
International Journal of Computer Applications Technology and Research

Volume 13–Issue 06, 18 – 23, 2024, ISSN:-2319–8656

DOI:10.7753/IJCATR1306.1003

www.ijcat.com 18

Real Time 2D Convolution and Max Pooling Process

Panca Mudjirahardjo

Dept. of Electrical Engineering

Faculty of Engineering

Universitas Brawijaya

Malang, Indonesia

Abstract: In Convolutional Neural Network (CNN) consists of process of 2D convolution and max pooling. 2D convolution is

performed to express the shape of an object in an image. Max pooling is one way to reduce the spatial dimensions of an input volume.

They are together to create an object’s feature. As we know, the feature extraction is an important part in classification and detection

task. A good feature can distinguish the shape of one object from another. It will increase the classification and detection accuracy. In

this paper, researcher will build and observe the real time 2-D convolution and max pooling process for feature extraction.

Keywords: real time; 2D convolution; max pooling; feature extraction; CNN

1. INTRODUCTION
As we delve into the inner workings of Convolutional

Neural Networks, we encounter two fundamental processes:

2D Convolution and Max Pooling. These operations play a

crucial role in extracting meaningful features from input

images, paving the way for robust pattern recognition and

classification. 2D Convolution and Max Pooling process,

which are fundamental operations in Convolutional Neural

Networks (CNNs) used for feature extraction and down-

sampling.

2D Convolution, a cornerstone of CNNs. Imagine a

pristine canvas representing our input image, brimming with

pixels waiting to reveal their secrets. In the world of

convolution, kernels—small, learnable filters—act as brushes,

sweeping across the image to uncover distinctive patterns.

As the kernel traverses the image, it performs a dot

product between its weights and the corresponding pixel

values in each local region. This process yields a new value—

a feature—that encapsulates the essence of the underlying

structure within that region. With each stroke of the kernel,

the canvas transforms, revealing hidden edges, textures, and

shapes.

Max Pooling, like a magnifying glass, scans through the

feature maps generated by convolution, selecting the most

salient elements within localized regions. It achieves this by

selecting the maximum value within each window, discarding

irrelevant details and retaining only the most prominent

features. Through this process, our canvas undergoes a subtle

transformation, shrinking in size while amplifying the

significance of its contents. A conceptual model of CNN is

shown in Figure 1 [1]. Creating of feature extraction is shown

in Figure 2 [2].

Figure 1. Conceptual model of CNN [1]

Figure 2. Schematic diagram illustrating the interconnections

between layers in the neocognitron [2]

2. THE PROPOSED METHOD
The experimental method can be shown in Figure 3. A

Camera is a device to capture the object(s) image. Then, the

RGB input image is converted into grayscale. The contrast

limited adaptive histogram equalization (CLAHE) is

performed to the grayscale image to improve the image’s

contrast. This CLAHE image is filtered with a filter kernel in

2D convolution process, to express how the shape of the input

image is modified by a filter. Finally, the max pooling is

performed to reduce the spatial dimensions of an input

volume.

Figure 3. The experimental method

2.1 Contrast Limited Adaptive Histogram

Equalization (CLAHE)

Adaptive histogram equalization (AHE) is a

computer image processing technique used to

improve contrast in images. It differs from ordinary histogram

equalization in the respect that the adaptive method computes

several histograms, each corresponding to a distinct section of

the image, and uses them to redistribute the lightness values

of the image. It is therefore suitable for improving the local

contrast and enhancing the definitions of edges in each region

of an image [1][3][4].

http://www.ijcat.com/
https://en.wikipedia.org/wiki/Image_processing
https://en.wikipedia.org/wiki/Contrast_(vision)
https://en.wikipedia.org/wiki/Histogram_equalization
https://en.wikipedia.org/wiki/Histogram_equalization
https://en.wikipedia.org/wiki/Histogram

International Journal of Computer Applications Technology and Research

Volume 13–Issue 06, 18 – 23, 2024, ISSN:-2319–8656

DOI:10.7753/IJCATR1306.1003

www.ijcat.com 19

However, AHE has a tendency to over amplify noise in

relatively homogeneous regions of an image. A variant of

adaptive histogram equalization called contrast limited

adaptive histogram equalization (CLAHE) prevents this by

limiting the amplification. The one implementation of

CLAHE is used for improve the visibility level of foggy

image or video [4].

