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Abstract: This study explores the emergence of deep learning approach in predicting ionospheric total electron content (TEC); which 

is pivotal for space weather forecasting. Total electron content variability has profound implications for satellite communications and 

navigation systems, especially in regions with unique ionospheric characteristics such as equatorial Kenya. Traditional TEC prediction 

models which are rooted in empirical or physics-based methods, often encounter challenges in capturing the complex, non-linear 

behaviors inherent in equatorial ionospheric dynamics. A systematic literature review (SLR) was performed to extract and synthesize 

the algorithms and features that have been used in long short-term memory networks (LSTMs) techniques to model and predict the 

ionospheric TEC, with a focus on the unique characteristics of the geomagnetic equator at low latitudes. Several articles on 

ionospheric TEC prediction using deep learning were obtained from research databases where few were selected based on the 

inclusion/exclusion criteria used in the study. The outcome of the review from several studies embarked on deep learning using 

LSTMs architectures, they highlighted the importance of feature selection and feature engineering in enhancing prediction accuracy. 

The study also explored hybrid machine learning techniques models which showed improved forecast performance. Additionally, the 

suggestion on addressing data gaps and considering additional parameters which could further enhance the accuracy and reliability of 

TEC predictions. 
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1. INTRODUCTION 
The introduction highlights the description of ionospheric 

layers, ionization of the electron population and its impact on 

the trans-ionospheric radio transmissions, including those 

from GPS satellites which experience a time delay as a result 

of the ionized layer’s role as a dispersive medium for 

electromagnetic waves (Garner et al., 2008). The importance 

of using machine learning techniques such as LSTM for 

prediction of total electron content, where Goodfellow et al. 

(2016) state that the LSTM approach is a well-known and 

potent subset of artificial neural networks that is renowned for 

its ability to solve time series data. Recently, LSTMs have 

been used to forecast many characteristics related to space 

weather. 

1.1 TEC Variability at Low Latitudes 

According to Kumar and Singh (2009), due to existence of the 

huge background TEC values, there may be a greater 

likelihood of signal degradation over the low-latitude zones 

due to substantial changes in TEC.  It is well recognized that 

the temporal and geographical characteristics of TEC at low 

latitudes and the equatorial regions vary according to solar 

activity, season, and time of day. They further explain that 

large TEC and irregularities in electron density of the ionized 

layer can have adverse effects on transmission of signals. 

These effects include: (1) Signal Degradation; where high 

TEC levels and electron density irregularities can lead to 

signal degradation in communication systems, particularly in 

satellite communications and Global Navigation Satellite 

Systems (GNSS). This degradation can result in signal loss, 

interference, and reduced signal quality, affecting the 

reliability of communication links and navigation accuracy. 

(2) Scintillation Irregularities in electron density that is 

referring to acute variability in the amplitude and phase of 

high frequency signals passing through the ionized layer. 

Scintillation can degrade communication signals, leading to 

signal fading and loss of signal lock in GNSS receivers. (3) 

Ionospheric Perturbations; Large TEC values and electron 

density irregularities can create ionospheric perturbations that 

introduce errors in positioning and timing information 

provided by GNSS systems. These perturbations can affect 

the accuracy of location-based services, navigation 

applications, and timing synchronization. (4) Geomagnetic 

Storm Effects; During geomagnetic storms, the ionosphere 

experiences strong perturbations in TEC, which can further 

exacerbate the adverse effects on communication and 

navigation systems. Geomagnetic storms can lead to increased 

ionospheric disturbances, causing disruptions in signal 

propagation and navigation services. 
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1.2 Satellite Signals 

Shenvi and Virani (2023) explain further that the essential 

component in the transmission of radio waves is the 

ionosphere, which is located in the upper atmosphere of the 

earth. Positioning accuracy can be reduced by variations in the 

ionosphere's electron density, which can affect the radio 

signals' speed and delay as they travel from GNSS satellites to 

receivers. The ionosphere's impact on satellite 

communications is closely correlated with the TEC statistic. 

Radio waves traveling through the ionosphere are delayed by 

the TEC. Therefore, it is a significant cause of mistake in 

GNSS and other navigation systems. As a result, high 

frequency communications, navigation, and positioning 

systems all depend on the forecast of ionospheric TEC. 

Correcting location inaccuracies brought on by the ionosphere 

will be made easier with the help of a successful TEC 

forecast.  

In the studies of ionospheric variables, the ionospheric total 

electron content, is a crucial parameter. Precise TEC 

prediction is essential in the development of satellites and 

ground-based systems. Thus, it is essential to understand the 

space weather fluctuations in TEC and create precise TEC 

models  

1.3 Empirical Models 

Various models such as the NeQuick model (Nava et al., 

2008), the Bent model (Bent et al., 1975), the International 

Reference Ionosphere (IRI) model (Bilitza, 2018; Bilitza et 

al., 2022) for ionospheric parameter prediction, and global 

empirical models are currently preferred. These models offer 

substitute platforms for TEC estimate, including long-term 

forecasting. 

