
International Journal of Computer Applications Technology and Research

Volume 13–Issue 08, 95 – 114, 2024, ISSN:-2319–8656

DOI:10.7753/IJCATR1308.1010

www.ijcat.com 95

Implementation of Predictive Learning using

Convolutional Neural Networks and Matlab in Cholera

Outbreaks

Engr. Joseph Nnaemeka

Chukwunweike MNSE, MIET

Automation / Process Control

Engineer,

Gist Limited

London, United Kingdom

Abstract: Cholera remains a significant public health challenge, particularly in regions with inadequate water and sanitation

infrastructure. Predictive learning and advanced data analytics offer critical tools for anticipating outbreaks and enabling timely

interventions. This article explores the implementation of predictive learning using Convolutional Neural Networks (CNNs) and

MATLAB to predict cholera outbreaks. By leveraging historical data, including cholera incidence rates, meteorological conditions,

and environmental factors, CNNs can recognize complex patterns that signal impending outbreaks. MATLAB provides a robust

environment for data analysis, visualization, and deep learning model development. We detail the steps involved in data collection,

preprocessing, CNN architecture design, training, and evaluation. A case study demonstrates the application of this approach in a high-

risk region, highlighting its potential to improve predictive accuracy, optimize resource allocation, and enhance public health response.

Despite challenges such as data quality and computational demands, the integration of CNNs in cholera prediction presents a

promising direction for mitigating the impact of outbreaks and improving public health outcomes. Cholera prediction, Convolutional

Neural Networks (CNNs), MATLAB, Predictive learning, Epidemiology, Public health interventions

Keywords: Cholera prediction, Convolutional Neural Networks (CNNs), MATLAB, Predictive learning, Epidemiology, Public health

intervention

1. INTRODUCTION
Cholera, an acute diarrheal illness caused by infection of the

intestine with Vibrio cholerae bacteria, remains a significant

public health challenge, especially in regions with inadequate

water treatment, poor sanitation, and inadequate hygiene

practices (WHO, 2023. The disease spreads through

contaminated water and food, thriving in environments where

clean water and proper sanitation are lacking. Despite

numerous advances in medical treatment and public health

interventions, cholera outbreaks continue to occur, often with

devastating consequences for affected communities (Harris et

al., 2012). Rapid onset of symptoms and severe dehydration

leading to death within hours make early detection and timely

response critical in managing and controlling outbreaks.

Predictive learning and advanced data analytics offer

promising solutions to anticipate cholera outbreaks and enable

timely interventions (Ali et al., 2017). Predictive models

leverage historical data, identifying patterns and trends that

can forecast future outbreaks.

Adewale Mubaraq Folawewo

RN, RM, Bsc., MSc.

Nigeria

Akudo Sylveria Williams

Bsc,Msc.

United Kingdom

Busayo Leah Ayodele

Researcher, Department of Informatics

University of Louisiana at Lafayette

USA

Sydney Anuyah

PhD Candidate at Indiana

University

United States

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 13–Issue 08, 95 – 114, 2024, ISSN:-2319–8656

DOI:10.7753/IJCATR1308.1010

www.ijcat.com 96

Figure 1. The Lancet of Cholera [1]

These models are particularly useful in epidemiology, where

early warning systems can save lives by facilitating

preemptive measures in high-risk areas. Convolutional Neural

Networks (CNNs), a type of deep learning algorithm, are

well-suited for recognizing complex patterns in data,

extending their application from image recognition to

analyzing epidemiological data (LeCun et al., 2015). By

incorporating variables such as historical cholera cases,

weather patterns, and environmental conditions, CNNs can

predict potential outbreaks with high accuracy.

Figure 2 Predictive Analysis Schematics [2]

MATLAB, a powerful tool for data analysis and algorithm

development, provides a robust environment for

implementing CNNs (MathWorks, 2022). Its extensive

support for deep learning and user-friendly interface makes it

ideal for developing predictive models. By using MATLAB to

design, train, and evaluate CNNs, researchers can create

models that accurately predict cholera outbreaks, allowing

public health officials to respond proactively. This proactive

approach can significantly reduce the morbidity and mortality

associated with cholera, optimizing resource allocation and

improving overall public health outcomes. As computational

power and data availability continue to improve, the

integration of CNNs and MATLAB in public health strategies

holds great promise for the future (Chukwunweike JN et al.,

2024).

Figure 3. CNN Using MATLAB

SCOPE OF THE RESEARCH

This research focuses on the implementation of predictive

learning using Convolutional Neural Networks (CNNs) and

MATLAB to anticipate cholera outbreaks. Cholera, caused by

Vibrio cholerae bacteria, remains a critical public health issue

in regions with inadequate water treatment, poor sanitation,

and insufficient hygiene practices. By leveraging advanced

data analytics and machine learning techniques, this study

aims to develop a predictive model that can accurately

forecast cholera outbreaks. The scope encompasses the

collection and analysis of historical cholera incidence data,

meteorological data, and environmental factors, as well as the

design, training, and evaluation of CNNs using MATLAB.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 13–Issue 08, 95 – 114, 2024, ISSN:-2319–8656

DOI:10.7753/IJCATR1308.1010

www.ijcat.com 97

This research seeks to demonstrate the feasibility and

effectiveness of using CNNs for epidemiological predictions,

ultimately aiming to improve public health responses to

cholera outbreaks.

OBJECTIVE

The primary objective of this research is to develop and

implement a predictive model using Convolutional Neural

Networks (CNNs) and MATLAB to accurately forecast

cholera outbreaks. By analysing historical data and identifying

patterns that precede outbreaks, the model aims to provide

early warnings to public health officials. This proactive

approach is intended to facilitate timely interventions,

optimize resource allocation, and reduce the morbidity and

mortality associated with cholera. Additionally, the research

aims to demonstrate the practical application of CNNs in

public health, highlighting the potential of advanced data

analytics and machine learning to enhance disease prediction

and prevention strategies.

2. LITERATURE REVIEW
UNDERSTANDING CHOLERA AND THE NEED FOR

PREDICTIVE MODELS

The Epidemiology of Cholera

Cholera is predominantly transmitted through the ingestion of

water or food contaminated with V. cholerae (CDC, 2022).

The bacteria thrive in environments with poor sanitation and

limited access to clean water, which is why outbreaks are

most common in regions with these conditions (Zuckerman et

al., 2007). The disease can cause severe dehydration and death

within hours if untreated, making rapid detection and response

crucial (Harris et al., 2012). Traditional methods of managing

cholera outbreaks include improving water quality, sanitation,

and hygiene (WASH) practices, as well as deploying oral

cholera vaccines (OCVs) in high-risk areas (Deen et al.,

2020). However, these interventions often react to outbreaks

rather than prevent them, highlighting the need for predictive

models that can anticipate outbreaks and guide proactive

measures (Azman et al., 2018).

Traditional Methods of Cholera Control

Traditional approaches to managing cholera outbreaks have

focused on improving water quality, sanitation, and hygiene

(WASH) practices, as well as deploying oral cholera vaccines

(OCVs) in high-risk areas (Deen et al., 2020). While these

interventions have proven effective in reducing the incidence

and severity of outbreaks, they often react to outbreaks rather

than prevent them. Consequently, there is a growing

recognition of the need for predictive models that can

anticipate cholera outbreaks and guide proactive public health

measures (Azman et al., 2018). These models can enable

health authorities to allocate resources more efficiently,

implement targeted interventions, and ultimately save lives.

