance of the cluster; consequently, many challenges still 
remain to be solved as research opportunities. After introducing 
the scheduling algorithms in the previous section, we can 
observe that for each algorithm, it has its own scheduling factors 
that can vary from one algorithm to another, as well as each 
algorithm has its own parameter settings. However,  the 
algorithms tried to solve a specific optimization problem using 
an objective function to properly improve the cluster. The first 
article tried to solve an optimization problem by maximizing the 
profit of using the memory and CPU of the resource, which 
leads to better throughput. As for the second article, they tried 
to maximize a multi-objective function in order to increase the 
chances of resource utilization, as well as adjust the load 
balancing of the cluster and the calling distance between 
microservices. The other multi-objective problem is concerned 
with the minimization of the cost and, on the other hand, the 
increment of the success ratio in the cluster. The last algorithm 
worked on minimizing three objective functions, which are 
network transmission, resource utilization, and the number of 
failures for microservice requests. As cited, each algorithm 
works with different multi-objective functions that have a 
different purpose in finding the ultimate solution. 

V. CONCLUSION 
The utilization of containers has become the focus of attention 
lately, and for that reason, many researchers are trying to find an 
efficient solution to various problems that prevent the 
improvement of the application. In this article, we introduce a 
comprehensive survey concerning microservice scheduling 
techniques. At the beginning, we tried to classify the scheduling 
techniques into four categories, and then we examined the most 
common performance metrics used by researchers. Afterwards, 
we presented four different algorithms that work with a multi-
objective optimization problem, yet each one of the algorithms 
has its own objective function to work with. Eventually, we 
made a comparison between the four algorithms to observe the 
similarities between them. We confirm that this survey is 
intended to provide a future perspective regarding ameliorating 
the usage of applications within the cloud computing 
community. 

VI. REFERENCES 
[1] Mohammed Khatiri, 26 Nov 2020, Task scheduling on 

heterogeneous multi-core, pp. 87-96. 

[2] Haihua Gu, Xiaoping Li, Muyao Liu, Shuang Wang,22 July 2021,  
Scheduling method with adaptive learning for microservice 
workflows with hybrid resource provisioning. 

[3] Raja Mubashir Munaf, Jawwad Ahmed, Faraz Khakwani and 
Tauseef Rana, 2019, Microservices Architecture: Challenges and 
Proposed Conceptual Design. 

[4] Markos Viggiato, Ricardo Terra, Henrique Rocha, Marco Tulio 
Valente, September 2018, Microservices in Practice: A Survey 
Study 

[5] Işıl Karabey Aksakalli, Turgay Çelik, Ahmet Burak Can, Bedir 
Tekinerdoğan, 2021, Deployment and communication patterns in 
microservice architectures: A systematic literature review. 

[6] Gabriel Araújo, Arthur Sabino, Luiz Lima, Vandirleya Costa, 
Carlos Brito, Paulo Rego, Iure Fé, Francisco Airton Silva, Energy 
Consumption in Microservices Architectures: A Systematic 
Literature Review. 

[7] MIAO LIN, JIANQING XI, WEIHUA BAI, AND JIAYIN WU, 
24 June 2019, Ant Colony Algorithm for Multi-Objective 
Optimization of Container-Based Microservice Scheduling in 
Cloud. 

[8] Imtiaz Ahmad, Mohammad Gh. AlFailakawi, Asayel AlMutawa, 
Latifa Alsalman, 11 March 2021, Container scheduling 
techniques: A Survey and assessment. 

[9] Hamid Mohammadi Fard, Radu Prodan, Felix Wolf, 30 
December 2020, Dynamic Multi-objective Scheduling of 
Microservices in the Cloud. 

[10] Yanjun Shi, Yijia Guo, Lingling Lv and Keshuai Zhang, 15 
October 2020, An Efficient Resource Scheduling Strategy for 
V2X Microservice Deployement in Edge Servers. 

[11] Sheng Wang, Zhijun ding, Changjun Jiang, 2020, Elastic 
Scheduling for Microservice Applications in Clouds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.ijcat.com/

