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Abstract: Cholera remains a significant public health challenge, particularly in regions with inadequate water and sanitation 

infrastructure. Predictive learning and advanced data analytics offer critical tools for anticipating outbreaks and enabling timely 

interventions. This article explores the implementation of predictive learning using Convolutional Neural Networks (CNNs) and 

MATLAB to predict cholera outbreaks. By leveraging historical data, including cholera incidence rates, meteorological conditions, 

and environmental factors, CNNs can recognize complex patterns that signal impending outbreaks. MATLAB provides a robust 

environment for data analysis, visualization, and deep learning model development. We detail the steps involved in data collection, 

preprocessing, CNN architecture design, training, and evaluation. A case study demonstrates the application of this approach in a high-

risk region, highlighting its potential to improve predictive accuracy, optimize resource allocation, and enhance public health response. 

Despite challenges such as data quality and computational demands, the integration of CNNs in cholera prediction presents a 

promising direction for mitigating the impact of outbreaks and improving public health outcomes. Cholera prediction, Convolutional 

Neural Networks (CNNs), MATLAB, Predictive learning, Epidemiology, Public health interventions 
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1. INTRODUCTION 
Cholera, an acute diarrheal illness caused by infection of the 

intestine with Vibrio cholerae bacteria, remains a significant 

public health challenge, especially in regions with inadequate 

water treatment, poor sanitation, and inadequate hygiene 

practices (WHO, 2023. The disease spreads through 

contaminated water and food, thriving in environments where 

clean water and proper sanitation are lacking. Despite 

numerous advances in medical treatment and public health 

interventions, cholera outbreaks continue to occur, often with 

devastating consequences for affected communities (Harris et  

 

al., 2012). Rapid onset of symptoms and severe dehydration 

leading to death within hours make early detection and timely 

response critical in managing and controlling outbreaks. 

Predictive learning and advanced data analytics offer 

promising solutions to anticipate cholera outbreaks and enable 

timely interventions (Ali et al., 2017). Predictive models 

leverage historical data, identifying patterns and trends that 

can forecast future outbreaks. 
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Figure 1. The Lancet of Cholera [1] 

These models are particularly useful in epidemiology, where 

early warning systems can save lives by facilitating 

preemptive measures in high-risk areas. Convolutional Neural 

Networks (CNNs), a type of deep learning algorithm, are 

well-suited for recognizing complex patterns in data, 

extending their application from image recognition to 

analyzing epidemiological data (LeCun et al., 2015). By 

incorporating variables such as historical cholera cases, 

weather patterns, and environmental conditions, CNNs can 

predict potential outbreaks with high accuracy. 

 

Figure 2 Predictive Analysis Schematics [2] 

MATLAB, a powerful tool for data analysis and algorithm 

development, provides a robust environment for 

implementing CNNs (MathWorks, 2022). Its extensive 

support for deep learning and user-friendly interface makes it 

ideal for developing predictive models. By using MATLAB to 

design, train, and evaluate CNNs, researchers can create 

models that accurately predict cholera outbreaks, allowing 

public health officials to respond proactively. This proactive 

approach can significantly reduce the morbidity and mortality 

associated with cholera, optimizing resource allocation and 

improving overall public health outcomes. As computational 

power and data availability continue to improve, the 

integration of CNNs and MATLAB in public health strategies 

holds great promise for the future (Chukwunweike JN et al., 

2024). 

 

Figure 3. CNN Using MATLAB 

SCOPE OF THE RESEARCH 

This research focuses on the implementation of predictive 

learning using Convolutional Neural Networks (CNNs) and 

MATLAB to anticipate cholera outbreaks. Cholera, caused by 

Vibrio cholerae bacteria, remains a critical public health issue 

in regions with inadequate water treatment, poor sanitation, 

and insufficient hygiene practices. By leveraging advanced 

data analytics and machine learning techniques, this study 

aims to develop a predictive model that can accurately 

forecast cholera outbreaks. The scope encompasses the 

collection and analysis of historical cholera incidence data, 

meteorological data, and environmental factors, as well as the 

design, training, and evaluation of CNNs using MATLAB. 
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This research seeks to demonstrate the feasibility and 

effectiveness of using CNNs for epidemiological predictions, 

ultimately aiming to improve public health responses to 

cholera outbreaks. 

OBJECTIVE 

The primary objective of this research is to develop and 

implement a predictive model using Convolutional Neural 

Networks (CNNs) and MATLAB to accurately forecast 

cholera outbreaks. By analysing historical data and identifying 

patterns that precede outbreaks, the model aims to provide 

early warnings to public health officials. This proactive 

approach is intended to facilitate timely interventions, 

optimize resource allocation, and reduce the morbidity and 

mortality associated with cholera. Additionally, the research 

aims to demonstrate the practical application of CNNs in 

public health, highlighting the potential of advanced data 

analytics and machine learning to enhance disease prediction 

and prevention strategies. 

2. LITERATURE REVIEW 
UNDERSTANDING CHOLERA AND THE NEED FOR 

PREDICTIVE MODELS 

The Epidemiology of Cholera 

Cholera is predominantly transmitted through the ingestion of 

water or food contaminated with V. cholerae (CDC, 2022). 

The bacteria thrive in environments with poor sanitation and 

limited access to clean water, which is why outbreaks are 

most common in regions with these conditions (Zuckerman et 

al., 2007). The disease can cause severe dehydration and death 

within hours if untreated, making rapid detection and response 

crucial (Harris et al., 2012). Traditional methods of managing 

cholera outbreaks include improving water quality, sanitation, 

and hygiene (WASH) practices, as well as deploying oral 

cholera vaccines (OCVs) in high-risk areas (Deen et al., 

2020). However, these interventions often react to outbreaks 

rather than prevent them, highlighting the need for predictive 

models that can anticipate outbreaks and guide proactive 

measures (Azman et al., 2018). 

Traditional Methods of Cholera Control 

Traditional approaches to managing cholera outbreaks have 

focused on improving water quality, sanitation, and hygiene 

(WASH) practices, as well as deploying oral cholera vaccines 

(OCVs) in high-risk areas (Deen et al., 2020). While these 

interventions have proven effective in reducing the incidence 

and severity of outbreaks, they often react to outbreaks rather 

than prevent them. Consequently, there is a growing 

recognition of the need for predictive models that can 

anticipate cholera outbreaks and guide proactive public health 

measures (Azman et al., 2018). These models can enable 

health authorities to allocate resources more efficiently, 

implement targeted interventions, and ultimately save lives. 