Figure 4 Life Cycle of Cholera

Figure 5 Tradition Means of Managing Cholera [4]

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 13–Issue 08, 95 – 114, 2024, ISSN:-2319–8656

DOI:10.7753/IJCATR1308.1010

www.ijcat.com 98

PREDICTIVE LEARNING FOR CHOLERA

Predictive models use historical data to forecast future events,

which is particularly useful in epidemiology where early

warning systems can save lives (Reiner et al., 2018). For

cholera, predictive models can help identify high-risk areas,

optimize resource allocation, and guide public health

interventions (Lee et al., 2020). Convolutional Neural

Networks (CNNs) are a type of deep learning algorithm

known for their ability to recognize patterns in data, making

them suitable for image and spatial data analysis (LeCun et

al., 2015). Their application extends beyond traditional image

recognition tasks to include time-series and spatial data

relevant to epidemiological predictions (Matsubara et al.,

2018).

Convolutional Neural Networks (CNNs)

Overview of CNNs

CNNs are a class of deep learning algorithms (Figure 2)

particularly well-suited for image and spatial data analysis.

They have proven effective in various applications, including

image recognition, medical imaging, and now, predictive

modelling in epidemiology.

Key Components of CNNs

1. Convolutional Layers: Apply filters to the input

data to extract significant features.

2. Pooling Layers: Reduce the dimensionality of the

data while retaining essential features.

3. Fully Connected Layers: Combine features

extracted by previous layers to make predictions

(Krizhevsky et al., 2012).

Advantages of MATLAB

MATLAB is widely used for data analysis and algorithm

development due to its robust toolboxes and user-friendly

environment (MathWorks, 2024). It provides comprehensive

support for deep learning, including pre-built functions and

customization options (Alpaydin, 2021).

Steps in Developing a Predictive Model

Effective predictive modeling starts with comprehensive data

collection and preprocessing. Relevant data includes historical

cholera cases, meteorological data, environmental factors, and

socioeconomic indicators (Lessler et al., 2018). Preprocessing

ensures data quality by cleaning, normalizing, and handling

missing values (García et al., 2016).

Figure 6 Key Components of CNN

). Designing the CNN involves selecting the appropriate

number of layers, types of layers, and hyperparameters such

as learning rate and batch size (Chukwunweike JN et al.,

2024). Training involves feeding the preprocessed data into

the CNN and adjusting weights based on a loss function to

minimize prediction error (Ark Oluwatobi Ifeanyi et al…

2024)

Case Studies and Applications

Several studies have demonstrated the potential of using

CNNs for disease prediction. For instance, Lee et al. (2020)

successfully applied CNNs to predict dengue fever outbreaks

by analysing climatic data. Similarly, the principles can be

extended to cholera prediction, given the right data inputs. By

incorporating environmental and epidemiological data into the

CNN framework, it is possible to achieve high accuracy in

predicting outbreaks, thereby enabling timely public health

interventions.

Challenges and Limitations

Despite the potential benefits, several challenges must be

addressed in implementing CNN-based predictive models for

cholera. Data quality and availability are primary concerns, as

accurate predictions depend on comprehensive and reliable

datasets (García et al., 2016). Furthermore, the computational

resources required for training deep learning models can be

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 13–Issue 08, 95 – 114, 2024, ISSN:-2319–8656

DOI:10.7753/IJCATR1308.1010

www.ijcat.com 99

substantial, posing a barrier for resource-limited settings

(Chukwunweike JN et al., 2024). Lastly, the interpretability of

deep learning models remains a challenge, as understanding

the decision-making process of a CNN can be complex

(Doshi-Velez & Kim, 2017).

3. METHODOLOGY

3.1 Date Collection and Preprocessing
The first step in developing a predictive model for cholera

outbreaks using Convolutional Neural Networks (CNNs)

involves the collection and preprocessing of relevant data.

The data required includes historical cholera case records,

meteorological data (such as temperature and rainfall),

environmental factors (such as water quality indicators), and

socio-economic factors that might influence cholera

transmission. This data can be sourced from public health

databases, meteorological agencies, and local health

departments. In this research, Data sets were gotten from

Northern part of Nigeria (Maiduguri) and was used in

analysing the predictive model.

Data Collection:

1. Historical Cholera Cases: historical data on

cholera incidence from health surveillance systems

and databases such as the World Health

Organization (WHO) and local health departments

in Borno State of Nigeria was utilized. This data

records confirmed cholera cases, including

geographical and temporal information.

Figure 7 Histogram of Cholera Cases

2. Meteorological Data: Data on weather conditions

from meteorological agencies were also collected.

Key variables including temperature, rainfall, and

humidity, as these had impact on the survival and

proliferation of Vibrio cholerae in the environment.

3. Environmental Data: Data related to water quality,

such as contamination levels, access to clean water,

and sanitation facilities were assessed. This

information was sourced from local water

authorities and environmental monitoring agencies.

4. Socio-Economic Data: Data on socio-economic

factors which had influence on cholera outbreaks,

such as population density, economic status, and

infrastructure availability were also analyzed.

Figure 8 Cholera Cases by Month

Data Preprocessing:

1. Data Cleaning: missing values and outliers were

handled using methods such as imputation and

removal. Standardization of the data was done to

ensure consistency across different sources.

2. Normalization: the data was normalized to ensure

that different variables contribute equally to the

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 13–Issue 08, 95 – 114, 2024, ISSN:-2319–8656

DOI:10.7753/IJCATR1308.1010

www.ijcat.com 100

model. This involved scaling numerical data to a

common range.

3. Feature Engineering: relevant features from raw

data were extracted. For example, transforming

time-series data into features that capture trends and

seasonal patterns.

4. Data Splitting: the data was divided into training,

validation, and test sets. This allowed for model

training, tuning, and evaluation while preventing

overfitting.

Figure 9 Excerpt of Training Dataset

Figure 10 Testing Dataset

Figure 11 Validation Dataset

CNN Architecture Design

Designing the Convolutional Neural Network involved

defining the network architecture, including the number and

types of layers. The architecture was designed and suited to

handle the data format and complexity of the problem. This

involved the following steps.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 13–Issue 08, 95 – 114, 2024, ISSN:-2319–8656

DOI:10.7753/IJCATR1308.1010

www.ijcat.com 101

1. Input Layer:

• Definition of the input dimensions based on the

preprocessed data. For example, if using spatial

data, the input layer might accept multi-dimensional

arrays.

Figure 12 Input Dataset Layer

3.2 Convolution Layers
Applying convolutional layers with various filter sizes to

extract features from the data. Use ReLU (Rectified Linear

Unit) activation functions to introduce non-linearity

Figure 13 Convolution Layer

3.3 Pooling Layers
Incorporating pooling layers (e.g., max pooling) to reduce the

dimensionality of the data while retaining important features.