Nonetheless, it is still necessary to estimate the TEC instantly. 

As a result, estimated TEC values need to accurately capture 

the characteristics of visible ionosphere phenomena. Thus, in 

an effort to investigate ionospheric variability, numerous 

research has developed regional TEC forecasting models. 

There are two main types of approaches used to forecast 

regional TEC: empirical methods (Cesaroni et al., 2020) and 

physics-based methods 

However, the physics-based techniques which are now used to 

predict regional TEC are predicated on quite straightforward 

theoretical frameworks. Time-series forecasting, auto-

regressive moving average (ARMA) (Zhang et al., 2017), 

EXtreme Gradient Boosting over Decision Trees (Zhukov et 

al., 2021) and different deep learning models have recently 

been created to predict regional temperature extremes 

(Tebabal et al., 2019). 

Physical models are parameterized using simplifying 

assumptions and might not function worldwide, as well as 

because empirical data might not be available for all 

geographic regions, physical models are also not strictly 

physical. In addition, space weather activities and signal 

transmission process all contribute to the formation of the 

ionosphere. The majority of research primarily rely on data 

assimilation methods for simulating the ionospheric total 

electron content (Zewdie et al., 2021). 

1.4 Machine Learning Techniques 

Machine learning techniques offer a viable alternative. These 

techniques are well-known for their ability to learn from data 

and retrieve pertinent information. When a nonlinear system 

cannot be well described by linear approaches like least 

squares regression, they are especially well-suited for issues 

requiring a suite of variables. Many industries are now using 

machine learning and deep learning techniques, which have 

produced some amazing results (Camporeale, 2019) 

2.0 OBJECTIVE 

In the study of ionospheric variables, the ionospheric total 

electron content, is a crucial parameter. Precise TEC 

prediction is essential for the development of satellite and 

ground-based systems. Thus, it is essential to comprehend the 

space weather fluctuations in TEC and create precise TEC 

models (Xiong et al., 2021). 

Long Short-Term Memory (LSTM) model simulates time-

based data structures and their long-range dependencies. 

Many time-series prediction and time-series labeling 

applications, including recognition of speech and handwriting 

production have shown remarkable effectiveness with the 

LSTM (Goodfellow et al., 2016) 

Goodfellow et al., 2016 state further that the LSTM approach 

is a well-known and potent subset of artificial neural networks 

that is renowned for its ability to solve time series data. 

Recently, LSTMs have been used to forecast many 

characteristics related to space weather. Hence, this systematic 

review of literature is an attempt to identify methods, features, 

evaluation metrics and existing gaps in the prediction of 

ionospheric total electron content using LSTM models.  

3.0 LITERATURE REVIEW 

The review of literature was able to explores the LSTM 

techniques, ionospheric features, evaluation metrics for 

predicting the total electronic content. Also, future research 

gaps are highlighted as stipulated below: 

3.1 Deep Learning and Ionospheric 

Parameters 

Several studies have explored advanced machine learning 

methods to improve the accuracy of TEC forecasting. Zewdie 

et al. (2021) utilized Long Short-Term Memory (LSTM) 

networks, leveraging parameters from both solar wind and 

geomagnetic storm variables to predict low-latitude TEC. 

Shenvi and Virani (2023) also applied LSTM models, 

incorporating a comprehensive set of exogenous parameters 

such as Proton Density (Np), Planetary Index (AP and KP), 

Interplanetary Magnetic Field Component (Bz), Solar Radio 

Flux (F10.7), Disturbance Storm Time Index (Dst), Plasma 

Speed (Vp), and Time. Sulungu and Uiso (2019) took a 

different approach, using a multi-layer perceptron neural 

network with inputs including Year, Day of the Year, Hour of 

the Day, Geographic Latitudes, Geographic Longitudes, 

Sunspot Number (SSN), and IRI-NmF2. Additionally, Jeong 

et al. (2024) explored deep learning models, such as LSTM 

and Convolutional LSTM (ConvLSTM), incorporating 

synthetic TEC maps generated by a Deep Convolutional 

Generative Adversarial Network (DCGAN) to enhance data 

representation. 

3.2 Evaluation Metrics 

The performance of TEC forecasting models is typically 

evaluated using various error metrics. Shenvi and Virani 

(2023) assessed their LSTM model using Root Mean Square 

Error (RMSE), Mean Absolute Error (MAE), and R-squared 

(R²) to measure forecast accuracy. Similarly, Sulungu and 

Uiso (2019) evaluated their multi-layer perceptron neural 
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network using RMSE. Jeong et al. (2024) compared the 

performance of their LSTM and ConvLSTM models by 

calculating RMSE values between the predicted TEC values 

and the ground truth TEC maps generated by DCGAN. 