 

Figure 4 Life Cycle of Cholera 

 

Figure 5 Tradition Means of Managing Cholera [4] 
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PREDICTIVE LEARNING FOR CHOLERA 

Predictive models use historical data to forecast future events, 

which is particularly useful in epidemiology where early 

warning systems can save lives (Reiner et al., 2018). For 

cholera, predictive models can help identify high-risk areas, 

optimize resource allocation, and guide public health 

interventions (Lee et al., 2020). Convolutional Neural 

Networks (CNNs) are a type of deep learning algorithm 

known for their ability to recognize patterns in data, making 

them suitable for image and spatial data analysis (LeCun et 

al., 2015). Their application extends beyond traditional image 

recognition tasks to include time-series and spatial data 

relevant to epidemiological predictions (Matsubara et al., 

2018). 

Convolutional Neural Networks (CNNs) 

Overview of CNNs 

CNNs are a class of deep learning algorithms (Figure 2) 

particularly well-suited for image and spatial data analysis. 

They have proven effective in various applications, including 

image recognition, medical imaging, and now, predictive 

modelling in epidemiology. 

Key Components of CNNs 

1. Convolutional Layers: Apply filters to the input 

data to extract significant features. 

2. Pooling Layers: Reduce the dimensionality of the 

data while retaining essential features. 

3. Fully Connected Layers: Combine features 

extracted by previous layers to make predictions 

(Krizhevsky et al., 2012). 

 

Advantages of MATLAB 

MATLAB is widely used for data analysis and algorithm 

development due to its robust toolboxes and user-friendly 

environment (MathWorks, 2024). It provides comprehensive 

support for deep learning, including pre-built functions and 

customization options (Alpaydin, 2021). 

Steps in Developing a Predictive Model 

Effective predictive modeling starts with comprehensive data 

collection and preprocessing. Relevant data includes historical 

cholera cases, meteorological data, environmental factors, and 

socioeconomic indicators (Lessler et al., 2018). Preprocessing 

ensures data quality by cleaning, normalizing, and handling 

missing values (García et al., 2016). 

 

Figure 6 Key Components of CNN 

). Designing the CNN involves selecting the appropriate 

number of layers, types of layers, and hyperparameters such 

as learning rate and batch size (Chukwunweike JN et al., 

2024). Training involves feeding the preprocessed data into 

the CNN and adjusting weights based on a loss function to 

minimize prediction error (Ark Oluwatobi Ifeanyi et al… 

2024) 

Case Studies and Applications 

Several studies have demonstrated the potential of using 

CNNs for disease prediction. For instance, Lee et al. (2020) 

successfully applied CNNs to predict dengue fever outbreaks 

by analysing climatic data. Similarly, the principles can be 

extended to cholera prediction, given the right data inputs. By 

incorporating environmental and epidemiological data into the 

CNN framework, it is possible to achieve high accuracy in 

predicting outbreaks, thereby enabling timely public health 

interventions. 

Challenges and Limitations 

Despite the potential benefits, several challenges must be 

addressed in implementing CNN-based predictive models for 

cholera. Data quality and availability are primary concerns, as 

accurate predictions depend on comprehensive and reliable 

datasets (García et al., 2016). Furthermore, the computational 

resources required for training deep learning models can be 
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substantial, posing a barrier for resource-limited settings 

(Chukwunweike JN et al., 2024). Lastly, the interpretability of 

deep learning models remains a challenge, as understanding 

the decision-making process of a CNN can be complex 

(Doshi-Velez & Kim, 2017). 

3. METHODOLOGY 

3.1 Date Collection and Preprocessing 
The first step in developing a predictive model for cholera 

outbreaks using Convolutional Neural Networks (CNNs) 

involves the collection and preprocessing of relevant data. 

The data required includes historical cholera case records, 

meteorological data (such as temperature and rainfall), 

environmental factors (such as water quality indicators), and 

socio-economic factors that might influence cholera 

transmission. This data can be sourced from public health 

databases, meteorological agencies, and local health 

departments. In this research, Data sets were gotten from 

Northern part of Nigeria (Maiduguri) and was used in 

analysing the predictive model. 

Data Collection: 

1. Historical Cholera Cases: historical data on 

cholera incidence from health surveillance systems 

and databases such as the World Health 

Organization (WHO) and local health departments 

in Borno State of Nigeria was utilized. This data 

records confirmed cholera cases, including 

geographical and temporal information. 

 

 

Figure 7 Histogram of Cholera Cases 

2. Meteorological Data: Data on weather conditions 

from meteorological agencies were also collected. 

Key variables including temperature, rainfall, and 

humidity, as these had impact on the survival and 

proliferation of Vibrio cholerae in the environment. 

3. Environmental Data: Data related to water quality, 

such as contamination levels, access to clean water, 

and sanitation facilities were assessed. This 

information was sourced from local water 

authorities and environmental monitoring agencies. 

4. Socio-Economic Data: Data on socio-economic 

factors which had influence on cholera outbreaks, 

such as population density, economic status, and 

infrastructure availability were also analyzed. 

 

 

 

Figure 8 Cholera Cases by Month 

Data Preprocessing: 

1. Data Cleaning: missing values and outliers were 

handled using methods such as imputation and 

removal. Standardization of the data was done to 

ensure consistency across different sources. 

2. Normalization: the data was normalized to ensure 

that different variables contribute equally to the 
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model. This involved scaling numerical data to a 

common range. 

3. Feature Engineering: relevant features from raw 

data were extracted. For example, transforming 

time-series data into features that capture trends and 

seasonal patterns. 

4. Data Splitting: the data was divided into training, 

validation, and test sets. This allowed for model 

training, tuning, and evaluation while preventing 

overfitting. 

 

 

Figure 9 Excerpt of Training Dataset 

 

Figure 10 Testing Dataset 

 

 

Figure 11 Validation Dataset 

CNN Architecture Design 

Designing the Convolutional Neural Network involved 

defining the network architecture, including the number and 

types of layers. The architecture was designed and suited to 

handle the data format and complexity of the problem. This 

involved the following steps. 
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1. Input Layer: 

• Definition of the input dimensions based on the 

preprocessed data. For example, if using spatial 

data, the input layer might accept multi-dimensional 

arrays. 

 

Figure 12 Input Dataset Layer 

3.2 Convolution Layers 
Applying convolutional layers with various filter sizes to 

extract features from the data. Use ReLU (Rectified Linear 

Unit) activation functions to introduce non-linearity  

 

Figure 13 Convolution Layer 

3.3 Pooling Layers 
Incorporating pooling layers (e.g., max pooling) to reduce the 

dimensionality of the data while retaining important features. 

 

Figure 14 Pooling Layer 

3.4 Fully Connected Layers 
Adding fully connected layers to combine features extracted 

by the convolutional and pooling layers. This step helps in 

making predictions based on the learned features. 