Figure 14 Pooling Layer

3.4 Fully Connected Layers
Adding fully connected layers to combine features extracted

by the convolutional and pooling layers. This step helps in

making predictions based on the learned features.

Figure 15 Fully Connected Layer

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 13–Issue 08, 95 – 114, 2024, ISSN:-2319–8656

DOI:10.7753/IJCATR1308.1010

www.ijcat.com 102

3.5 Output Layers
Designing the output layer to provide the final prediction. For

a classification problem, usage a softmax activation function

to produce probability distributions over possible outcomes.

Figure 16 Output Layer

Model Training and Evaluation

1. Training:

• Train the CNN using the training dataset (Figure 6).

This involves feeding the data into the network,

computing the loss using a loss function (e.g., cross-

entropy loss for classification), and updating the

network weights using optimization algorithms such

as Stochastic Gradient Descent (SGD).

2. Validation:

• Validation of the model using the validation dataset

to fine-tune hyperparameters and avoid overfitting

(Figure 7). Assessing the model’s performance

using metrics such as accuracy, precision, recall,

and F1-score.

3. Testing:

• Evaluated the final model using the test dataset to

assess its generalizability (Figure 8). This involves

predicting cholera outbreaks on unseen data and

comparing the predictions against actual outcomes.

Figure 17 MATLAB Visualisation Result

EVALUATION OF PREDICTIVE MODEL USING

PERFORMANCE MATICS

Evaluating the performance of this predictive model is crucial

to ensure its reliability and effectiveness in real-world

applications. In this context of predicting cholera outbreaks

using Convolutional Neural Networks (CNNs) and

MATLAB, several performance metrics were used. These

include accuracy, confusion matrices, and Receiver Operating

Characteristic (ROC) curves. Each of these metrics offers

unique insights into the model's predictive capabilities and

areas for improvement

ACCURACY

Accuracy is one of the simplest and most intuitive

performance metrics. It measures the proportion of correct

predictions out of the total number of predictions made by the

model.

In this case of predicting cholera outbreaks, accuracy

indicates the percentage of times the model correctly predicts

an outbreak or non-outbreak scenario. While accuracy

provides a general sense of model performance, it may not

always be the most informative metric, especially in cases

where the data is imbalanced (e.g., more non-outbreaks than

outbreaks).

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 13–Issue 08, 95 – 114, 2024, ISSN:-2319–8656

DOI:10.7753/IJCATR1308.1010

www.ijcat.com 103

CONFUSION MATRIX

A confusion matrix offers a more detailed breakdown of the

model's performance by displaying the counts of true positive

(TP), true negative (TN), false positive (FP), and false

negative (FN) predictions.

Metrics Derived from Confusion Matrix

Precision (Positive Predictive Value)

Precision measures the proportion of positive predictions that

are actually correct. It is calculated as:

Precision is critical when the cost of false positive is high.

Recall (Sensitivity or True Positive Rate)

Recall measures the proportion of actual positive cases that

are correctly identified by the model. It is calculated as

Recall is important when the cost of missing positive cases is

high.

F1 Score

The F1 Score is the harmonic mean of precision and recall,

providing a balance between the two metrics. It is calculated

as:

Figure 17

ROC Curve and AUC

The Receiver Operating Characteristic (ROC) curve is a

tool used to evaluate the performance of the binary

classification model. It visualizes the trade-off between the

true positive rate (sensitivity) and the false positive rate (1 -

specificity) across different decision thresholds. The area

under the ROC curve (AUC) is a summary measure that

indicates the model's overall ability to discriminate between

positive and negative classes.

A detailed breakdown of the ROC curve and its formulae:

1. True Positive Rate (Sensitivity) and False Positive Rate

True Positive Rate (Sensitivity): Measures the proportion of

actual positives that are correctly identified by the model.

False Positive Rate (FPR): Measures the proportion of actual

negatives that are incorrectly identified as positives by the

model.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 13–Issue 08, 95 – 114, 2024, ISSN:-2319–8656

DOI:10.7753/IJCATR1308.1010

www.ijcat.com 104

An ROC curve allows for the visualization of the trade-offs

between sensitivity and specificity. A model with a higher

AUC is generally considered to have better performance, as it

indicates a higher true positive rate for a lower false positive

rate. The ROC curve is a plot of the True Positive Rate (TPR)

against the False Positive Rate (FPR) at various threshold

settings. Each point on the curve represents a different

threshold value used to classify the predictions as positive or

negative.

3. Area Under the ROC Curve (AUC)

The AUC is a scalar value that summarizes the overall

performance of the model. It is the area under the ROC curve:

• AUC (Area Under the Curve): Measures the

ability of the model to distinguish between positive

and negative classes. The AUC value ranges from 0

to 1, where:

o AUC = 1: Perfect model

o AUC = 0.5: Model performs no better

than random guessing

o AUC < 0.5: Model performs worse than

random guessing (indicates possible

inversion of predictions)

Result from Analysis

o RMSE: 0.92058

o MAE: 0.76974

o R²: 0.9999

Model Deployment and Application

Once the model has been trained and validated, it was then

deployed for real-time predictions. This involved integrating

the model into a public health monitoring system where it

processed incoming data and provide early warnings for

potential cholera outbreaks. Regular updates and retraining of

the model may be necessary to maintain its accuracy and

effectiveness in dynamic environments.

Figure Training Progress

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 13–Issue 08, 95 – 114, 2024, ISSN:-2319–8656

DOI:10.7753/IJCATR1308.1010

www.ijcat.com 105

BENEFITS AND CHALLENGES OF DEVELOPING

PREDICTIVE MODELS FOR CHOLERA OUTBREAKS

USING CNNS AND MATLAB

The primary objective of this research is to develop and

implement a predictive model using Convolutional Neural

Networks (CNNs) and MATLAB to accurately forecast

cholera outbreaks. By analysing historical data and identifying

patterns that precede outbreaks, the model aims to provide

early warnings to public health officials. This proactive

approach is intended to facilitate timely interventions,

optimize resource allocation, and reduce the morbidity and

mortality associated with cholera. Additionally, the research

aims to demonstrate the practical application of CNNs in

public health, highlighting the potential of advanced data

analytics and machine learning to enhance disease prediction

and prevention strategies.

BENEFITS

IMPROVED PREDICTIVE ACCURACY

One of the foremost benefits of using CNNs for cholera

prediction is their ability to capture complex patterns in data,

leading to more accurate predictions. Traditional statistical

models may not fully exploit the rich structure present in

epidemiological and environmental data. CNNs, however, can

model intricate relationships and non-linear interactions

within the data, which are often critical for accurate outbreak

prediction. The deep learning capabilities of CNNs allow

them to learn from vast amounts of data, progressively

improving their accuracy as more data becomes available

(LeCun et al., 2015).

For example, CNNs can analyse spatial-temporal data,

identifying trends and anomalies that precede cholera

outbreaks. This capability is particularly valuable in

predicting outbreaks in regions with diverse environmental

and socio-economic conditions. Accurate predictions help

public health officials better understand potential outbreak

scenarios, leading to more informed decision-making and

effective intervention strategies.