In CLAHE, the contrast amplification in the vicinity of a

given pixel value is given by the slope of the transformation

function. This is proportional to the slope of the

neighborhood cumulative distribution function (CDF) and

therefore to the value of the histogram at that pixel value.

CLAHE limits the amplification by clipping the histogram at

a predefined value before computing the CDF. This limits the

slope of the CDF and therefore of the transformation function.

The value at which the histogram is clipped, the so-called clip

limit, depends on the normalization of the histogram and

thereby on the size of the neighborhood region. Common

values limit the resulting amplification to between 3 and 4.

It is advantageous not to discard the part of the histogram

that exceeds the clip limit but to redistribute it equally among

all histogram bins [5-8].

Figure 4. The histogram distribution in CLAHE [5]

The redistribution will push some bins over the clip limit

again (region shaded green in the Figure 4), resulting in an

effective clip limit that is larger than the prescribed limit and

the exact value of which depends on the image. If this is

undesirable, the redistribution procedure can be repeated

recursively until the excess is negligible.

The CLAHE algorithm has three major parts: tile

generation, histogram equalization, and bilinear interpolation.

The input image is first divided into sections. Each section is

called a tile. Histogram equalization is then performed on

each tile using a pre-defined clip limit. Histogram

equalization consists of five steps: histogram computation,

excess calculation, excess distribution, excess redistribution,

and scaling and mapping using a cumulative distribution

function (CDF). The histogram is computed as a set of bins

for each tile. Histogram bin values higher than the clip limit

are accumulated and distributed into other bins. CDF is then

calculated for the histogram values. CDF values of each tile

are scaled and mapped using the input image pixel values.

The resulting tiles are stitched together using bilinear

interpolation, to generate an output image with improved

contrast.

To increase image contrast, use the CLAHE algorithm as

below. Grayscale and color photos can both be processed

using this approach.

CLAHE algorithm steps are as follows [9]:

Step 1: Input image

Step 2: Segment input images into tiles

Step 3: Compute histogram for each tiles

Step 4: Apply TFM to compute clip limit

Step 5: Limit the contrast based on computed clip limit

Step 6: Check for enhanced image

Step 7: Enhanced image

Figure 5. Steps followed in CLAHE algorithm [9].

Figure 5 illustrates the steps to be followed in the CLAHE

algorithm. Prior to creating a histogram for each context

region, a given input image is first separated into context

regions. So that various portions of the image may be easily

linked, a mapping function is used to produce an image

mapping. The image noise is subsequently reduced using an

interpolation approach. This enables us to lessen the noise in

particular regions of the image. Although the method denoises

the image, it does not do so fully.

2.2 Filter Kernel
A filter kernel, often simply referred to as a kernel or a

filter, is a small matrix of weights used in convolutional

operations, particularly in image processing and computer

vision tasks. The kernel acts as a window or a template that is

systematically applied to an input image to perform operations

such as feature extraction, blurring, sharpening, edge

detection, and more.

Key characteristics of a filter kernel include:

1. Size: The size of the kernel determines the spatial extent

of the features it detects or the type of operation it

performs. Common sizes include 3x3, 5x5, and 7x7

kernels, although larger or smaller kernels can also be

used depending on the specific task.

2. Weights: Each element in the kernel matrix represents a

weight that determines the contribution of the

corresponding pixel in the input image to the output

result. These weights are often learned during the training

process in neural networks or manually defined for

specific image processing tasks.

3. Center: The center element of the kernel matrix is

typically aligned with the pixel being processed in the

input image during convolution operations. The weights

of the kernel are applied to the surrounding pixels in the

input image to compute the output value for that pixel.

4. Functionality: The values in the kernel matrix define a

mathematical operation that is applied to the input image.

For example, in edge detection, the kernel may be

designed to highlight areas of rapid intensity change,

while in blurring, the kernel may apply a smoothing effect

by averaging neighboring pixel values.

