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Abstract: In Convolutional Neural Network (CNN) consists of process of 2D convolution and max pooling. 2D convolution is 

performed to express the shape of an object in an image. Max pooling is one way to reduce the spatial dimensions of an input volume. 

They are together to create an object’s feature. As we know, the feature extraction is an important part in classification and detection 

task. A good feature can distinguish the shape of one object from another. It will increase the classification and detection accuracy. In 

this paper, researcher will build and observe the real time 2-D convolution and max pooling process for feature extraction. 
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1. INTRODUCTION 
As we delve into the inner workings of Convolutional 

Neural Networks, we encounter two fundamental processes: 

2D Convolution and Max Pooling. These operations play a 

crucial role in extracting meaningful features from input 

images, paving the way for robust pattern recognition and 

classification. 2D Convolution and Max Pooling process, 

which are fundamental operations in Convolutional Neural 

Networks (CNNs) used for feature extraction and down-

sampling. 

2D Convolution, a cornerstone of CNNs. Imagine a 

pristine canvas representing our input image, brimming with 

pixels waiting to reveal their secrets. In the world of 

convolution, kernels—small, learnable filters—act as brushes, 

sweeping across the image to uncover distinctive patterns. 

As the kernel traverses the image, it performs a dot 

product between its weights and the corresponding pixel 

values in each local region. This process yields a new value—

a feature—that encapsulates the essence of the underlying 

structure within that region. With each stroke of the kernel, 

the canvas transforms, revealing hidden edges, textures, and 

shapes. 

Max Pooling, like a magnifying glass, scans through the 

feature maps generated by convolution, selecting the most 

salient elements within localized regions. It achieves this by 

selecting the maximum value within each window, discarding 

irrelevant details and retaining only the most prominent 

features. Through this process, our canvas undergoes a subtle 

transformation, shrinking in size while amplifying the 

significance of its contents. A conceptual model of CNN is 

shown in Figure 1 [1]. Creating of feature extraction is shown 

in Figure 2 [2]. 

 

 
Figure 1. Conceptual model of CNN [1] 

 

 

 

 
Figure 2. Schematic diagram illustrating the interconnections 

between layers in the neocognitron [2] 

 

2. THE PROPOSED METHOD 
The experimental method can be shown in Figure 3. A 

Camera is a device to capture the object(s) image. Then, the 

RGB input image is converted into grayscale. The contrast 

limited adaptive histogram equalization (CLAHE) is 

performed to the grayscale image to improve the image’s 

contrast. This CLAHE image is filtered with a filter kernel in 

2D convolution process, to express how the shape of the input 

image is modified by a filter. Finally, the max pooling is 

performed to reduce the spatial dimensions of an input 

volume. 

 
Figure 3. The experimental method 

 

2.1 Contrast Limited Adaptive Histogram 

Equalization (CLAHE) 

Adaptive histogram equalization (AHE) is a 

computer image processing technique used to 

improve contrast in images. It differs from ordinary histogram 

equalization in the respect that the adaptive method computes 

several histograms, each corresponding to a distinct section of 

the image, and uses them to redistribute the lightness values 

of the image. It is therefore suitable for improving the local 

contrast and enhancing the definitions of edges in each region 

of an image [1][3][4]. 

http://www.ijcat.com/
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However, AHE has a tendency to over amplify noise in 

relatively homogeneous regions of an image. A variant of 

adaptive histogram equalization called contrast limited 

adaptive histogram equalization (CLAHE) prevents this by 

limiting the amplification. The one implementation of 

CLAHE is used for improve the visibility level of foggy 

image or video [4]. 

In CLAHE, the contrast amplification in the vicinity of a 

given pixel value is given by the slope of the transformation 

function. This is proportional to the slope of the 

neighborhood cumulative distribution function (CDF) and 

therefore to the value of the histogram at that pixel value. 

CLAHE limits the amplification by clipping the histogram at 

a predefined value before computing the CDF. This limits the 

slope of the CDF and therefore of the transformation function. 

The value at which the histogram is clipped, the so-called clip 

limit, depends on the normalization of the histogram and 

thereby on the size of the neighborhood region. Common 

values limit the resulting amplification to between 3 and 4. 

It is advantageous not to discard the part of the histogram 

that exceeds the clip limit but to redistribute it equally among 

all histogram bins [5-8]. 