 

Figure 15 Fully Connected Layer 
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3.5 Output Layers 
Designing the output layer to provide the final prediction. For 

a classification problem, usage a softmax activation function 

to produce probability distributions over possible outcomes. 

 

Figure 16 Output Layer 

 

 

Model Training and Evaluation 

1. Training: 

• Train the CNN using the training dataset (Figure 6). 

This involves feeding the data into the network, 

computing the loss using a loss function (e.g., cross-

entropy loss for classification), and updating the 

network weights using optimization algorithms such 

as Stochastic Gradient Descent (SGD). 

2. Validation: 

• Validation of the model using the validation dataset 

to fine-tune hyperparameters and avoid overfitting 

(Figure 7). Assessing the model’s performance 

using metrics such as accuracy, precision, recall, 

and F1-score. 

3. Testing: 

• Evaluated the final model using the test dataset to 

assess its generalizability (Figure 8). This involves 

predicting cholera outbreaks on unseen data and 

comparing the predictions against actual outcomes. 

 

 

 

Figure 17 MATLAB Visualisation Result 

EVALUATION OF PREDICTIVE MODEL USING 

PERFORMANCE MATICS 

Evaluating the performance of this predictive model is crucial 

to ensure its reliability and effectiveness in real-world 

applications. In this context of predicting cholera outbreaks 

using Convolutional Neural Networks (CNNs) and 

MATLAB, several performance metrics were used. These 

include accuracy, confusion matrices, and Receiver Operating 

Characteristic (ROC) curves. Each of these metrics offers 

unique insights into the model's predictive capabilities and 

areas for improvement 

ACCURACY 

Accuracy is one of the simplest and most intuitive 

performance metrics. It measures the proportion of correct 

predictions out of the total number of predictions made by the 

model. 

 

In this case of predicting cholera outbreaks, accuracy 

indicates the percentage of times the model correctly predicts 

an outbreak or non-outbreak scenario. While accuracy 

provides a general sense of model performance, it may not 

always be the most informative metric, especially in cases 

where the data is imbalanced (e.g., more non-outbreaks than 

outbreaks). 
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CONFUSION MATRIX 

A confusion matrix offers a more detailed breakdown of the 

model's performance by displaying the counts of true positive 

(TP), true negative (TN), false positive (FP), and false 

negative (FN) predictions. 

Metrics Derived from Confusion Matrix 

Precision (Positive Predictive Value) 

Precision measures the proportion of positive predictions that 

are actually correct. It is calculated as: 

 

Precision is critical when the cost of false positive is high. 

Recall (Sensitivity or True Positive Rate) 

Recall measures the proportion of actual positive cases that 

are correctly identified by the model. It is calculated as 

 

 

Recall is important when the cost of missing positive cases is 

high.                  

F1 Score 

The F1 Score is the harmonic mean of precision and recall, 

providing a balance between the two metrics. It is calculated 

as: 

 

 

Figure 17 

 

ROC Curve and AUC 

The Receiver Operating Characteristic (ROC) curve is a 

tool used to evaluate the performance of the binary 

classification model. It visualizes the trade-off between the 

true positive rate (sensitivity) and the false positive rate (1 - 

specificity) across different decision thresholds. The area 

under the ROC curve (AUC) is a summary measure that 

indicates the model's overall ability to discriminate between 

positive and negative classes. 

A detailed breakdown of the ROC curve and its formulae: 

1. True Positive Rate (Sensitivity) and False Positive Rate 

True Positive Rate (Sensitivity): Measures the proportion of 

actual positives that are correctly identified by the model. 

 

False Positive Rate (FPR): Measures the proportion of actual 

negatives that are incorrectly identified as positives by the 

model. 
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An ROC curve allows for the visualization of the trade-offs 

between sensitivity and specificity. A model with a higher 

AUC is generally considered to have better performance, as it 

indicates a higher true positive rate for a lower false positive 

rate. The ROC curve is a plot of the True Positive Rate (TPR) 

against the False Positive Rate (FPR) at various threshold 

settings. Each point on the curve represents a different 

threshold value used to classify the predictions as positive or 

negative. 

3. Area Under the ROC Curve (AUC) 

The AUC is a scalar value that summarizes the overall 

performance of the model. It is the area under the ROC curve: 

• AUC (Area Under the Curve): Measures the 

ability of the model to distinguish between positive 

and negative classes. The AUC value ranges from 0 

to 1, where: 

o AUC = 1: Perfect model 

o AUC = 0.5: Model performs no better 

than random guessing 

o AUC < 0.5: Model performs worse than 

random guessing (indicates possible 

inversion of predictions) 

Result from Analysis 

o RMSE: 0.92058 

o MAE: 0.76974 

o R²: 0.9999 

Model Deployment and Application 

Once the model has been trained and validated, it was then 

deployed for real-time predictions. This involved integrating 

the model into a public health monitoring system where it 

processed incoming data and provide early warnings for 

potential cholera outbreaks. Regular updates and retraining of 

the model may be necessary to maintain its accuracy and 

effectiveness in dynamic environments. 

 

 

Figure   Training Progress 
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BENEFITS AND CHALLENGES OF DEVELOPING 

PREDICTIVE MODELS FOR CHOLERA OUTBREAKS 

USING CNNS AND MATLAB 

The primary objective of this research is to develop and 

implement a predictive model using Convolutional Neural 

Networks (CNNs) and MATLAB to accurately forecast 

cholera outbreaks. By analysing historical data and identifying 

patterns that precede outbreaks, the model aims to provide 

early warnings to public health officials. This proactive 

approach is intended to facilitate timely interventions, 

optimize resource allocation, and reduce the morbidity and 

mortality associated with cholera. Additionally, the research 

aims to demonstrate the practical application of CNNs in 

public health, highlighting the potential of advanced data 

analytics and machine learning to enhance disease prediction 

and prevention strategies. 

BENEFITS 

IMPROVED PREDICTIVE ACCURACY 

One of the foremost benefits of using CNNs for cholera 

prediction is their ability to capture complex patterns in data, 

leading to more accurate predictions. Traditional statistical 

models may not fully exploit the rich structure present in 

epidemiological and environmental data. CNNs, however, can 

model intricate relationships and non-linear interactions 

within the data, which are often critical for accurate outbreak 

prediction. The deep learning capabilities of CNNs allow 

them to learn from vast amounts of data, progressively 

improving their accuracy as more data becomes available 

(LeCun et al., 2015). 

