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Abstract: This paper explores the theoretical application of reinforcement learning (RL) to dynamic resource management in 

Continuous Integration and Continuous Delivery (CI/CD) environments like build and test environments. Focusing on the scaling and 

capacity optimization of virtual machine (VM) pools, the study proposes the use of a Deep Deterministic Policy Gradient (DDPG) 

model, tailored for environments characterized by continuous action spaces and complex, dynamic demands. The paper delineates a 

theoretical framework where an RL agent dynamically adapts VM allocations based on real-time requirements, potentially enhancing 

operational efficiency and reducing costs. Tthe research outlines a conceptual model that leverages the capabilities of RL to address 

resource allocation challenges inherent to modern software development. The discussion anticipates that the integration of RL could 

revolutionize traditional resource management strategies by providing more agile, efficient, and cost-effective solutions. Future 

research directions are suggested, focusing on exploration of alternative RL algorithms for practical implementations in CI/CD 

environments. This work contributes to the literature by proposing a novel approach to optimizing resource management in CI/CD 

systems, setting a foundation for future studies and technological advancements in the field. 
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1. INTRODUCTION 
Continuous Integration and Continuous Delivery (CI/CD) 

pipelines represent automated processes in software 

development that enable frequent and reliable code changes 

through automated testing and deployment methods. These 

pipelines are fundamental in supporting rapid development 

cycles and ensuring that the integration and delivery of code 

changes are both smooth and efficient. They primarily involve 

a series of steps that include compiling code, running tests, 

and deploying to production environments. 

Resource management within CI/CD environments like build 

and test environments pose significant challenges, primarily 

due to the changing development needs and the variability in 

workload demands. Traditional static resource allocation 

strategies often lead to either underutilization of resources, 

which is cost-inefficient, or resource scarcity, which can delay 

the pipeline processes [4]. The fluctuating demands on CI/CD 

systems can therefore benefit from a more adaptive approach 

to manage computing resources effectively, particularly in 

environments where multiple pipelines are concurrently 

active. [5] 

This paper aims to explore the application of reinforcement 

learning for dynamic resource management in CI/CD 

environments, focusing specifically on the scaling and 

capacity optimization of VM pools across multiple pipelines. 

The application described is conceptual and builds on a robust 

theoretical understanding of both the operational challenges in 

CI/CD systems and the capabilities of modern reinforcement 

learning techniques. By modeling the CI/CD environment and 

the application of RL, this work proposes a novel approach to 

resource management that could significantly enhance the 

efficiency and effectiveness of CI/CD pipelines. The 

contributions of this paper, therefore, provide a solid 

framework and offer substantial insights for future research 

and practical implementations in this area. 

2. BACKGROUND 

2.1 Current Practices 
Current practices in resource allocation within CI/CD 

environments typically involve static or semi-static resource 

management strategies [21]. These strategies are defined by 

predetermined rules based on average loads and peak 

performance needs. For instance, organizations might 

provision a fixed number of virtual machines (VMs) or 

containers that are expected to handle the anticipated 

workload. This approach, while straightforward and easy to 

implement, often fails to account for the unpredictable 

variances in demand typical in software development 

processes, resulting in either excessive cost due to over-

provisioning or delays in pipeline execution due to under-

provisioning [22, 29]. 

2.2 Literature Review 
Reinforcement learning (RL) has been used to optimize 

resource allocation across various technology sectors, 

demonstrating its effectiveness in environments with dynamic 

requirements. In cloud computing, RL has been extensively 

used to automate the scaling of computing resources, ensuring 

optimal resource utilization. Specific instances include 

algorithms that predict server load and dynamically adjust the 

number of active server instances. For example, Amazon Web 

Services uses predictive scaling in its Auto Scaling service, 

which employs machine learning models to schedule the right 

number of EC2 instances in anticipation of demand spikes. 

This approach optimizes cost and maintains system 

responsiveness without manual intervention. 

 

Further literature review revealed that data centers benefit 

significantly from RL in two main areas: energy management 

and system stability. One notable example is Google's use of 

DeepMind's AI to control data center cooling systems. The 

RL algorithm analyzes historical data and current conditions 

to adjust cooling valves and fans, reducing energy 
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consumption by up to 40% [23]. This application not only 

decreases operational costs but also improves the 

environmental footprint of data center operations. Similarly, 

RL has been used to optimize power allocation across servers 

and other hardware to maximize energy efficiency without 

compromising on performance. 