 
Figure 4. The histogram distribution in CLAHE [5] 

 
The redistribution will push some bins over the clip limit 

again (region shaded green in the Figure 4), resulting in an 

effective clip limit that is larger than the prescribed limit and 

the exact value of which depends on the image. If this is 

undesirable, the redistribution procedure can be repeated 

recursively until the excess is negligible. 

The CLAHE algorithm has three major parts: tile 

generation, histogram equalization, and bilinear interpolation. 

The input image is first divided into sections. Each section is 

called a tile. Histogram equalization is then performed on 

each tile using a pre-defined clip limit. Histogram 

equalization consists of five steps: histogram computation, 

excess calculation, excess distribution, excess redistribution, 

and scaling and mapping using a cumulative distribution 

function (CDF). The histogram is computed as a set of bins 

for each tile. Histogram bin values higher than the clip limit 

are accumulated and distributed into other bins. CDF is then 

calculated for the histogram values. CDF values of each tile 

are scaled and mapped using the input image pixel values. 

The resulting tiles are stitched together using bilinear 

interpolation, to generate an output image with improved 

contrast. 

To increase image contrast, use the CLAHE algorithm as 

below. Grayscale and color photos can both be processed 

using this approach. 

CLAHE algorithm steps are as follows [9]: 

Step 1: Input image 

Step 2: Segment input images into tiles 

Step 3: Compute histogram for each tiles 

Step 4: Apply TFM to compute clip limit 

Step 5: Limit the contrast based on computed clip limit 

Step 6: Check for enhanced image 

Step 7: Enhanced image 

 

 
Figure 5. Steps followed in CLAHE algorithm [9]. 

 

Figure 5 illustrates the steps to be followed in the CLAHE 

algorithm. Prior to creating a histogram for each context 

region, a given input image is first separated into context 

regions. So that various portions of the image may be easily 

linked, a mapping function is used to produce an image 

mapping. The image noise is subsequently reduced using an 

interpolation approach. This enables us to lessen the noise in 

particular regions of the image. Although the method denoises 

the image, it does not do so fully. 

 

2.2 Filter Kernel 
A filter kernel, often simply referred to as a kernel or a 

filter, is a small matrix of weights used in convolutional 

operations, particularly in image processing and computer 

vision tasks. The kernel acts as a window or a template that is 

systematically applied to an input image to perform operations 

such as feature extraction, blurring, sharpening, edge 

detection, and more. 

Key characteristics of a filter kernel include: 

1. Size: The size of the kernel determines the spatial extent 

of the features it detects or the type of operation it 

performs. Common sizes include 3x3, 5x5, and 7x7 

kernels, although larger or smaller kernels can also be 

used depending on the specific task. 

2. Weights: Each element in the kernel matrix represents a 

weight that determines the contribution of the 

corresponding pixel in the input image to the output 

result. These weights are often learned during the training 

process in neural networks or manually defined for 

specific image processing tasks. 

3. Center: The center element of the kernel matrix is 

typically aligned with the pixel being processed in the 

input image during convolution operations. The weights 

of the kernel are applied to the surrounding pixels in the 

input image to compute the output value for that pixel. 

4. Functionality: The values in the kernel matrix define a 

mathematical operation that is applied to the input image. 

For example, in edge detection, the kernel may be 

designed to highlight areas of rapid intensity change, 

while in blurring, the kernel may apply a smoothing effect 

by averaging neighboring pixel values. 

 

Examples of commonly used filter kernels include: 

1. Identity Kernel: A 3x3 kernel with a center value of 1 

and all other values set to 0. It preserves the original 

image without any modification. 

http://www.ijcat.com/
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https://en.wikipedia.org/wiki/Adaptive_histogram_equalization#Contrast_Limited_AHE
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https://en.wikipedia.org/wiki/Cumulative_distribution_function
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2. Gaussian Kernel: A 2D Gaussian distribution used for 

blurring or smoothing images. It assigns higher weights to 

central pixels and lower weights to surrounding pixels, 

resulting in a blur effect. 

3. Sobel Kernels: A pair of 3x3 kernels used for edge 

detection. One kernel highlights vertical edges, while the 

other highlights horizontal edges. 

4. Laplacian Kernel: A 3x3 kernel used for edge detection 

and image sharpening by emphasizing regions of rapid 

intensity change. 

Filter kernels are versatile tools that enable a wide range of 

image processing and feature extraction tasks, playing a 

crucial role in the success of convolutional operations in 

various computer vision applications. Some of filters are 

shown in Figure 6 [10]. 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Some of filter kernel [10]. 