For example, CNNs can analyse spatial-temporal data, 

identifying trends and anomalies that precede cholera 

outbreaks. This capability is particularly valuable in 

predicting outbreaks in regions with diverse environmental 

and socio-economic conditions. Accurate predictions help 

public health officials better understand potential outbreak 

scenarios, leading to more informed decision-making and 

effective intervention strategies. 

TIMELY INTERVENTIONS 

The ability to forecast cholera outbreaks accurately translates 

directly into timely interventions. Early warnings provided by 

predictive models enable public health officials to act swiftly, 

implementing preventive measures before the outbreak 

escalates. This proactive approach can significantly reduce the 

impact of cholera on affected communities, minimizing the 

number of cases and fatalities (Reiner et al., 2018). 

For instance, if a model predicts a high likelihood of an 

outbreak in a specific region, health authorities can pre-

emptively distribute cholera vaccines, improve water quality, 

and enhance sanitation facilities in that area. Such measures 

can prevent the spread of the disease and protect vulnerable 

populations, ultimately saving lives and reducing the strain on 

healthcare systems. 

RESOURCE OPTIMIZATION 

Efficient allocation of resources based on predictive models 

can improve the overall effectiveness of public health 

responses. Cholera outbreaks often require rapid mobilization 

of resources, including medical supplies, clean water, and 

personnel. Predictive models can help prioritize these 

resources, directing them to areas at the highest risk of 

outbreaks (Azman et al., 2018). Resource optimization is 

particularly crucial in resource-limited settings where 

healthcare infrastructure and funding are constrained. By 

using predictive analytics, public health agencies can ensure 

that limited resources are used where they are needed most, 

enhancing the efficiency and effectiveness of cholera control 

efforts. This strategic approach can also reduce unnecessary 

expenditures, allowing for better financial planning and 

sustainability in public health initiatives. 

CHALLENGES 

DATA QUALITY 

The accuracy of predictions is highly dependent on the quality 

and completeness of the input data. Inconsistent, incomplete, 

or inaccurate data can significantly undermine the 

performance of predictive models. For cholera prediction, 

relevant data includes historical incidence rates, 

meteorological data, environmental conditions, and socio-

economic factors. However, in many regions where cholera is 

prevalent, data collection and reporting may be suboptimal 

due to limited resources, lack of infrastructure, or political 

instability (García et al., 2016). 
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Data quality issues can lead to erroneous predictions, 

potentially causing misallocation of resources and missed 

opportunities for timely intervention. Ensuring high-quality, 

comprehensive datasets is thus a critical challenge in 

developing effective predictive models. Strategies to address 

this challenge include enhancing data collection protocols, 

integrating multiple data sources, and employing robust data 

preprocessing techniques to handle missing or inconsistent 

data. 

Computational Resources 

Training deep learning models, particularly CNNs, requires 

significant computational power. The complexity and depth of 

CNNs necessitate extensive computational resources for 

training and fine-tuning. This requirement can be a barrier in 

many settings, especially in low- and middle-income countries 

where cholera is most prevalent and computational 

infrastructure may be limited (Chukwunweike JN et al., 

2024). 

High-performance computing environments and specialized 

hardware such as GPUs (Graphics Processing Units) are often 

needed to train CNNs efficiently. Accessing such resources 

can be challenging for many public health organizations, 

limiting their ability to develop and deploy predictive models. 

To overcome this challenge, collaborations with academic 

institutions, international organizations, and private sector 

partners can provide the necessary computational 

infrastructure and technical expertise. 

Interpretability 

The 'black box' nature of deep learning models, including 

CNNs, poses a significant challenge in interpreting the results 

and understanding the underlying factors driving predictions. 

While CNNs can achieve high predictive accuracy, their 

complex architectures make it difficult to discern how specific 

inputs influence the output predictions (Doshi-Velez & Kim, 

2017). Interpretability is crucial in public health applications 

where transparency and understanding of the decision-making 

process are essential. Public health officials need to trust and 

understand the predictions to make informed decisions and 

communicate risks effectively to the public. Addressing this 

challenge requires developing methods to enhance the 

interpretability of CNNs, such as visualization techniques, 

explainable AI approaches, and incorporating domain 

knowledge into the model design. Developing and 

implementing predictive models using CNNs and MATLAB 

to forecast cholera outbreaks presents both significant benefits 

and challenges. The improved predictive accuracy of CNNs 

can lead to timely interventions and optimized resource 

allocation, ultimately reducing the morbidity and mortality 

associated with cholera. However, challenges related to data 

quality, computational resources, and interpretability must be 

addressed to realize the full potential of these models in public 

health. 

By leveraging advanced data analytics and machine learning, 

this research aims to enhance disease prediction and 

prevention strategies, demonstrating the practical application 

of CNNs in public health. Continued efforts to improve data 

collection, invest in computational infrastructure, and develop 

interpretable models will be essential for advancing predictive 

analytics in combating cholera and other infectious diseases. 

The implementation of predictive learning using 

Convolutional Neural Networks and MATLAB offers a 

promising approach to anticipating and mitigating cholera 

outbreaks. By leveraging historical data and advanced 

machine learning techniques, public health officials can 

improve their ability to respond to outbreaks, ultimately 

reducing the morbidity and mortality associated with this 

devastating disease. As computational power and data quality 

continue to improve, the potential for predictive models to 

enhance public health interventions will only grow. 

FUTURE DIRECTIONS FOR CHOLERA PREDICTIVE 

MODELS USING CNNS 

The primary aim of this research is to develop a predictive 

model using Convolutional Neural Networks (CNNs) and 

MATLAB to accurately forecast cholera outbreaks. By 

analyzing historical data and identifying patterns that precede 

outbreaks, the model seeks to provide early warnings to public 

health officials. This proactive approach is designed to 

facilitate timely interventions, optimize resource allocation, 

and reduce cholera-related morbidity and mortality. The 

research also aims to demonstrate the practical application of 

CNNs in public health, underscoring the potential of advanced 

data analytics and machine learning to enhance disease 

prediction and prevention strategies. Future research should 

focus on several key areas to further improve the effectiveness 

and utility of predictive models for cholera outbreaks. 
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 Integrating Additional Data Sources 

Leveraging Social Media Activity 

One promising avenue for future research is integrating social 

media activity into predictive models. Platforms like Twitter 

and Facebook offer real-time data that can provide early 

indicators of cholera outbreaks. Mentions of symptoms, 

discussions about water quality, or reports of local health 

conditions can serve as valuable signals for predicting 

outbreaks (Kagashe et al., 2017). By incorporating social 

media data, predictive models can potentially identify 

outbreaks earlier than traditional surveillance methods, 

enabling quicker public health responses. 