In network management, RL contributes to smarter bandwidth 

allocation and latency reduction. Algorithms learn from real-

time traffic data to anticipate bottlenecks and redistribute 

network resources accordingly. This dynamic adjustment 

helps in maintaining high service quality and managing 

network congestion effectively, especially during high-

demand periods. Companies have explored RL-based models 

for adaptive traffic routing that respond to changing network 

conditions instantaneously, ensuring optimal data flow and 

minimizing packet loss [24]. 

2.3 Gaps in Current Research 
Despite the advancements in applying AI to resource 

management, there is a noticeable gap in its application 

specifically within CI/CD pipeline management [1]. Most 

existing research focuses on the general optimization of 

resource allocation without tailoring approaches to the unique 

characteristics and challenges of CI/CD systems, such as the 

need for rapid scaling and the integration of various 

development tools and platforms [6]. This gap presents an 

opportunity to develop specific AI-driven strategies, 

particularly using reinforcement learning, to address the 

distinct aspects of CI/CD environments. Such strategies could 

lead to more responsive and cost-effective resource 

management solutions tailored to the needs of software 

development and delivery processes [28]. 

This paper contributes to the body of knowledge by 

specifically focusing on the application of reinforcement 

learning for dynamic scaling and capacity optimization in 

CI/CD environments. The proposed model leverages 

principles of reinforcement learning to propose optimal 

scaling strategies that respond adaptively to changing 

demands in VM pools. The approach builds on established AI 

methodologies and adapts them to the specificities of CI/CD 

operations, offering a novel contribution to the field [7]. 

3. THEORETICAL FRAMEWORK 

3.1 Fundamentals of Reinforcement 

Learning 
Reinforcement Learning (RL) involves an agent that improves 

its decision-making strategy through interactions with a 

dynamic environment. By observing states and receiving 

feedback in the form of rewards or penalties based on actions 

carried out, the agent refines its policy to maximize long-term 

returns. Sometimes the agent is further broken down into 

agent and interpreter, where the agent carries out actions 

based on an interpreter applying the policy to generate 

rewards and calculate state (Figure 1). The core mechanics of 

RL involve balancing the exploration of untested actions to 

uncover potentially superior strategies against the exploitation 

of known actions that it knows will yield high rewards. An RL 

model can be broadly defined in terms of the state space, 

which consists of all possible scenarios the agent can 

encounter, the action space, which details possible actions the 

agent can take, the reward function, which is the immediate 

value of actions, the policy, a strategy mapping states to 

actions, and the value function, estimating the expected return 

from each state under the current policy.  

 

Figure. 1 

3.2 Model of the CI/CD Environment 
A CI/CD pipeline consists of various stages that build, test, 

and release software (Figure 2). However, for simplicity, the 

CI/CD environment for this study is modeled as a system 

where the states represent various levels of demand and 

resource availability within the pipeline [2]. Actions in this 

context refer to scaling decisions—specifically, the scaling up 

or down of VM pools and the adjustment of VM capacities. 

The reward function is designed to optimize resource 

utilization and cost, providing positive rewards for actions 

that enhance efficiency and negative penalties for wasteful 

resource allocation or delays in pipeline processing [10]. 

 

Figure. 2 

3.3 Impact of Reinforcement Learning  
Reinforcement learning (RL) offers a methodological 

framework for addressing the issue of dynamic resource 

allocation. By using agents that learn from interactions with 

the environment without explicit instruction, RL can 

adaptively manage resources based on the observed state of 

the system and the feedback received from the environment. 

In the context of CI/CD pipelines, an RL agent can learn 

optimal strategies for scaling up or down virtual machine 

(VM) pools based on real-time demands, thus optimizing 

resource utilization and minimizing costs [32, 33]. 

The application of reinforcement learning in this environment 

enables more agile and cost-effective management of 

resources [25]. By continuously learning from the system’s 
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performance and adapting to changes in demand, the RL agent 

can determine the most efficient allocation strategies in real-

time. This adaptive approach reduces wastage of resources 

and ensures that the CI/CD pipelines operate smoothly 

without unnecessary delays, thereby supporting faster 

software development cycles and reducing operational costs 

[26]. 