2.3 2D Convolution 
2D convolution is a fundamental operation in image 

processing and computer vision, widely used in Convolutional 

Neural Networks (CNNs) for feature extraction. It involves 

applying a filter, also known as a kernel or a mask, to an input 

image to produce a feature map that highlights specific 

patterns or features. 

Here's how 2D convolution works: 

1. Input Image: The process begins with an input image 

represented as a two-dimensional grid of pixels, where 

each pixel contains grayscale intensity values or color 

channels (e.g., red, green, blue). 

2. Filter or Kernel: A filter or kernel is a small matrix of 

weights that slides over the input image. The size of the 

kernel determines the spatial extent of the features it 

detects. For example, a 3x3 kernel captures local features, 

while larger kernels capture more global patterns. 

3. Convolution Operation: The kernel is convolved with 

the input image by sliding it over the image and 

computing the element-wise multiplication between the 

kernel and the corresponding pixel values in the image 

patch covered by the kernel. These products are summed 

up to produce a single value, which becomes the 

corresponding pixel value in the output feature map. 

4. Stride and Padding: The kernel moves across the input 

image with a specified step size called the stride. Padding 

may also be applied to the input image to preserve its 

spatial dimensions during convolution, ensuring that the 

output feature map has the same spatial dimensions as the 

input image. 

5. Output Feature Map: As the kernel slides over the input 

image, it computes the convolution operation at each 

position, generating a new grid of values known as the 

output feature map. Each value in the feature map 

represents a local feature or pattern detected in the 

corresponding region of the input image. 

The convolution operation captures various types of features 

such as edges, textures, and shapes present in the input image. 

By learning appropriate filter weights during training, 

convolutional layers in CNNs can automatically extract 

hierarchical representations of visual features, enabling the 

network to perform tasks like image classification, object 

detection, and segmentation. 

2D convolutions, a convolution generalized to matrices, 

are useful in computer vision for a variety of reasons, 

including edge detection and convolutional neural networks. 

Their exact usage will not be discussed here, and instead we 

will discuss an efficient way to calculate a 2D convolution 

with the FFT we have already developed. We have a “data” 

matrix, representing an image, and we have a kernel matrix, 

which is the matrix we imagine sliding over the image. This is 

also known as a filter [11][12][13]. 

For 2D convolutions, the result is slightly ambiguous 

depending on how one defines it. We will use scipy’s 

definition, where to calculate the value of the convolution at a 

particular point, we imagine the bottom right corner of the 

kernel placed over that point. 

We define the 2D convolution between an image x of size 

M×N and a kernel h of size H×W as follows (similar to the 1D 

case, we assume both matrices are padded with 0’s):  

   (1) 

 

This operation is also symmetric, so what we call the 

image and the kernel is essentially arbitrary (by convention, 

the kernel is the smaller matrix). The resulting matrix is going 

to be of size (M + H − 1)×(N + W − 1) from the same logic as 

the 1D case. Thus, the time it takes to compute the 

convolution is O(MNHW). We can, however, take advantage 

of a trick if the kernel has a certain property. 

 

 
Figure 7. A convolution process [11] 

 

http://www.ijcat.com/


International Journal of Computer Applications Technology and Research 

Volume 13–Issue 06, 18 – 23, 2024, ISSN:-2319–8656 

DOI:10.7753/IJCATR1306.1003 

www.ijcat.com  21 

In summary, 2D convolution plays a crucial role in 

extracting meaningful features from input images, providing 

the foundation for advanced computer vision algorithms and 

applications. Its ability to capture local patterns and spatial 

relationships enables machines to perceive and interpret visual 

information with remarkable accuracy and efficiency. 

 

2.4 Pooling Layer 
The pooling layers are used to sub-sample the feature 

maps (produced after convolution operations), i.e. it takes the 

larger size feature maps and shrinks them to lower sized 

feature maps. While shrinking the feature maps it always 

preserve the most dominant features (or information) in each 

pool steps. The pooling operation is performed by specifying 

the pooled region size and the stride of the operation, similar 

to convolution operation [1]. 

 

 
Figure 8. Illustrating the max pooling process [1] 

 

 

There are different types of pooling techniques are used in 

different pooling layers such as max pooling, min pooling, 

average pooling, gated pooling, tree pooling, etc. Max Pooling 

is the most popular and mostly used pooling technique. 