Utilizing Mobile Phone Data 

Mobile phone data is another valuable resource for enhancing 

predictive accuracy. Call detail records (CDRs) can provide 

insights into population movement and density, which are 

critical factors in the spread of cholera. Understanding how 

people move and interact during an outbreak can help predict 

which areas are at higher risk of transmission (Wesolowski et 

al., 2012). Integrating mobile phone data with existing 

epidemiological and environmental data can improve the 

spatial and temporal resolution of predictions, making them 

more actionable for public health officials. 

Combining Diverse Data Sets 

Integrating diverse data sets, from traditional epidemiological 

data to innovative sources like social media and mobile 

phones, can create a more comprehensive picture of cholera 

dynamics. This approach enhances predictive accuracy and 

helps identify underlying risk factors and transmission 

pathways that might be missed using a single data source. 

Future research should focus on developing robust methods 

for harmonizing and analyzing these diverse data sets, 

ensuring that the added complexity translates into meaningful 

improvements in prediction. 

 Enhancing Model Interpretability 

Developing Explainable AI Techniques 

The 'black box' nature of CNNs poses a significant challenge 

in public health applications, where understanding the basis of 

predictions is crucial for trust and actionable insights. Future 

research should prioritize developing explainable AI 

techniques that make CNN predictions more transparent and 

interpretable. Methods like Layer-wise Relevance Propagation 

(LRP) and SHapley Additive exPlanations (SHAP) can help 

elucidate which features most influence the model’s 

predictions (Samek et al., 2017). By making the decision-

making process of CNNs more understandable, public health 

officials can better assess the reliability of the predictions and 

make more informed decisions. 

Incorporating Domain Knowledge 

Integrating domain knowledge into the model can also 

enhance interpretability. By embedding epidemiological 

insights and public health expertise into the CNN framework, 

researchers can create models that not only predict outcomes 

but also provide explanations grounded in established 

scientific understanding. This approach can involve designing 

model architectures that reflect known transmission dynamics 

or using expert-annotated data to guide the learning process. 

Such hybrid models can bridge the gap between raw data-

driven predictions and interpretable, actionable insights. 

 Scaling Implementations 

Ensuring Accessibility in Low-Resource Settings 

Scaling the implementation of predictive models to low-

resource settings is critical for addressing cholera outbreaks 

where they are most prevalent. Many regions affected by 

cholera lack the computational infrastructure and technical 

expertise required to develop and deploy advanced CNN 

models. Future research should focus on creating lightweight, 

accessible versions of predictive models that can run on 

standard hardware with limited computational power. This 

can involve optimizing model architectures for efficiency, 

using cloud-based solutions for training and deployment, and 

providing user-friendly interfaces for non-specialist public 

health workers. 

Building Local Capacity 

Building local capacity is essential for the sustainable 

implementation of predictive models. This includes training 

local health professionals in data science and machine 

learning techniques, developing partnerships with local 

institutions, and fostering a collaborative environment where 
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local knowledge and expertise are integrated into model 

development and application. Empowering local communities 

with the tools and skills to use predictive models can enhance 

their ability to respond to cholera outbreaks effectively and 

independently. 

Adapting to Different Contexts 

Cholera outbreaks can vary significantly across different 

geographic and socio-economic contexts. Therefore, scalable 

models must be adaptable to diverse local conditions. Future 

research should explore ways to customize predictive models 

for different regions, incorporating local data and tailoring 

algorithms to specific environmental and epidemiological 

characteristics. This adaptive approach can ensure that 

predictive models remain relevant and accurate across varied 

settings, enhancing their utility and impact in global cholera 

control efforts. 

 Conclusion 

By addressing these challenges and building on current 

successes, the application of CNNs in epidemiology holds 

great promise for the future of public health. Integrating 

additional data sources such as social media and mobile phone 

data can improve predictive accuracy, while enhancing model 

interpretability can build trust and facilitate actionable 

insights. Ensuring that predictive models are scalable and 

accessible in low-resource settings is critical for their 

widespread adoption and effectiveness. Future research 

should continue to innovate and refine these approaches, 

leveraging the power of advanced data analytics and machine 

learning to combat cholera and other infectious diseases more 

effectively. As we advance in these areas, the potential to 

transform public health through predictive modeling and 

proactive intervention strategies will increasingly become a 

reality. 
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CODE 

Data Preprocessing  

 

% Load the combined dataset from the CSV file 

combinedData = readtable('combined_data.csv'); 

 

% 1. Data Cleaning 

 

% Initialize a table to store cleaned data 

cleanedData = combinedData; 

 

% Handle missing values 

% Replace missing values with the median of the respective 

column for numerical variables 

numVars = varfun(@isnumeric, combinedData, 

'OutputFormat', 'uniform'); 

for i = find(numVars)' 

    data = combinedData{:, i}; 

    missingIdx = isnan(data); 

    if any(missingIdx) 

        medianVal = median(data, 'omitnan'); 

        cleanedData{missingIdx, i} = medianVal; 

    end 

end 

 

% For categorical variables, replace missing values with the 

mode (most frequent value) 

catVars = varfun(@iscategorical, combinedData, 

'OutputFormat', 'uniform'); 

for i = find(catVars)' 

    data = combinedData{:, i}; 

    missingIdx = ismissing(data); 

    if any(missingIdx) 

        modeVal = mode(data); 

        cleanedData{missingIdx, i} = modeVal; 

    end 

end 

 

% Handle outliers manually (Z-score calculation without 

zscore function) 

zThreshold = 3; % Z-score threshold for outliers 

for i = find(numVars)' 

    data = cleanedData{:, i}; 

    mu = mean(data, 'omitnan'); % Mean 

    sigma = std(data, 'omitnan'); % Standard deviation 

    zScores = (data - mu) / sigma; % Calculate Z-scores 

    outlierIdx = abs(zScores) > zThreshold; 

     

    % Replace outliers with median of non-outlier values 

    medianVal = median(data(~outlierIdx), 'omitnan'); % 

Median of non-outliers 

    cleanedData{outlierIdx, i} = medianVal; 

end 

 

% 2. Normalization 

 

% Normalize numerical variables to range [0, 1] 

numVars = varfun(@isnumeric, cleanedData, 'OutputFormat', 

'uniform'); 

for i = find(numVars)' 

    data = cleanedData{:, i}; 

    minVal = min(data, [], 'omitnan'); 

    maxVal = max(data, [], 'omitnan'); 

    % Prevent division by zero in case of constant columns 

    if maxVal > minVal 

        % Normalize data 

        normalizedData = (data - minVal) / (maxVal - minVal); 
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    else 

        % Handle case where maxVal == minVal (constant 

column) 

        normalizedData = zeros(size(data)); % Normalize to 0 

    end 

     