Examples of commonly used filter kernels include:

1. Identity Kernel: A 3x3 kernel with a center value of 1

and all other values set to 0. It preserves the original

image without any modification.

http://www.ijcat.com/
https://en.wikipedia.org/wiki/Signal_noise
https://en.wikipedia.org/wiki/Adaptive_histogram_equalization#Contrast_Limited_AHE
https://en.wikipedia.org/wiki/Adaptive_histogram_equalization#Contrast_Limited_AHE
https://en.wikipedia.org/wiki/Cumulative_distribution_function

International Journal of Computer Applications Technology and Research

Volume 13–Issue 06, 18 – 23, 2024, ISSN:-2319–8656

DOI:10.7753/IJCATR1306.1003

www.ijcat.com 20

2. Gaussian Kernel: A 2D Gaussian distribution used for

blurring or smoothing images. It assigns higher weights to

central pixels and lower weights to surrounding pixels,

resulting in a blur effect.

3. Sobel Kernels: A pair of 3x3 kernels used for edge

detection. One kernel highlights vertical edges, while the

other highlights horizontal edges.

4. Laplacian Kernel: A 3x3 kernel used for edge detection

and image sharpening by emphasizing regions of rapid

intensity change.

Filter kernels are versatile tools that enable a wide range of

image processing and feature extraction tasks, playing a

crucial role in the success of convolutional operations in

various computer vision applications. Some of filters are

shown in Figure 6 [10].

Figure 6 Some of filter kernel [10].

2.3 2D Convolution
2D convolution is a fundamental operation in image

processing and computer vision, widely used in Convolutional

Neural Networks (CNNs) for feature extraction. It involves

applying a filter, also known as a kernel or a mask, to an input

image to produce a feature map that highlights specific

patterns or features.

Here's how 2D convolution works:

1. Input Image: The process begins with an input image

represented as a two-dimensional grid of pixels, where

each pixel contains grayscale intensity values or color

channels (e.g., red, green, blue).

2. Filter or Kernel: A filter or kernel is a small matrix of

weights that slides over the input image. The size of the

kernel determines the spatial extent of the features it

detects. For example, a 3x3 kernel captures local features,

while larger kernels capture more global patterns.

3. Convolution Operation: The kernel is convolved with

the input image by sliding it over the image and

computing the element-wise multiplication between the

kernel and the corresponding pixel values in the image

patch covered by the kernel. These products are summed

up to produce a single value, which becomes the

corresponding pixel value in the output feature map.

4. Stride and Padding: The kernel moves across the input

image with a specified step size called the stride. Padding

may also be applied to the input image to preserve its

spatial dimensions during convolution, ensuring that the

output feature map has the same spatial dimensions as the

input image.

5. Output Feature Map: As the kernel slides over the input

image, it computes the convolution operation at each

position, generating a new grid of values known as the

output feature map. Each value in the feature map

represents a local feature or pattern detected in the

corresponding region of the input image.

The convolution operation captures various types of features

such as edges, textures, and shapes present in the input image.

By learning appropriate filter weights during training,

convolutional layers in CNNs can automatically extract

hierarchical representations of visual features, enabling the

network to perform tasks like image classification, object

detection, and segmentation.

2D convolutions, a convolution generalized to matrices,

are useful in computer vision for a variety of reasons,

including edge detection and convolutional neural networks.

Their exact usage will not be discussed here, and instead we

will discuss an efficient way to calculate a 2D convolution

with the FFT we have already developed. We have a “data”

matrix, representing an image, and we have a kernel matrix,

which is the matrix we imagine sliding over the image. This is

also known as a filter [11][12][13].

For 2D convolutions, the result is slightly ambiguous

depending on how one defines it. We will use scipy’s

definition, where to calculate the value of the convolution at a

particular point, we imagine the bottom right corner of the

kernel placed over that point.

We define the 2D convolution between an image x of size

M×N and a kernel h of size H×W as follows (similar to the 1D

case, we assume both matrices are padded with 0’s):

 (1)

This operation is also symmetric, so what we call the

image and the kernel is essentially arbitrary (by convention,

the kernel is the smaller matrix). The resulting matrix is going

to be of size (M + H − 1)×(N + W − 1) from the same logic as

the 1D case. Thus, the time it takes to compute the

convolution is O(MNHW). We can, however, take advantage

of a trick if the kernel has a certain property.