The main drawback of pooling layer is that it sometimes 

decreases the overall performance of CNN. The reason behind 

this is that pooling layer helps CNN to find whether a specific 

feature is present in the given input image or not without 

caring about the correct position of that feature [1]. 

Typically, the size of the pooling window is 3×3, and the 

stride with which the window is moved is also 2 pixels, as 

shown in Figure 7. This setup reduces the size of the input by 

half, both in height and width, effectively reducing the total 

number of pixels by 75%. 

Max pooling offers several benefits in the context of 

CNNs [8]: 

Feature Invariance: Max pooling helps the model to become 

invariant to the location and orientation of features. This 

means that the network can recognize an object in an image 

no matter where it is located. 

Dimensionality Reduction: By down sampling the input, 

max pooling significantly reduces the number of parameters 

and computations in the network, thus speeding up the 

learning process and reducing the risk of overfitting. 

Noise Suppression: Max pooling helps to suppress noise in 

the input data. By taking the maximum value within the 

window, it emphasizes the presence of strong features and 

diminishes the weaker ones. 

3. THE EXPERIMENTAL RESULT 
In this section, we explain our experimental result. We use 

an input image captured by a camera. The image size is 

640×480 pixels. This experiment is performed using 

programming language C++ and openCV library.   

The programming code to convert the RGB input image 

into grayscale is: 

 
cvtColor(imgOriginal,imgGrey,COLOR_BGR2GRAY); 

 
The programming code to convert the grayscale image into 

CLAHE image with clip limit 4, are: 

 
Ptr<CLAHE> clahe = createCLAHE(); 
clahe->setClipLimit(4); 
clahe->apply(imgGrey,imgClahe); 

 
To create the filter kernel 3×3 is as follows: 

 
kernelPFH = (Mat_<int>(3,3) << -1, 0, 1, -1, 0, 1, -1, 0, 1);        

 //Prewitt filter horizontal 
 
Then the convolution process is performed in 

filter2D(src,dst,ddepth,kernel,anchor,delta,BORDER_DEFAULT) as: 

 
     filter2D(imgClahe,output, -1 , kernel, Point(-1, -1), 0, 4); 

 
where the arguments denote: 

- src : source image. 

- dst : destination image. 

- ddepth : the depth of dst. A negative value (such as -1) 

indicates that the depth is same as the source. 

- kernel : the kernel to be scanned through the image. 

- anchor : the position of the anchor relative to its kernel. 

The location Point(-1,-1) indicates the center by default. 

- delta : a value to be added to each pixel during the 

correlation. By default it is 0. 

- BORDER_DEFAULT : we let this value by default. 

 

The result images are depicted in Figure 9 and 10. 

Figure 9 is processing of static image, to compare the 

convolved image with grayscale input and CLAHE 

input. It is shown in Figure 9(e) more texture than (b). 

Figure 10 is processing of the real time frame that 

captured by a camera, with the image size of 640×480 

pixels. It shows the convolved and pooled image. 
 

4. CONCLUSION 
2D convolution serves as a powerful tool for capturing 

spatial patterns and extracting hierarchical features from input 

images. By convolving learnable filter kernels across the 

image grid, convolutional layers effectively detect edges, 

textures, shapes, and other visual motifs, enabling the network 

to learn rich representations of the input data. Through the 

process of convolution, raw pixel values are transformed into 

higher-level features that encode essential information about 

the underlying structure of the input image. 

On the other hand, max pooling serves as a selective 

down-sampling mechanism that preserves the most salient 

features while discarding irrelevant details. By systematically 

scanning through feature maps and retaining only the 

maximum values within localized regions, max pooling 

effectively reduces the spatial dimensions of the input data, 

making subsequent layers more computationally efficient and 

robust to variations in input size and position. 

http://www.ijcat.com/
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The experiment has been conducted to observe the result 

of convolution and max pooling process in real time. The 

experiment results show the pooled image still has a similar 

pattern to the input image, i.e. the convolved image. The 

pooled image becomes an object’s feature to be fed to the 

classifier. 
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(d)                                    (e) 

Figure 9. Original and convolved images (a) the original image (b) grayscale image (c) the convolved output of (b)  
(d) CLAHE image (e) the convolved output of (d) 

 

  
                                                                            (a)                                                                                 (b) 

   
                                                                                                 (c)                                                              (d) 

Figure 10. Processing of real time frame (a) original image, size of 640×480 pixels (b) CLAHE image (c) convolved image (d) max pooled image of 

(c), size of 320×240 pixels 
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