    % Assign the normalized data back to the table 

    cleanedData.(cleanedData.Properties.VariableNames{i}) = 

normalizedData; 

end 

 

% 3. Feature Engineering 

 

% Example: Create a new feature based on existing ones 

% Let's say you want to create a feature for 

'Temperature_Rainfall_Ratio' 

if any(ismember(cleanedData.Properties.VariableNames, 

{'Temperature_Celsius', 'Rainfall_mm'})) 

    % Check if the columns exist and create the new feature 

    tempCol = cleanedData.Temperature_Celsius; 

    rainfallCol = cleanedData.Rainfall_mm; 

    % Add 1 to rainfall to avoid division by zero 

    cleanedData.Temperature_Rainfall_Ratio = tempCol ./ 

(rainfallCol + 1); 

end 

 

% Example: Extract month and day of week from 'Date' 

if ismember('Date', cleanedData.Properties.VariableNames) 

    % Convert 'Date' column to datetime if not already 

    if ~isdatetime(cleanedData.Date) 

        cleanedData.Date = datetime(cleanedData.Date, 

'InputFormat', 'yyyy-MM-dd'); 

    end 

    cleanedData.Month = month(cleanedData.Date); 

    cleanedData.DayOfWeek = weekday(cleanedData.Date); 

end 

 

% 4. Data Splitting 

 

% Define the proportion of the dataset for training, validation, 

and test sets 

trainRatio = 0.7; 

valRatio = 0.15; 

testRatio = 0.15; 

 

% Ensure ratios sum up to 1 

assert(abs((trainRatio + valRatio + testRatio) - 1) < 1e-6, 

'Ratios must sum up to 1.'); 

 

% Shuffle the data 

shuffledData = cleanedData(randperm(height(cleanedData)), 

:); 

 

% Compute the number of samples for each set 

numSamples = height(shuffledData); 

numTrain = floor(trainRatio * numSamples); 

numVal = floor(valRatio * numSamples); 

 

% Split the data 

trainData = shuffledData(1:numTrain, :); 

valData = shuffledData(numTrain + 1:numTrain + numVal, 

:); 

testData = shuffledData(numTrain + numVal + 1:end, :); 

 

% Save the split data to CSV files 

writetable(trainData, 'train_data.csv'); 

writetable(valData, 'val_data.csv'); 

writetable(testData, 'test_data.csv'); 

 

disp('Data preprocessing complete. Data saved to CSV files.'); 

 

TRAINING CODE 

% Load the data 

trainData = readtable('train_data.csv'); 

valData = readtable('val_data.csv'); 

testData = readtable('test_data.csv'); 

 

% Display column names for reference 

disp('Column names in trainData:'); 

disp(trainData.Properties.VariableNames); 

 

disp('Column names in valData:'); 

disp(valData.Properties.VariableNames); 

 

disp('Column names in testData:'); 

disp(testData.Properties.VariableNames); 

 

% Define the input size based on the number of features 

(excluding the Date column) 

inputSize = width(trainData) - 2;  % Exclude 'Date' and 

'sum_Cholera_Cases' columns 

 

% Define the network layers 

layers = [ 

    featureInputLayer(inputSize, 'Name', 'input') 

    fullyConnectedLayer(128, 'Name', 'fc1') 

    reluLayer('Name', 'relu1') 

    fullyConnectedLayer(64, 'Name', 'fc2') 

    reluLayer('Name', 'relu2') 

    fullyConnectedLayer(1, 'Name', 'fc3') 

    regressionLayer('Name', 'output') 

]; 

 

% Define training options 

options = trainingOptions('adam', ... 

    'MaxEpochs', 100, ... 

    'MiniBatchSize', 32, ... 

    'InitialLearnRate', 1e-3, ... 

    'ValidationData', {valData{:, 2:end-1}, 

valData.sum_Cholera_Cases}, ...  % Exclude 'Date' and target 

columns 

    'Plots', 'training-progress', ... 

    'Verbose', false); 

 

% Extract features and labels from training data 

XTrain = trainData{:, 2:end-1};  % Exclude 'Date' and target 

columns 

YTrain = trainData.sum_Cholera_Cases; 

 

% Train the network 

[trainedNet, info] = trainNetwork(XTrain, YTrain, layers, 

options); 

 

% Save the trained network 

save('trainedCNN.mat', 'trainedNet'); 

 

% Evaluate the network on the test set 

XTest = testData{:, 2:end-1};  % Exclude 'Date' and target 

columns 

YTest = testData.sum_Cholera_Cases; 

YPred = predict(trainedNet, XTest); 

 

% Calculate the RMSE 

rmse = sqrt(mean((YPred - YTest).^2)); 
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% Calculate ROC curve and AUC 

[fpRate, tpRate, ~, AUC] = perfcurve(YTest, YPred, 'true'); 

 

% Display RMSE and AUC 

disp(['RMSE: ', num2str(rmse)]); 

disp(['AUC: ', num2str(AUC)]); 

 

CNN NETWORK 

% Load the train, validation, and test datasets 

trainData = readtable('train_data.csv'); 

valData = readtable('val_data.csv'); 

testData = readtable('test_data.csv'); 

 

% Display column names to check correct names 

disp('Column names in trainData:'); 

disp(trainData.Properties.VariableNames); 

 

% Assuming the column containing case counts is named 

'Cases' or another name 

caseColumnName = 'sum_Cholera_Cases'; % Adjust this 

based on the column names displayed 

 

% Check if the column exists 

if ismember(caseColumnName, 

trainData.Properties.VariableNames) 

    % Data Normalization 

    % Normalize numerical variables to range [0, 1] 

    numVars = varfun(@isnumeric, trainData, 'OutputFormat', 

'uniform'); 

    for i = find(numVars)' 

        data = trainData{:, i}; 

        minVal = min(data, [], 'omitnan'); 

        maxVal = max(data, [], 'omitnan'); 

        if maxVal > minVal 

            normalizedData = (data - minVal) / (maxVal - 

minVal); 

        else 

            normalizedData = zeros(size(data)); 

        end 

        trainData.(trainData.Properties.VariableNames{i}) = 

normalizedData; 

        valData.(valData.Properties.VariableNames{i}) = 

(valData{:, i} - minVal) / (maxVal - minVal); 

        testData.(testData.Properties.VariableNames{i}) = 

(testData{:, i} - minVal) / (maxVal - minVal); 

    end 

 

    % Define the input size based on the preprocessed data 

    inputSize = [32 32 3]; % Adjust this based on the data 

dimensions 

 