TIMELY INTERVENTIONS

The ability to forecast cholera outbreaks accurately translates

directly into timely interventions. Early warnings provided by

predictive models enable public health officials to act swiftly,

implementing preventive measures before the outbreak

escalates. This proactive approach can significantly reduce the

impact of cholera on affected communities, minimizing the

number of cases and fatalities (Reiner et al., 2018).

For instance, if a model predicts a high likelihood of an

outbreak in a specific region, health authorities can pre-

emptively distribute cholera vaccines, improve water quality,

and enhance sanitation facilities in that area. Such measures

can prevent the spread of the disease and protect vulnerable

populations, ultimately saving lives and reducing the strain on

healthcare systems.

RESOURCE OPTIMIZATION

Efficient allocation of resources based on predictive models

can improve the overall effectiveness of public health

responses. Cholera outbreaks often require rapid mobilization

of resources, including medical supplies, clean water, and

personnel. Predictive models can help prioritize these

resources, directing them to areas at the highest risk of

outbreaks (Azman et al., 2018). Resource optimization is

particularly crucial in resource-limited settings where

healthcare infrastructure and funding are constrained. By

using predictive analytics, public health agencies can ensure

that limited resources are used where they are needed most,

enhancing the efficiency and effectiveness of cholera control

efforts. This strategic approach can also reduce unnecessary

expenditures, allowing for better financial planning and

sustainability in public health initiatives.

CHALLENGES

DATA QUALITY

The accuracy of predictions is highly dependent on the quality

and completeness of the input data. Inconsistent, incomplete,

or inaccurate data can significantly undermine the

performance of predictive models. For cholera prediction,

relevant data includes historical incidence rates,

meteorological data, environmental conditions, and socio-

economic factors. However, in many regions where cholera is

prevalent, data collection and reporting may be suboptimal

due to limited resources, lack of infrastructure, or political

instability (García et al., 2016).

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 13–Issue 08, 95 – 114, 2024, ISSN:-2319–8656

DOI:10.7753/IJCATR1308.1010

www.ijcat.com 106

Data quality issues can lead to erroneous predictions,

potentially causing misallocation of resources and missed

opportunities for timely intervention. Ensuring high-quality,

comprehensive datasets is thus a critical challenge in

developing effective predictive models. Strategies to address

this challenge include enhancing data collection protocols,

integrating multiple data sources, and employing robust data

preprocessing techniques to handle missing or inconsistent

data.

Computational Resources

Training deep learning models, particularly CNNs, requires

significant computational power. The complexity and depth of

CNNs necessitate extensive computational resources for

training and fine-tuning. This requirement can be a barrier in

many settings, especially in low- and middle-income countries

where cholera is most prevalent and computational

infrastructure may be limited (Chukwunweike JN et al.,

2024).

High-performance computing environments and specialized

hardware such as GPUs (Graphics Processing Units) are often

needed to train CNNs efficiently. Accessing such resources

can be challenging for many public health organizations,

limiting their ability to develop and deploy predictive models.

To overcome this challenge, collaborations with academic

institutions, international organizations, and private sector

partners can provide the necessary computational

infrastructure and technical expertise.

Interpretability

The 'black box' nature of deep learning models, including

CNNs, poses a significant challenge in interpreting the results

and understanding the underlying factors driving predictions.

While CNNs can achieve high predictive accuracy, their

complex architectures make it difficult to discern how specific

inputs influence the output predictions (Doshi-Velez & Kim,

2017). Interpretability is crucial in public health applications

where transparency and understanding of the decision-making

process are essential. Public health officials need to trust and

understand the predictions to make informed decisions and

communicate risks effectively to the public. Addressing this

challenge requires developing methods to enhance the

interpretability of CNNs, such as visualization techniques,

explainable AI approaches, and incorporating domain

knowledge into the model design. Developing and

implementing predictive models using CNNs and MATLAB

to forecast cholera outbreaks presents both significant benefits

and challenges. The improved predictive accuracy of CNNs

can lead to timely interventions and optimized resource

allocation, ultimately reducing the morbidity and mortality

associated with cholera. However, challenges related to data

quality, computational resources, and interpretability must be

addressed to realize the full potential of these models in public

health.

By leveraging advanced data analytics and machine learning,

this research aims to enhance disease prediction and

prevention strategies, demonstrating the practical application

of CNNs in public health. Continued efforts to improve data

collection, invest in computational infrastructure, and develop

interpretable models will be essential for advancing predictive

analytics in combating cholera and other infectious diseases.

The implementation of predictive learning using

Convolutional Neural Networks and MATLAB offers a

promising approach to anticipating and mitigating cholera

outbreaks. By leveraging historical data and advanced

machine learning techniques, public health officials can

improve their ability to respond to outbreaks, ultimately

reducing the morbidity and mortality associated with this

devastating disease. As computational power and data quality

continue to improve, the potential for predictive models to

enhance public health interventions will only grow.

FUTURE DIRECTIONS FOR CHOLERA PREDICTIVE

MODELS USING CNNS

The primary aim of this research is to develop a predictive

model using Convolutional Neural Networks (CNNs) and

MATLAB to accurately forecast cholera outbreaks. By

analyzing historical data and identifying patterns that precede

outbreaks, the model seeks to provide early warnings to public

health officials. This proactive approach is designed to

facilitate timely interventions, optimize resource allocation,

and reduce cholera-related morbidity and mortality. The

research also aims to demonstrate the practical application of

CNNs in public health, underscoring the potential of advanced

data analytics and machine learning to enhance disease

prediction and prevention strategies. Future research should

focus on several key areas to further improve the effectiveness

and utility of predictive models for cholera outbreaks.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 13–Issue 08, 95 – 114, 2024, ISSN:-2319–8656

DOI:10.7753/IJCATR1308.1010

www.ijcat.com 107

 Integrating Additional Data Sources

Leveraging Social Media Activity

One promising avenue for future research is integrating social

media activity into predictive models. Platforms like Twitter

and Facebook offer real-time data that can provide early

indicators of cholera outbreaks. Mentions of symptoms,

discussions about water quality, or reports of local health

conditions can serve as valuable signals for predicting

outbreaks (Kagashe et al., 2017). By incorporating social

media data, predictive models can potentially identify

outbreaks earlier than traditional surveillance methods,

enabling quicker public health responses.

Utilizing Mobile Phone Data

Mobile phone data is another valuable resource for enhancing

predictive accuracy. Call detail records (CDRs) can provide

insights into population movement and density, which are

critical factors in the spread of cholera. Understanding how

people move and interact during an outbreak can help predict

which areas are at higher risk of transmission (Wesolowski et

al., 2012). Integrating mobile phone data with existing

epidemiological and environmental data can improve the

spatial and temporal resolution of predictions, making them

more actionable for public health officials.

Combining Diverse Data Sets

Integrating diverse data sets, from traditional epidemiological

data to innovative sources like social media and mobile

phones, can create a more comprehensive picture of cholera

dynamics. This approach enhances predictive accuracy and

helps identify underlying risk factors and transmission

pathways that might be missed using a single data source.

Future research should focus on developing robust methods

for harmonizing and analyzing these diverse data sets,

ensuring that the added complexity translates into meaningful

improvements in prediction.