4. METHODOLOGY 

4.1 Design of the Reinforcement Learning 

Agent 
The reinforcement learning agent is based on a Deep 

Deterministic Policy Gradient (DDPG) model, a type of 

algorithm well-suited for continuous action spaces, which is 

appropriate given the nature of resource allocation in CI/CD 

environments.  

4.1.1 Actor-Critic Approach 
DDPG is an actor-critic algorithm that learns a policy (actor) 

to map states to actions and an estimated value function 

(critic) that predicts the expected rewards of taking those 

actions in given states. [3] In an actor-critic approach, the 

actor network proposes actions based on the current state, and 

the critic network evaluates these actions by estimating the 

future rewards. The Actor Network maps states to actions, 

using a deep neural network to learn the policy function. This 

network outputs the optimal action given the current state. 

The Critic Network estimates the value of taking an action in 

a given state, based on the reward function. It takes both the 

current state and the action provided by the actor as inputs, 

facilitating the training of the actor by providing gradient 

information. 

4.1.2 Model Configuration 
We can model the DDPG agent at a high level as an agent 

carrying out actions on an environment to receive rewards and 

state updates (Figure 3). Then we can further break down 

these 3 parts into: 

4.1.2.1 State Space 
The state space consists of a comprehensive snapshot of the 

system's current resource utilization and demand across 

multiple CI/CD pipelines. Each state vector includes: 

• Number of Active Pipelines: An integer count of 

currently active pipelines, which provides a direct 

measure of workload and demand. 

• Resource Requirements of Each Pipeline: A vector 

where each element represents the resource demand 

(CPU, memory, I/O throughput) of a corresponding 

pipeline. This could be normalized against maximum 

available resources to standardize input scale. 

• Current Capacity of VM Pools: Quantitative metrics such 

as total number of VMs, and the distribution of their 

capacity (e.g., percentage utilization of CPU and memory 

resources). 

4.1.2.2 Action Space 
The action space in the DDPG framework is continuous, 

which allows for fine-grained control over resource allocation 

decisions. Actions are real-valued vectors that specify: 

• Initiation or Termination of VM Instances: A set of 

values where each represents the change in the number 

of VMs dedicated to a pipeline, where positive values 

indicate initiation, and negative values indicate 

termination. 

• Adjustments to Computational Power or Memory of 

Existing VMs: Continuous adjustments to the 

configurations of existing VMs, scaled as a percentage 

increase or decrease relative to their current 

configurations. 

4.1.2.3 Reward Function 
The reward function is designed to evaluate the efficiency and 

cost-effectiveness of the actions taken by the agent. It is 

computed as a weighted sum of several factors: 

• Reduction of Idle VM Time: Rewards the agent for 

decreasing the amount of underutilized VM resources, 

which correlates directly with cost savings. 

• Avoidance of Pipeline Delays: Penalizes delays in 

pipeline execution, incentivizing the agent to maintain or 

improve throughput. 

• Minimization of Operational Costs: Incorporates cost 

metrics such as power consumption and VM rental costs, 

providing a direct incentive for cost-effective resource 

management. 

 

Figure. 3 

4.2 Capacity Optimization Techniques 
The RL agent will use the learned policy to dynamically 

adjust the number of VMs in the pool. It will consider current 

demand, pipeline priorities, and historical data on peak times 

to predict future needs. It uses both Proactive Scaling 

(adjusting resources in anticipation of increased activity based 

on trends and past usage patterns) and Reactive Scaling 

(responding in real-time to changes in demand, scaling up 

resources to meet an unexpected surge and scaling down 

during idle periods) [12]. 

Beyond simply scaling the number of VMs, the agent also 

decides on the capacity configuration for each new VM 

instance in terms of CPU, memory, and storage. This decision 

is based on the specific requirements of the pipelines currently 

in operation, aiming to match resource provisioning closely 

with the actual needs of each job. This approach minimizes 

the wastage associated with over-provisioning and the 

performance issues related to under-provisioning [30, 31]. 

The DDPG model allows for continuous learning and 

adjustment as the environment changes [13]. The agent's 

policy will evolve as it receives feedback from the 

environment in the form of rewards, which are based on the 

efficiency and cost-effectiveness of the resource allocation. 

The critic component helps in reducing the potential of sub-

optimal policy convergence by providing a baseline to 

evaluate the effectiveness of a policy [14]. 