    % Define the CNN architecture 

    layers = [ 

        imageInputLayer(inputSize, 'Name', 'input', 

'Normalization', 'none') 

        convolution2dLayer(3, 16, 'Padding', 'same', 'Name', 

'conv1') 

        reluLayer('Name', 'relu1') 

        maxPooling2dLayer(2, 'Stride', 2, 'Name', 'maxpool1') 

        convolution2dLayer(3, 32, 'Padding', 'same', 'Name', 

'conv2') 

        reluLayer('Name', 'relu2') 

        maxPooling2dLayer(2, 'Stride', 2, 'Name', 'maxpool2') 

        convolution2dLayer(3, 64, 'Padding', 'same', 'Name', 

'conv3') 

        reluLayer('Name', 'relu3') 

        maxPooling2dLayer(2, 'Stride', 2, 'Name', 'maxpool3') 

        flattenLayer('Name', 'flatten') 

        fullyConnectedLayer(128, 'Name', 'fc1') 

        reluLayer('Name', 'relu_fc1') 

        fullyConnectedLayer(64, 'Name', 'fc2') 

        reluLayer('Name', 'relu_fc2') 

        fullyConnectedLayer(10, 'Name', 'fc3') % Adjust based 

on the number of classes 

        softmaxLayer('Name', 'softmax') 

        classificationLayer('Name', 'output') 

    ]; 

 

    % Define the training options 

    options = trainingOptions('adam', ... 

        'MaxEpochs', 10, ... 

        'MiniBatchSize', 64, ... 

        'InitialLearnRate', 1e-4, ... 

        'Plots', 'training-progress', ... 

        'Verbose', false, ... 

        'ValidationData', {valData, 'Label'}); % Adjust based on 

label column 

 

    % Assuming image data is available for training and 

validation 

    % trainData = imageDatastore('path/to/train/images', 

'LabelSource', 'foldernames'); 

    % valData = imageDatastore('path/to/val/images', 

'LabelSource', 'foldernames'); 

    % [trainedNet, info] = trainNetwork(trainData, layers, 

options); 

 

    % Save the trained network 

    % save('trainedCNN.mat', 'trainedNet'); 

 

    % Visualize CNN components 

 

    % Input Layer 

    figure('Name', 'Input Layer Visualization'); 

    title('Input Layer'); 

    xlabel('Width'); 

    ylabel('Height'); 

    zlabel('Channels'); 

    exampleInput = rand(inputSize); 

    montage(exampleInput, 'Size', [1 1]); 

    title('Example Input Data'); 

 

    % Convolutional Layers 

    numFilters = 16; 

    filterSize = [3 3]; 

    filters = rand([filterSize, numFilters]); 

    figure('Name', 'Convolutional Filters Visualization'); 

    for i = 1:numFilters 

        subplot(4, 4, i); 

        imshow(filters(:,:,i), []); 

        title(sprintf('Filter %d', i)); 

    end 

    sgtitle('Convolutional Filters'); 

 

    % Pooling Layers 

    featureMap = rand(32, 32); 

    poolSize = 2; 

    pooledFeatureMap = maxPooling2d(featureMap, poolSize); 

    figure('Name', 'Pooling Layers Visualization'); 

    subplot(1, 2, 1); 

    imshow(featureMap, []); 

    title('Feature Map Before Pooling'); 

    subplot(1, 2, 2); 
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    imshow(pooledFeatureMap, []); 

    title('Feature Map After Pooling'); 

 

    % Fully Connected Layers 

    numFeatures = 64; 

    numClasses = 10; 

    weights = rand(numFeatures, numClasses); 

    figure('Name', 'Fully Connected Layers Visualization'); 

    imagesc(weights); 

    colorbar; 

    title('Weights of Fully Connected Layer'); 

    xlabel('Output Classes'); 

    ylabel('Input Features'); 

 

    % Output Layer 

    probabilities = rand(1, numClasses); 

    figure('Name', 'Output Layer Visualization'); 

    bar(probabilities); 

    title('Output Layer - Class Probabilities'); 

    xlabel('Classes'); 

    ylabel('Probability'); 

 

else 

    error('Column "%s" not found in the dataset.', 

caseColumnName); 

end 

 

function pooledMap = maxPooling2d(map, poolSize) 

    pooledMap = map(1:poolSize:end, 1:poolSize:end); 

end 

 

CONFUSION MATIX AND PERFORMANCE MATRIC 

 

% Load the train, validation, and test datasets 

trainData = readtable('train_data.csv'); 

valData = readtable('val_data.csv'); 

testData = readtable('test_data.csv'); 

 

% Display column names to check correct names 

disp('Column names in trainData:'); 

disp(trainData.Properties.VariableNames); 

disp('Column names in valData:'); 

disp(valData.Properties.VariableNames); 

disp('Column names in testData:'); 

disp(testData.Properties.VariableNames); 

 

% Define correct column names based on the dataset 

caseColumnName = 'sum_Cholera_Cases'; % Adjust based on 

your dataset 

trueLabelColumnName = 'TrueLabel'; % Replace with actual 

label column name from testData 

predictedScoreColumnName = 'PredictedScore'; % Replace 

with actual score column name from testData 

 

% Check if the column exists 

if ismember(caseColumnName, 

trainData.Properties.VariableNames) 

    % Data Normalization 

    % Normalize numerical variables to range [0, 1] 

    numVars = varfun(@isnumeric, trainData, 'OutputFormat', 

'uniform'); 

    for i = find(numVars)' 

        data = trainData{:, i}; 

        minVal = min(data, [], 'omitnan'); 

        maxVal = max(data, [], 'omitnan'); 

        if maxVal > minVal 

            normalizedData = (data - minVal) / (maxVal - 

minVal); 

        else 

            normalizedData = zeros(size(data)); 

        end 

        trainData.(trainData.Properties.VariableNames{i}) = 

normalizedData; 

        valData.(valData.Properties.VariableNames{i}) = 

(valData{:, i} - minVal) / (maxVal - minVal); 

        testData.(testData.Properties.VariableNames{i}) = 

(testData{:, i} - minVal) / (maxVal - minVal); 

    end 

 

    % Define the input size based on the preprocessed data 

    inputSize = [32 32 3]; % Adjust this based on the data 

dimensions 

 

    % Define the CNN architecture 

    layers = [ 

        imageInputLayer(inputSize, 'Name', 'input', 

'Normalization', 'none') 

        convolution2dLayer(3, 16, 'Padding', 'same', 'Name', 

'conv1') 

        reluLayer('Name', 'relu1') 

        maxPooling2dLayer(2, 'Stride', 2, 'Name', 'maxpool1') 

        convolution2dLayer(3, 32, 'Padding', 'same', 'Name', 

'conv2') 

        reluLayer('Name', 'relu2') 

        maxPooling2dLayer(2, 'Stride', 2, 'Name', 'maxpool2') 

        convolution2dLayer(3, 64, 'Padding', 'same', 'Name', 

'conv3') 

        reluLayer('Name', 'relu3') 

        maxPooling2dLayer(2, 'Stride', 2, 'Name', 'maxpool3') 

        flattenLayer('Name', 'flatten') 

        fullyConnectedLayer(128, 'Name', 'fc1') 

        reluLayer('Name', 'relu_fc1') 

        fullyConnectedLayer(64, 'Name', 'fc2') 

        reluLayer('Name', 'relu_fc2') 

        fullyConnectedLayer(10, 'Name', 'fc3') % Adjust based 

on the number of classes 

        softmaxLayer('Name', 'softmax') 

        classificationLayer('Name', 'output') 

    ]; 

 

    % Define the training options 

    options = trainingOptions('adam', ... 