 Enhancing Model Interpretability

Developing Explainable AI Techniques

The 'black box' nature of CNNs poses a significant challenge

in public health applications, where understanding the basis of

predictions is crucial for trust and actionable insights. Future

research should prioritize developing explainable AI

techniques that make CNN predictions more transparent and

interpretable. Methods like Layer-wise Relevance Propagation

(LRP) and SHapley Additive exPlanations (SHAP) can help

elucidate which features most influence the model’s

predictions (Samek et al., 2017). By making the decision-

making process of CNNs more understandable, public health

officials can better assess the reliability of the predictions and

make more informed decisions.

Incorporating Domain Knowledge

Integrating domain knowledge into the model can also

enhance interpretability. By embedding epidemiological

insights and public health expertise into the CNN framework,

researchers can create models that not only predict outcomes

but also provide explanations grounded in established

scientific understanding. This approach can involve designing

model architectures that reflect known transmission dynamics

or using expert-annotated data to guide the learning process.

Such hybrid models can bridge the gap between raw data-

driven predictions and interpretable, actionable insights.

 Scaling Implementations

Ensuring Accessibility in Low-Resource Settings

Scaling the implementation of predictive models to low-

resource settings is critical for addressing cholera outbreaks

where they are most prevalent. Many regions affected by

cholera lack the computational infrastructure and technical

expertise required to develop and deploy advanced CNN

models. Future research should focus on creating lightweight,

accessible versions of predictive models that can run on

standard hardware with limited computational power. This

can involve optimizing model architectures for efficiency,

using cloud-based solutions for training and deployment, and

providing user-friendly interfaces for non-specialist public

health workers.

Building Local Capacity

Building local capacity is essential for the sustainable

implementation of predictive models. This includes training

local health professionals in data science and machine

learning techniques, developing partnerships with local

institutions, and fostering a collaborative environment where

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 13–Issue 08, 95 – 114, 2024, ISSN:-2319–8656

DOI:10.7753/IJCATR1308.1010

www.ijcat.com 108

local knowledge and expertise are integrated into model

development and application. Empowering local communities

with the tools and skills to use predictive models can enhance

their ability to respond to cholera outbreaks effectively and

independently.

Adapting to Different Contexts

Cholera outbreaks can vary significantly across different

geographic and socio-economic contexts. Therefore, scalable

models must be adaptable to diverse local conditions. Future

research should explore ways to customize predictive models

for different regions, incorporating local data and tailoring

algorithms to specific environmental and epidemiological

characteristics. This adaptive approach can ensure that

predictive models remain relevant and accurate across varied

settings, enhancing their utility and impact in global cholera

control efforts.

 Conclusion

By addressing these challenges and building on current

successes, the application of CNNs in epidemiology holds

great promise for the future of public health. Integrating

additional data sources such as social media and mobile phone

data can improve predictive accuracy, while enhancing model

interpretability can build trust and facilitate actionable

insights. Ensuring that predictive models are scalable and

accessible in low-resource settings is critical for their

widespread adoption and effectiveness. Future research

should continue to innovate and refine these approaches,

leveraging the power of advanced data analytics and machine

learning to combat cholera and other infectious diseases more

effectively. As we advance in these areas, the potential to

transform public health through predictive modeling and

proactive intervention strategies will increasingly become a

reality.

REFERENCES

1. Ali M, Nelson AR, Lopez AL, Sack DA. The global burden

of cholera. Bull World Health Organ. 2017;95(3):209-18.

2. Alpaydin E. Introduction to Machine Learning. 4th ed.

Cambridge: MIT Press; 2021.

3. Azman AS, Moore SM, Rumunu J, Perea W, Lüthi C,

Ferreras E, et al. Urban cholera transmission hotspots and

their implications for reactive vaccination: Evidence from

Bissau City, Guinea Bissau. J Infect Dis. 2018;218(Suppl

3):S195-S202.

4. A Deep Learning Approach to Within-Bank Fault

Detection and Diagnostics of Fine Motion Control Rod

Drives. Int J Progn Health Manag. 2024 Feb 20;15(1):3792.

DOI: https://doi.org/10.36001/ijphm.2024.v15i1.3792.

5. Centers for Disease Control and Prevention (CDC). Cholera

- Vibrio cholerae infection [Internet]. 2022. Available from:

https://www.cdc.gov/cholera/index.html

6. Deen J, von Seidlein L, Clemens JD. The global burden of

cholera. Bull World Health Organ. 2020;98(6):412-21.

7. Doshi-Velez F, Kim B. Towards a rigorous science of

interpretable machine learning. arXiv preprint

arXiv:1702.08608. 2017.

8. García S, Luengo J, Herrera F. Big data preprocessing:

methods and prospects. Big Data Anal. 2016;1(1):1-22.

9. Chukwunweike JN et al... Enhancing Green Energy

Systems with Matlab Image Processing: Automatic Tracking

of Sun Position for Optimized Solar Panel Efficiency. Int J

Comput Appl Technol Res. 2019;13(8):385-389.

doi:10.7753/IJCATR1308.1007.

11. Krizhevsky A, Sutskever I, Hinton GE. ImageNet

classification with deep convolutional neural networks. Adv

Neural Inf Process Syst. 2012;25:1097-105.

12. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature.

2015;521(7553):436-44.

13. Lee H, Yen YF, Shen CH, Liao CC, Hsu WH, Liang CJ,

et al. Predicting dengue fever incidence using convolutional

neural networks. PLoS Negl Trop Dis. 2020;14(2):e0007971.

14. Lessler J, Moore SM, Luquero FJ, McKay HS, Grais RF,

Henkens M, et al. Mapping the burden of cholera. Nature.

2018;558(7704):173-7.

15. Matsubara T, Nakashima T. Deep learning approach for

predicting influenza outbreaks using google search data. arXiv

preprint arXiv:1802.09102. 2018.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 13–Issue 08, 95 – 114, 2024, ISSN:-2319–8656

DOI:10.7753/IJCATR1308.1010

www.ijcat.com 109

16. MathWorks. MATLAB and Simulink for AI [Internet].

2024. Available from:

https://www.mathworks.com/solutions/ai.html

17. Reiner RC Jr, Stoddard ST, Forshey BM, King AA, Ellis

AM, Lloyd AL, et al. Forecasting infectious disease

epidemics using dynamic transmission models: A practical

guide. Int J Infect Dis. 2018;73:1-13.

18. World Health Organization (WHO). Cholera [Internet].

2023. Available from: https://www.who.int/news-room/fact-

sheets/detail/cholera

19. Zuckerman JN, Rombo L, Fisch A. The true burden and

risk of cholera: Implications for prevention and control.

Lancet Infect Dis. 2007;7(8):521-30.

20. Herzog T, Eliason B. Cholera. Lancet. 2022;399:1429-40.

DOI: 10.1016/S0140-6736(22)00330-0.