Figure 7. A convolution process [11]

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 13–Issue 06, 18 – 23, 2024, ISSN:-2319–8656

DOI:10.7753/IJCATR1306.1003

www.ijcat.com 21

In summary, 2D convolution plays a crucial role in

extracting meaningful features from input images, providing

the foundation for advanced computer vision algorithms and

applications. Its ability to capture local patterns and spatial

relationships enables machines to perceive and interpret visual

information with remarkable accuracy and efficiency.

2.4 Pooling Layer
The pooling layers are used to sub-sample the feature

maps (produced after convolution operations), i.e. it takes the

larger size feature maps and shrinks them to lower sized

feature maps. While shrinking the feature maps it always

preserve the most dominant features (or information) in each

pool steps. The pooling operation is performed by specifying

the pooled region size and the stride of the operation, similar

to convolution operation [1].

Figure 8. Illustrating the max pooling process [1]

There are different types of pooling techniques are used in

different pooling layers such as max pooling, min pooling,

average pooling, gated pooling, tree pooling, etc. Max Pooling

is the most popular and mostly used pooling technique.

The main drawback of pooling layer is that it sometimes

decreases the overall performance of CNN. The reason behind

this is that pooling layer helps CNN to find whether a specific

feature is present in the given input image or not without

caring about the correct position of that feature [1].

Typically, the size of the pooling window is 3×3, and the

stride with which the window is moved is also 2 pixels, as

shown in Figure 7. This setup reduces the size of the input by

half, both in height and width, effectively reducing the total

number of pixels by 75%.

Max pooling offers several benefits in the context of

CNNs [8]:

Feature Invariance: Max pooling helps the model to become

invariant to the location and orientation of features. This

means that the network can recognize an object in an image

no matter where it is located.

Dimensionality Reduction: By down sampling the input,

max pooling significantly reduces the number of parameters

and computations in the network, thus speeding up the

learning process and reducing the risk of overfitting.

Noise Suppression: Max pooling helps to suppress noise in

the input data. By taking the maximum value within the

window, it emphasizes the presence of strong features and

diminishes the weaker ones.

3. THE EXPERIMENTAL RESULT
In this section, we explain our experimental result. We use

an input image captured by a camera. The image size is

640×480 pixels. This experiment is performed using

programming language C++ and openCV library.

The programming code to convert the RGB input image

into grayscale is:

cvtColor(imgOriginal,imgGrey,COLOR_BGR2GRAY);

The programming code to convert the grayscale image into

CLAHE image with clip limit 4, are:

Ptr<CLAHE> clahe = createCLAHE();
clahe->setClipLimit(4);
clahe->apply(imgGrey,imgClahe);

To create the filter kernel 3×3 is as follows:

kernelPFH = (Mat_<int>(3,3) << -1, 0, 1, -1, 0, 1, -1, 0, 1);

 //Prewitt filter horizontal

Then the convolution process is performed in

filter2D(src,dst,ddepth,kernel,anchor,delta,BORDER_DEFAULT) as:

 filter2D(imgClahe,output, -1 , kernel, Point(-1, -1), 0, 4);

where the arguments denote:

- src : source image.

- dst : destination image.

- ddepth : the depth of dst. A negative value (such as -1)

indicates that the depth is same as the source.

- kernel : the kernel to be scanned through the image.

- anchor : the position of the anchor relative to its kernel.

The location Point(-1,-1) indicates the center by default.

- delta : a value to be added to each pixel during the

correlation. By default it is 0.

- BORDER_DEFAULT : we let this value by default.

The result images are depicted in Figure 9 and 10.

Figure 9 is processing of static image, to compare the

convolved image with grayscale input and CLAHE

input. It is shown in Figure 9(e) more texture than (b).

Figure 10 is processing of the real time frame that

captured by a camera, with the image size of 640×480

pixels. It shows the convolved and pooled image.

4. CONCLUSION
2D convolution serves as a powerful tool for capturing

spatial patterns and extracting hierarchical features from input

images. By convolving learnable filter kernels across the

image grid, convolutional layers effectively detect edges,

textures, shapes, and other visual motifs, enabling the network

to learn rich representations of the input data. Through the

process of convolution, raw pixel values are transformed into

higher-level features that encode essential information about

the underlying structure of the input image.