3.0 METHODOLOGY 

It is important  to conduct a thorough SLR in a particular field 

in order to formulate research questions and provide support 

for further studies in that field (Torres-Carrion et al., 2018). 

The research methodology in this study, adopted the 

systematic literature review techniques developed by 

Kitchenham and Charters (Wen et al., 2012). A review 

procedure was developed during the planning stage. The 

procedure involves six main stages: the research questions, 

definition, search strategy design, study selection, quality 

assessment, data extraction, and data synthesis which are the 

six primary steps of this review technique. 

3.1 Planning Review Phase 

This phase involves formulating research questions, 

developing a procedure, and ultimately validating the protocol 

to determine the viability of the strategy. Publication 

databases, first search keywords, and criteria for choice of 

publication are defined. The protocol is reworked once more 

to determine whether it now reflects an appropriate review 

protocol after all of this information has been defined. The 

internal processes of the plan review phase include; (1) 

research question definition, (2) search protocol definition, (3) 

database selection, (4) search strings definition, (5) 

publication selection criteria definition and (6) revision of 

search protocol consecutively  

3.2 Conducting the review 

In conducting the review, all of the target databases were 

searched in order to choose the publications. After the data 

was extracted, more details about the research topics as well 

as information about the authors, year and type of publication, 

were saved. Following accurate extraction of all relevant data, 

the data was synthesized to produce a summary of the 

pertinent publications that have been published to date as 

follows: (1) finding publications, (2) data extraction and (3) 

synthesizing data 

3.3 Reporting the review 

In reporting the review, the two major steps were carried out 

during conduction of the actual review: (1) showing the 

results and (2) answering the research questions 

3.4 Research Questions 

The four research questions (RQs) below have been 

established to define the main objective of this SLR study. 

 

RQ1:  Which deep learning algorithms have been used in the 

literature for ionospheric TEC prediction? 

RQ3:  Which features have been used in literature for 

prediction of ionospheric TEC? 

RQ3: Which evaluation metrics and evaluation approaches 

have been used in literature for ionospheric TEC 

prediction? 

RQ4: What are challenges in the field of ionospheric TEC 

prediction using machine learning? 

 

4.0 DISCUSSION AND FINDINGS 

This study highlights the various long term short term neural 

network techniques used by researchers including multi 

variate deep learning LSTM, hybrid deep learning where 

RNN-LSTM and ConvLSTM were combined. Different 

combinations of number of layers and neurons were trained 

respectively, the studies showed different results when these 

combinations were deployed.  Features included in modelling 

were Year, Day of the Year, Hour of the Day, Geographic 

Latitudes, Geographic Longitudes, Sunspot Number (SSN), 

IRI-NmF2, F10.7 (Solar Radio Flux), Dst (Disturbance Storm 

Time Index, Vp (Plasma Speed), Bz (Interplanetary Magnetic 

Field Component) and Time where the inclusion and 

exclusion of some of the features showed different results 

both in prediction and performance. The most common 

evaluation metrics across the studies were Root Mean Square 

Error (RMSE), Mean Absolute Error (MAE), and R-squared 

(R^2), these metric managed to evaluate the performance of 

the LSTM models which were in accordance with the 

prediction outcomes. Hence, with more studies it is clear that 

LSTM can be used to enhance the prediction of ionospheric 

total electron content over Kenya. 

5.0 CONCLUSION 

In conclusion, this paper has provided a comprehensive 

overview for the utilization of deep learning techniques, 

particularly Long Short-Term Memory (LSTM) networks, for 

predicting ionospheric Total Electron Content (TEC) over 

Equatorial Kenya. The study systematically reviewed existing 

literature, synthesizing findings from various studies to 

explore the effectiveness of LSTM models in capturing the 

complex dynamics of equatorial ionospheric variability. 

The review revealed that traditional TEC prediction models 

often face challenges in accurately capturing the nonlinear 

behaviors inherent in equatorial ionospheric dynamics. 

However, deep learning approaches, particularly LSTM 

networks, have emerged as promising tools for addressing 

these challenges. Various studies showcased the application of 

LSTM architectures in predicting TEC variability, also 

demonstrating their effectiveness in capturing seasonal 

variations in TEC with the potential for real-time prediction. 

5.1 Future Work 

For future work, the discussion highlighted the importance of 

feature selection, feature engineering and model architecture 

in enhancing prediction accuracy, as well as the need for 

further research to explore advanced machine learning 

techniques or hybrid models to improve forecast performance. 

Additionally, addressing data gaps and considering additional 

parameters could further enhance the accuracy and reliability 

of TEC predictions 
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