21. Saksoft. Predictive Data Analytics [Internet]. Available

from: https://www.saksoft.com/predictive-data-analytics/

22. Fix Part Muscle Man. Life cycle of Vibrio cholerae

[Internet]. Available from:

https://fixpartmuscleman.z5.web.core.windows.net/life-cycle-

of-vibrio-cholerae.html

CODE

Data Preprocessing

% Load the combined dataset from the CSV file

combinedData = readtable('combined_data.csv');

% 1. Data Cleaning

% Initialize a table to store cleaned data

cleanedData = combinedData;

% Handle missing values

% Replace missing values with the median of the respective

column for numerical variables

numVars = varfun(@isnumeric, combinedData,

'OutputFormat', 'uniform');

for i = find(numVars)'

 data = combinedData{:, i};

 missingIdx = isnan(data);

 if any(missingIdx)

 medianVal = median(data, 'omitnan');

 cleanedData{missingIdx, i} = medianVal;

 end

end

% For categorical variables, replace missing values with the

mode (most frequent value)

catVars = varfun(@iscategorical, combinedData,

'OutputFormat', 'uniform');

for i = find(catVars)'

 data = combinedData{:, i};

 missingIdx = ismissing(data);

 if any(missingIdx)

 modeVal = mode(data);

 cleanedData{missingIdx, i} = modeVal;

 end

end

% Handle outliers manually (Z-score calculation without

zscore function)

zThreshold = 3; % Z-score threshold for outliers

for i = find(numVars)'

 data = cleanedData{:, i};

 mu = mean(data, 'omitnan'); % Mean

 sigma = std(data, 'omitnan'); % Standard deviation

 zScores = (data - mu) / sigma; % Calculate Z-scores

 outlierIdx = abs(zScores) > zThreshold;

 % Replace outliers with median of non-outlier values

 medianVal = median(data(~outlierIdx), 'omitnan'); %

Median of non-outliers

 cleanedData{outlierIdx, i} = medianVal;

end

% 2. Normalization

% Normalize numerical variables to range [0, 1]

numVars = varfun(@isnumeric, cleanedData, 'OutputFormat',

'uniform');

for i = find(numVars)'

 data = cleanedData{:, i};

 minVal = min(data, [], 'omitnan');

 maxVal = max(data, [], 'omitnan');

 % Prevent division by zero in case of constant columns

 if maxVal > minVal

 % Normalize data

 normalizedData = (data - minVal) / (maxVal - minVal);

http://www.ijcat.com/
https://fixpartmuscleman.z5.web.core.windows.net/life-cycle-of-vibrio-cholerae.html
https://fixpartmuscleman.z5.web.core.windows.net/life-cycle-of-vibrio-cholerae.html

International Journal of Computer Applications Technology and Research

Volume 13–Issue 08, 95 – 114, 2024, ISSN:-2319–8656

DOI:10.7753/IJCATR1308.1010

www.ijcat.com 110

 else

 % Handle case where maxVal == minVal (constant

column)

 normalizedData = zeros(size(data)); % Normalize to 0

 end

 % Assign the normalized data back to the table

 cleanedData.(cleanedData.Properties.VariableNames{i}) =

normalizedData;

end

% 3. Feature Engineering

% Example: Create a new feature based on existing ones

% Let's say you want to create a feature for

'Temperature_Rainfall_Ratio'

if any(ismember(cleanedData.Properties.VariableNames,

{'Temperature_Celsius', 'Rainfall_mm'}))

 % Check if the columns exist and create the new feature

 tempCol = cleanedData.Temperature_Celsius;

 rainfallCol = cleanedData.Rainfall_mm;

 % Add 1 to rainfall to avoid division by zero

 cleanedData.Temperature_Rainfall_Ratio = tempCol ./

(rainfallCol + 1);

end

% Example: Extract month and day of week from 'Date'

if ismember('Date', cleanedData.Properties.VariableNames)

 % Convert 'Date' column to datetime if not already

 if ~isdatetime(cleanedData.Date)

 cleanedData.Date = datetime(cleanedData.Date,

'InputFormat', 'yyyy-MM-dd');

 end

 cleanedData.Month = month(cleanedData.Date);

 cleanedData.DayOfWeek = weekday(cleanedData.Date);

end

% 4. Data Splitting

% Define the proportion of the dataset for training, validation,

and test sets

trainRatio = 0.7;

valRatio = 0.15;

testRatio = 0.15;

% Ensure ratios sum up to 1

assert(abs((trainRatio + valRatio + testRatio) - 1) < 1e-6,

'Ratios must sum up to 1.');

% Shuffle the data

shuffledData = cleanedData(randperm(height(cleanedData)),

:);

% Compute the number of samples for each set

numSamples = height(shuffledData);

numTrain = floor(trainRatio * numSamples);

numVal = floor(valRatio * numSamples);

% Split the data

trainData = shuffledData(1:numTrain, :);

valData = shuffledData(numTrain + 1:numTrain + numVal,

:);

testData = shuffledData(numTrain + numVal + 1:end, :);

% Save the split data to CSV files

writetable(trainData, 'train_data.csv');

writetable(valData, 'val_data.csv');

writetable(testData, 'test_data.csv');

disp('Data preprocessing complete. Data saved to CSV files.');

TRAINING CODE

% Load the data

trainData = readtable('train_data.csv');

valData = readtable('val_data.csv');

testData = readtable('test_data.csv');

% Display column names for reference

disp('Column names in trainData:');

disp(trainData.Properties.VariableNames);

disp('Column names in valData:');

disp(valData.Properties.VariableNames);

disp('Column names in testData:');

disp(testData.Properties.VariableNames);

% Define the input size based on the number of features

(excluding the Date column)

inputSize = width(trainData) - 2; % Exclude 'Date' and

'sum_Cholera_Cases' columns

% Define the network layers

layers = [

 featureInputLayer(inputSize, 'Name', 'input')

 fullyConnectedLayer(128, 'Name', 'fc1')

 reluLayer('Name', 'relu1')

 fullyConnectedLayer(64, 'Name', 'fc2')

 reluLayer('Name', 'relu2')

 fullyConnectedLayer(1, 'Name', 'fc3')

 regressionLayer('Name', 'output')

];

% Define training options

options = trainingOptions('adam', ...

 'MaxEpochs', 100, ...

 'MiniBatchSize', 32, ...

 'InitialLearnRate', 1e-3, ...

 'ValidationData', {valData{:, 2:end-1},

valData.sum_Cholera_Cases}, ... % Exclude 'Date' and target

columns

 'Plots', 'training-progress', ...