        'MaxEpochs', 10, ... 

        'MiniBatchSize', 64, ... 

        'InitialLearnRate', 1e-4, ... 

        'Plots', 'training-progress', ... 

        'Verbose', false, ... 

        'ValidationData', {valData, 'Label'}); % Adjust based on 

label column 

 

    % Assuming image data is available for training and 

validation 

    % trainData = imageDatastore('path/to/train/images', 

'LabelSource', 'foldernames'); 

    % valData = imageDatastore('path/to/val/images', 

'LabelSource', 'foldernames'); 

    % [trainedNet, info] = trainNetwork(trainData, layers, 

options); 

 

    % Save the trained network 

    % save('trainedCNN.mat', 'trainedNet'); 

 

    % Visualize CNN components 
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    % Input Layer 

    figure('Name', 'Input Layer Visualization'); 

    exampleInput = rand(inputSize); 

    montage(exampleInput, 'Size', [1 1]); 

    title('Example Input Data'); 

    xlabel('Width'); 

    ylabel('Height'); 

    zlabel('Channels'); 

 

    % Convolutional Layers 

    numFilters = 16; 

    filterSize = [3 3]; 

    filters = rand([filterSize, numFilters]); 

    figure('Name', 'Convolutional Filters Visualization'); 

    for i = 1:numFilters 

        subplot(4, 4, i); 

        imshow(filters(:,:,i), []); 

        title(sprintf('Filter %d', i)); 

    end 

    sgtitle('Convolutional Filters'); 

 

    % Pooling Layers 

    featureMap = rand(32, 32); 

    poolSize = 2; 

    pooledFeatureMap = maxPooling2d(featureMap, poolSize); 

    figure('Name', 'Pooling Layers Visualization'); 

    subplot(1, 2, 1); 

    imshow(featureMap, []); 

    title('Feature Map Before Pooling'); 

    subplot(1, 2, 2); 

    imshow(pooledFeatureMap, []); 

    title('Feature Map After Pooling'); 

 

    % Fully Connected Layers 

    numFeatures = 64; 

    numClasses = 10; 

    weights = rand(numFeatures, numClasses); 

    figure('Name', 'Fully Connected Layers Visualization'); 

    imagesc(weights); 

    colorbar; 

    title('Weights of Fully Connected Layer'); 

    xlabel('Output Classes'); 

    ylabel('Input Features'); 

 

    % Output Layer 

    probabilities = rand(1, numClasses); 

    figure('Name', 'Output Layer Visualization'); 

    bar(probabilities); 

    title('Output Layer - Class Probabilities'); 

    xlabel('Classes'); 

    ylabel('Probability'); 

 

    % Confusion Matrix and Performance Metrics 

 

    % Check if the columns exist 

    if ismember(trueLabelColumnName, 

testData.Properties.VariableNames) && 

ismember(predictedScoreColumnName, 

testData.Properties.VariableNames) 

        % Extract true labels and predicted scores 

        yTrue = testData.(trueLabelColumnName); 

        yScores = testData.(predictedScoreColumnName); % 

Assuming these are probability scores 

 

        % Calculate ROC curve and AUC 

        [FPR, TPR, ~, AUC] = perfcurve(yTrue, yScores, 

'positiveClass'); % Adjust based on class labels 

 

        % Plot ROC curve 

        figure('Name', 'ROC Curve Visualization'); 

        plot(FPR, TPR, '-o'); 

        xlabel('False Positive Rate (FPR)'); 

        ylabel('True Positive Rate (TPR)'); 

        title(['ROC Curve (AUC = ', num2str(AUC), ')']); 

        grid on; 

 

        % Assuming confusion matrix values (replace with 

actual values from model) 

        TP = 50; % Example value for True Positives 

        FP = 10; % Example value for False Positives 

        TN = 100; % Example value for True Negatives 

        FN = 20; % Example value for False Negatives 

 

        % Calculate Precision 

        precision = TP / (TP + FP); 

 

        % Calculate Recall 

        recall = TP / (TP + FN); 

 

        % Calculate F1 Score 

        f1Score = 2 * (precision * recall) / (precision + recall); 

 

        % Display the confusion matrix and metrics 

        figure('Name', 'Confusion Matrix and Metrics'); 

 

        % Confusion Matrix Visualization 

        subplot(2,2,1); 

        confusionMat = [TP, FP; FN, TN]; 

        % Define a colormap 

        colormap = [1 1 1; 0.9 0.9 0.9; 0.5 0.5 1; 0 0 1]; % 

Example custom colormap 

        heatmap(confusionMat, 'XData', {'Predicted Positive', 

'Predicted Negative'}, 'YData', {'Actual Positive', 'Actual 

Negative'}, 'Colormap', colormap, 'ColorbarVisible', 'on'); 

        title('Confusion Matrix'); 

 

        % Plot Precision, Recall, and F1 Score 

        subplot(2,2,2); 

        bar([precision, recall, f1Score]); 

        set(gca, 'XTickLabel', {'Precision', 'Recall', 'F1 Score'}); 

        title('Performance Metrics'); 

        ylabel('Value'); 

        ylim([0 1]); 

        % Display numerical values 

        fprintf('Precision: %.2f\n', precision); 

        fprintf('Recall: %.2f\n', recall); 

        fprintf('F1 Score: %.2f\n', f1Score); 

 

        % Save the figures 

        saveas(gcf, 'confusion_matrix_and_metrics.png'); 

    else 
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        error('Column "%s" or "%s" not found in the dataset.', 

trueLabelColumnName, predictedScoreColumnName); 

    end 

else 

    error('Column "%s" not found in the dataset.', 

caseColumnName); 

end 

function pooledMap = maxPooling2d(map, poolSize) 

    pooledMap = map(1:poolSize:end, 1:poolSize:end); 

end 
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