4.3 Explanation of Model Choice 
The DDPG model is particularly well-suited for this 

application because of its ability to handle complex, 

continuous action spaces efficiently and its robustness in 
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dealing with environments with a high degree of uncertainty 

and variability—characteristics common in CI/CD systems 

[8]. This architecture also enables the agent to handle the 

high-dimensional state space of a CI/CD system, where the 

number of active pipelines and the status of each VM can vary 

significantly. This model supports a sophisticated level of 

decision-making that is essential for managing the dynamic 

and often unpredictable demands of multiple CI/CD pipelines. 

5. DISCUSSION 

5.1 Benefits of Using Reinforcement 

Learning 
The application of reinforcement learning (RL) in the 

management of CI/CD environments offers several benefits. 

Firstly, RL's ability to learn optimal policies through trial and 

error allows it to adapt to changing software development 

workflows, which are characterized by fluctuating demands 

and varying task complexities [15].  

Traditional resource scaling methods in CI/CD environments 

typically rely on static rules or thresholds that trigger scaling 

actions when certain metrics are met [20]. These methods, 

while predictable and simple to implement, often do not 

account for the nuanced variations in resource requirements 

that can occur within and across pipeline executions. In 

contrast, an RL-based approach can provide more granular 

control over resource allocation by making decisions based on 

the state of the system at any given moment [16, 19]. This can 

lead to more efficient use of resources, as the system only 

scales up when necessary and scales down as soon as feasible, 

thus avoiding both under-utilization and over-provisioning. 

The use of RL in CI/CD resource management has the 

potential to significantly enhance both efficiency and cost-

effectiveness. The RL agent, by continuously updating its 

policy based on real-time feedback, can ensure that resource 

allocation is always aligned with current needs, thus reducing 

the overhead costs associated with static resource 

provisioning methods [11]. By optimizing the allocation and 

scaling of resources dynamically, the system can ensure that 

resources are not wasted on underutilized VMs and that 

pipeline processes are not delayed by resource shortages [17].  

This can lead to faster development cycles and reduced 

operational costs, providing a competitive advantage to 

organizations that implement such advanced resource 

management systems.  

 

5.2 Potential Challenges and Mitigation 

Strategies 
Implementing an RL-based system for resource management 

in CI/CD pipelines presents several challenges. One major 

challenge is the requirement for a significant amount of data 

to train the RL agent effectively. Without adequate data, the 

agent may not be able to learn effective policies, leading to 

poor performance and potential resource wastage [18]. 

Additionally, the integration of RL into existing CI/CD 

systems can be complex, requiring substantial changes to 

infrastructure and processes. To mitigate these challenges, it is 

advisable to begin with a hybrid approach, where RL-based 

scaling decisions are initially guided by existing static rules. 

Furthermore, simulation environments can be used to train the 

RL agent before full deployment, reducing the risk of errors in 

a live setting [27]. 

6. CONCLUSION 

6.1 Summary 
This paper has explored the conceptual application of 

reinforcement learning (RL) to the problem of dynamic 

resource management in CI/CD environments, specifically 

addressing the scaling and optimization of virtual machine 

(VM) pools. The methodology employs a Deep Deterministic 

Policy Gradient (DDPG) model, chosen for its suitability in 

handling continuous action spaces and complex decision 

environments like those found in CI/CD systems. The 

theoretical framework outlines how an RL agent could 

dynamically adapt resource allocation based on real-time 

demands, thereby enhancing operational efficiency and 

reducing costs. 

The significance of this research lies in its potential to 

transform traditional static resource management strategies in 

CI/CD practices into more adaptive, efficient, and cost-

effective processes. By integrating RL into CI/CD resource 

management, organizations can potentially achieve more agile 

responses to changing demands, minimize resource wastage, 

and expedite development cycles [9]. The research presented 

lays a foundational framework for future studies and practical 

implementations that could substantiate and further develop 

these concepts. 

6.2 Future Research Directions 
Future research in this area could focus on several key 

aspects. Firstly, exploring alternative RL algorithms and 

comparing their performance in similar settings could provide 

deeper insights and potentially identify more optimized 

approaches. Further research could also examine the 

integration of RL with other AI techniques, such as predictive 

analytics, to enhance the predictive accuracy of resource 

demand and further optimize resource allocation strategies. 
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