 'Verbose', false);

% Extract features and labels from training data

XTrain = trainData{:, 2:end-1}; % Exclude 'Date' and target

columns

YTrain = trainData.sum_Cholera_Cases;

% Train the network

[trainedNet, info] = trainNetwork(XTrain, YTrain, layers,

options);

% Save the trained network

save('trainedCNN.mat', 'trainedNet');

% Evaluate the network on the test set

XTest = testData{:, 2:end-1}; % Exclude 'Date' and target

columns

YTest = testData.sum_Cholera_Cases;

YPred = predict(trainedNet, XTest);

% Calculate the RMSE

rmse = sqrt(mean((YPred - YTest).^2));

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 13–Issue 08, 95 – 114, 2024, ISSN:-2319–8656

DOI:10.7753/IJCATR1308.1010

www.ijcat.com 111

% Calculate ROC curve and AUC

[fpRate, tpRate, ~, AUC] = perfcurve(YTest, YPred, 'true');

% Display RMSE and AUC

disp(['RMSE: ', num2str(rmse)]);

disp(['AUC: ', num2str(AUC)]);

CNN NETWORK

% Load the train, validation, and test datasets

trainData = readtable('train_data.csv');

valData = readtable('val_data.csv');

testData = readtable('test_data.csv');

% Display column names to check correct names

disp('Column names in trainData:');

disp(trainData.Properties.VariableNames);

% Assuming the column containing case counts is named

'Cases' or another name

caseColumnName = 'sum_Cholera_Cases'; % Adjust this

based on the column names displayed

% Check if the column exists

if ismember(caseColumnName,

trainData.Properties.VariableNames)

 % Data Normalization

 % Normalize numerical variables to range [0, 1]

 numVars = varfun(@isnumeric, trainData, 'OutputFormat',

'uniform');

 for i = find(numVars)'

 data = trainData{:, i};

 minVal = min(data, [], 'omitnan');

 maxVal = max(data, [], 'omitnan');

 if maxVal > minVal

 normalizedData = (data - minVal) / (maxVal -

minVal);

 else

 normalizedData = zeros(size(data));

 end

 trainData.(trainData.Properties.VariableNames{i}) =

normalizedData;

 valData.(valData.Properties.VariableNames{i}) =

(valData{:, i} - minVal) / (maxVal - minVal);

 testData.(testData.Properties.VariableNames{i}) =

(testData{:, i} - minVal) / (maxVal - minVal);

 end

 % Define the input size based on the preprocessed data

 inputSize = [32 32 3]; % Adjust this based on the data

dimensions

 % Define the CNN architecture

 layers = [

 imageInputLayer(inputSize, 'Name', 'input',

'Normalization', 'none')

 convolution2dLayer(3, 16, 'Padding', 'same', 'Name',

'conv1')

 reluLayer('Name', 'relu1')

 maxPooling2dLayer(2, 'Stride', 2, 'Name', 'maxpool1')

 convolution2dLayer(3, 32, 'Padding', 'same', 'Name',

'conv2')

 reluLayer('Name', 'relu2')

 maxPooling2dLayer(2, 'Stride', 2, 'Name', 'maxpool2')

 convolution2dLayer(3, 64, 'Padding', 'same', 'Name',

'conv3')

 reluLayer('Name', 'relu3')

 maxPooling2dLayer(2, 'Stride', 2, 'Name', 'maxpool3')

 flattenLayer('Name', 'flatten')

 fullyConnectedLayer(128, 'Name', 'fc1')

 reluLayer('Name', 'relu_fc1')

 fullyConnectedLayer(64, 'Name', 'fc2')

 reluLayer('Name', 'relu_fc2')

 fullyConnectedLayer(10, 'Name', 'fc3') % Adjust based

on the number of classes

 softmaxLayer('Name', 'softmax')

 classificationLayer('Name', 'output')

];

 % Define the training options

 options = trainingOptions('adam', ...

 'MaxEpochs', 10, ...

 'MiniBatchSize', 64, ...

 'InitialLearnRate', 1e-4, ...

 'Plots', 'training-progress', ...

 'Verbose', false, ...

 'ValidationData', {valData, 'Label'}); % Adjust based on

label column

 % Assuming image data is available for training and

validation

 % trainData = imageDatastore('path/to/train/images',

'LabelSource', 'foldernames');

 % valData = imageDatastore('path/to/val/images',

'LabelSource', 'foldernames');

 % [trainedNet, info] = trainNetwork(trainData, layers,

options);

 % Save the trained network

 % save('trainedCNN.mat', 'trainedNet');

 % Visualize CNN components

 % Input Layer

 figure('Name', 'Input Layer Visualization');

 title('Input Layer');

 xlabel('Width');

 ylabel('Height');

 zlabel('Channels');

 exampleInput = rand(inputSize);

 montage(exampleInput, 'Size', [1 1]);

 title('Example Input Data');

 % Convolutional Layers

 numFilters = 16;

 filterSize = [3 3];

 filters = rand([filterSize, numFilters]);

 figure('Name', 'Convolutional Filters Visualization');

 for i = 1:numFilters

 subplot(4, 4, i);

 imshow(filters(:,:,i), []);

 title(sprintf('Filter %d', i));

 end

 sgtitle('Convolutional Filters');

 % Pooling Layers

 featureMap = rand(32, 32);

 poolSize = 2;

 pooledFeatureMap = maxPooling2d(featureMap, poolSize);

 figure('Name', 'Pooling Layers Visualization');

 subplot(1, 2, 1);

 imshow(featureMap, []);

 title('Feature Map Before Pooling');

 subplot(1, 2, 2);

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 13–Issue 08, 95 – 114, 2024, ISSN:-2319–8656

DOI:10.7753/IJCATR1308.1010

www.ijcat.com 112

 imshow(pooledFeatureMap, []);

 title('Feature Map After Pooling');

 % Fully Connected Layers

 numFeatures = 64;

 numClasses = 10;

 weights = rand(numFeatures, numClasses);

 figure('Name', 'Fully Connected Layers Visualization');

 imagesc(weights);

 colorbar;

 title('Weights of Fully Connected Layer');

 xlabel('Output Classes');

 ylabel('Input Features');

 % Output Layer

 probabilities = rand(1, numClasses);

 figure('Name', 'Output Layer Visualization');

 bar(probabilities);

 title('Output Layer - Class Probabilities');

 xlabel('Classes');

 ylabel('Probability');

else

 error('Column "%s" not found in the dataset.',

caseColumnName);

end

function pooledMap = maxPooling2d(map, poolSize)

 pooledMap = map(1:poolSize:end, 1:poolSize:end);

end

CONFUSION MATIX AND PERFORMANCE MATRIC

% Load the train, validation, and test datasets

trainData = readtable('train_data.csv');

valData = readtable('val_data.csv');

testData = readtable('test_data.csv');

% Display column names to check correct names

disp('Column names in trainData:');

disp(trainData.Properties.VariableNames);

disp('Column names in valData:');

disp(valData.Properties.VariableNames);

disp('Column names in testData:');

disp(testData.Properties.VariableNames);

% Define correct column names based on the dataset

caseColumnName = 'sum_Cholera_Cases'; % Adjust based on

your dataset

trueLabelColumnName = 'TrueLabel'; % Replace with actual

label column name from testData

predictedScoreColumnName = 'PredictedScore'; % Replace

with actual score column name from testData

% Check if the column exists

if ismember(caseColumnName,

trainData.Properties.VariableNames)