On the other hand, max pooling serves as a selective

down-sampling mechanism that preserves the most salient

features while discarding irrelevant details. By systematically

scanning through feature maps and retaining only the

maximum values within localized regions, max pooling

effectively reduces the spatial dimensions of the input data,

making subsequent layers more computationally efficient and

robust to variations in input size and position.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 13–Issue 06, 18 – 23, 2024, ISSN:-2319–8656

DOI:10.7753/IJCATR1306.1003

www.ijcat.com 22

The experiment has been conducted to observe the result

of convolution and max pooling process in real time. The

experiment results show the pooled image still has a similar

pattern to the input image, i.e. the convolved image. The

pooled image becomes an object’s feature to be fed to the

classifier.

5. REFERENCES

[1] Ghosh, A., Sufian, A., Sultana, F., Chakrabarti, A., De,

Debashis. 2020. Fundamental Concepts of Convolutional

Neural Network. 10.1007/978-3-030-32644-9_36.

[2] K. Fukushima. Neocognitron. 1980. A self-organizing

neural network model for a mechanism of pattern

recognition unaffected by shift in position. Biological

Cybernetics, 36(4):193-202.

[3] S. M. Pizer, R. E. Johnston, J. P. Ericksen, B. C.

Yankaskas and K. E. Muller, "Contrast-limited adaptive

histogram equalization: speed and effectiveness," [1990]

Proceedings of the First Conference on Visualization in

Biomedical Computing, Atlanta, GA, USA, 1990, pp.

337-345.

[4] G. Yadav, S. Maheshwari and A. Agarwal, "Contrast

limited adaptive histogram equalization based

enhancement for real time video system," 2014

International Conference on Advances in Computing,

Communications and Informatics (ICACCI), Delhi,

India, 2014, pp. 2392-2397.

[5] S. M. Pizer, E. P. Amburn, J. D. Austin, et al.: Adaptive

Histogram Equalization and Its Variations. Computer

Vision, Graphics, and Image Processing 39. 1987. Pp.

355-368.

[6] K. Zuiderveld: Contrast Limited Adaptive Histogram

Equalization. In: P. Heckbert: Graphics Gems IV,

Academic Press 1994, ISBN 0-12-336155-9.

[7] T. Sund & A. Moystad: Sliding window adaptive

histogram equalization of intra-oral radiographs: effect

on diagnostic quality. Dentomaxillofac Radiol. 2006

May;35(3):133-8.

[8] G. R. Vidhya and H. Ramesh, Effectiveness of contrast

limited adaptive histogram equalization technique on

multispectral satellite imagery, Proc. Int. Conf. Video

Image Process., Dec. 2017. pp. 234-239.

[9] Venkatesh S., John De Britto C., Subhashini P.,

Somasundaram K. Image Enhancement and

Implementation of CLAHE Algorithm and Bilinear

Interpolation. Cybernetics and systems: an International

Journal. 2022.

[10] Filters in convolutional neural networks, 2022.

https://blog.paperspace.com/filters-in-convolutional-

neural-networks/.

[11] Stephen Huan, 2020, Fast Fourier Transform and 2D

Convolutions.

[12] Vincent Mazet. Convolution. Basics of Image Processing

— (Université de Strasbourg), 2020-2024

https://vincmazet.github.io/bip/filtering/convolution.html

[13] Pupeikis, Rimantas. (2022). Revised 2D convolution.

10.13140/RG.2.2.11346.68809.

(a) (b) (c)

http://www.ijcat.com/
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0-12-336155-9
https://blog.paperspace.com/filters-in-convolutional-neural-networks/
https://blog.paperspace.com/filters-in-convolutional-neural-networks/
https://vincmazet.github.io/bip/filtering/convolution.html

International Journal of Computer Applications Technology and Research

Volume 13–Issue 06, 18 – 23, 2024, ISSN:-2319–8656

DOI:10.7753/IJCATR1306.1003

www.ijcat.com 23

(d) (e)

Figure 9. Original and convolved images (a) the original image (b) grayscale image (c) the convolved output of (b)
(d) CLAHE image (e) the convolved output of (d)

 (a) (b)

 (c) (d)

Figure 10. Processing of real time frame (a) original image, size of 640×480 pixels (b) CLAHE image (c) convolved image (d) max pooled image of

(c), size of 320×240 pixels

http://www.ijcat.com/