 % Data Normalization

 % Normalize numerical variables to range [0, 1]

 numVars = varfun(@isnumeric, trainData, 'OutputFormat',

'uniform');

 for i = find(numVars)'

 data = trainData{:, i};

 minVal = min(data, [], 'omitnan');

 maxVal = max(data, [], 'omitnan');

 if maxVal > minVal

 normalizedData = (data - minVal) / (maxVal -

minVal);

 else

 normalizedData = zeros(size(data));

 end

 trainData.(trainData.Properties.VariableNames{i}) =

normalizedData;

 valData.(valData.Properties.VariableNames{i}) =

(valData{:, i} - minVal) / (maxVal - minVal);

 testData.(testData.Properties.VariableNames{i}) =

(testData{:, i} - minVal) / (maxVal - minVal);

 end

 % Define the input size based on the preprocessed data

 inputSize = [32 32 3]; % Adjust this based on the data

dimensions

 % Define the CNN architecture

 layers = [

 imageInputLayer(inputSize, 'Name', 'input',

'Normalization', 'none')

 convolution2dLayer(3, 16, 'Padding', 'same', 'Name',

'conv1')

 reluLayer('Name', 'relu1')

 maxPooling2dLayer(2, 'Stride', 2, 'Name', 'maxpool1')

 convolution2dLayer(3, 32, 'Padding', 'same', 'Name',

'conv2')

 reluLayer('Name', 'relu2')

 maxPooling2dLayer(2, 'Stride', 2, 'Name', 'maxpool2')

 convolution2dLayer(3, 64, 'Padding', 'same', 'Name',

'conv3')

 reluLayer('Name', 'relu3')

 maxPooling2dLayer(2, 'Stride', 2, 'Name', 'maxpool3')

 flattenLayer('Name', 'flatten')

 fullyConnectedLayer(128, 'Name', 'fc1')

 reluLayer('Name', 'relu_fc1')

 fullyConnectedLayer(64, 'Name', 'fc2')

 reluLayer('Name', 'relu_fc2')

 fullyConnectedLayer(10, 'Name', 'fc3') % Adjust based

on the number of classes

 softmaxLayer('Name', 'softmax')

 classificationLayer('Name', 'output')

];

 % Define the training options

 options = trainingOptions('adam', ...

 'MaxEpochs', 10, ...

 'MiniBatchSize', 64, ...

 'InitialLearnRate', 1e-4, ...

 'Plots', 'training-progress', ...

 'Verbose', false, ...

 'ValidationData', {valData, 'Label'}); % Adjust based on

label column

 % Assuming image data is available for training and

validation

 % trainData = imageDatastore('path/to/train/images',

'LabelSource', 'foldernames');

 % valData = imageDatastore('path/to/val/images',

'LabelSource', 'foldernames');

 % [trainedNet, info] = trainNetwork(trainData, layers,

options);

 % Save the trained network

 % save('trainedCNN.mat', 'trainedNet');

 % Visualize CNN components

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 13–Issue 08, 95 – 114, 2024, ISSN:-2319–8656

DOI:10.7753/IJCATR1308.1010

www.ijcat.com 113

 % Input Layer

 figure('Name', 'Input Layer Visualization');

 exampleInput = rand(inputSize);

 montage(exampleInput, 'Size', [1 1]);

 title('Example Input Data');

 xlabel('Width');

 ylabel('Height');

 zlabel('Channels');

 % Convolutional Layers

 numFilters = 16;

 filterSize = [3 3];

 filters = rand([filterSize, numFilters]);

 figure('Name', 'Convolutional Filters Visualization');

 for i = 1:numFilters

 subplot(4, 4, i);

 imshow(filters(:,:,i), []);

 title(sprintf('Filter %d', i));

 end

 sgtitle('Convolutional Filters');

 % Pooling Layers

 featureMap = rand(32, 32);

 poolSize = 2;

 pooledFeatureMap = maxPooling2d(featureMap, poolSize);

 figure('Name', 'Pooling Layers Visualization');

 subplot(1, 2, 1);

 imshow(featureMap, []);

 title('Feature Map Before Pooling');

 subplot(1, 2, 2);

 imshow(pooledFeatureMap, []);

 title('Feature Map After Pooling');

 % Fully Connected Layers

 numFeatures = 64;

 numClasses = 10;

 weights = rand(numFeatures, numClasses);

 figure('Name', 'Fully Connected Layers Visualization');

 imagesc(weights);

 colorbar;

 title('Weights of Fully Connected Layer');

 xlabel('Output Classes');

 ylabel('Input Features');

 % Output Layer

 probabilities = rand(1, numClasses);

 figure('Name', 'Output Layer Visualization');

 bar(probabilities);

 title('Output Layer - Class Probabilities');

 xlabel('Classes');

 ylabel('Probability');

 % Confusion Matrix and Performance Metrics

 % Check if the columns exist

 if ismember(trueLabelColumnName,

testData.Properties.VariableNames) &&

ismember(predictedScoreColumnName,

testData.Properties.VariableNames)

 % Extract true labels and predicted scores

 yTrue = testData.(trueLabelColumnName);

 yScores = testData.(predictedScoreColumnName); %

Assuming these are probability scores

 % Calculate ROC curve and AUC

 [FPR, TPR, ~, AUC] = perfcurve(yTrue, yScores,

'positiveClass'); % Adjust based on class labels

 % Plot ROC curve

 figure('Name', 'ROC Curve Visualization');

 plot(FPR, TPR, '-o');

 xlabel('False Positive Rate (FPR)');

 ylabel('True Positive Rate (TPR)');

 title(['ROC Curve (AUC = ', num2str(AUC), ')']);

 grid on;

 % Assuming confusion matrix values (replace with

actual values from model)

 TP = 50; % Example value for True Positives

 FP = 10; % Example value for False Positives

 TN = 100; % Example value for True Negatives

 FN = 20; % Example value for False Negatives

 % Calculate Precision

 precision = TP / (TP + FP);

 % Calculate Recall

 recall = TP / (TP + FN);

 % Calculate F1 Score

 f1Score = 2 * (precision * recall) / (precision + recall);

 % Display the confusion matrix and metrics

 figure('Name', 'Confusion Matrix and Metrics');

 % Confusion Matrix Visualization

 subplot(2,2,1);

 confusionMat = [TP, FP; FN, TN];

 % Define a colormap

 colormap = [1 1 1; 0.9 0.9 0.9; 0.5 0.5 1; 0 0 1]; %

Example custom colormap

 heatmap(confusionMat, 'XData', {'Predicted Positive',

'Predicted Negative'}, 'YData', {'Actual Positive', 'Actual

Negative'}, 'Colormap', colormap, 'ColorbarVisible', 'on');

 title('Confusion Matrix');

 % Plot Precision, Recall, and F1 Score

 subplot(2,2,2);

 bar([precision, recall, f1Score]);

 set(gca, 'XTickLabel', {'Precision', 'Recall', 'F1 Score'});

 title('Performance Metrics');

 ylabel('Value');

 ylim([0 1]);

 % Display numerical values

 fprintf('Precision: %.2f\n', precision);

 fprintf('Recall: %.2f\n', recall);

 fprintf('F1 Score: %.2f\n', f1Score);

 % Save the figures

 saveas(gcf, 'confusion_matrix_and_metrics.png');

 else

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 13–Issue 08, 95 – 114, 2024, ISSN:-2319–8656

DOI:10.7753/IJCATR1308.1010

www.ijcat.com 114

 error('Column "%s" or "%s" not found in the dataset.',

trueLabelColumnName, predictedScoreColumnName);

 end

else

 error('Column "%s" not found in the dataset.',

caseColumnName);

end

function pooledMap = maxPooling2d(map, poolSize)

 pooledMap = map(1:poolSize:end, 1:poolSize:end);

end

http://www.ijcat.com/

