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Abstract: In this paper, we study the performance of convolutional neural network (CNN) architecture for object classification. We 

evaluate three optimizers, i.e. ADAM, SGD and RMSprop and 5 convolutional layers use CIFAR10 datasets. We conduct the 

experiment with python program language. We evaluate the training, validation accuracy and training execution time. 
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1. INTRODUCTION 
In recent years, Convolutional Neural Networks (CNNs) have 

revolutionized the field of artificial intelligence, particularly 

in the areas of image and video recognition, natural language 

processing, and beyond. A CNN is a type of deep learning 

model specifically designed to process and analyze visual 

data. Unlike traditional neural networks, which work with 

vectorized inputs, CNNs are adept at recognizing patterns and 

spatial hierarchies in grid-like data, such as images 

[1][2][11][12]. 

Architecture of CNNs 

Input Layer: The input layer accepts the raw data, typically 

an image represented as a matrix of pixel values. For example, 

a grayscale image might be a 2D matrix, while a color image 

is represented as a 3D matrix (height x width x channels). 

Convolutional Layer: The convolutional layer is the core 

building block of a CNN. It applies a set of filters (or kernels) 

to the input image. Each filter slides across the image (a 

process known as convolution) and performs element-wise 

multiplications to produce a feature map. This feature map 

highlights specific patterns, such as edges or textures, at 

various locations in the image [6][7][8][9].  

Activation Function: After convolution, an activation 

function like the Rectified Linear Unit (ReLU) is applied to 

introduce non-linearity. This step helps the network learn 

complex patterns by transforming the output of the 

convolution operation. 

Pooling Layer: Pooling (or subsampling) layers reduce the 

spatial dimensions of the feature maps, typically through 

operations like max pooling or average pooling. This step 

helps to reduce computation, control overfitting, and make the 

model more invariant to small translations in the image. 

Fully Connected Layer: Following several convolutional and 

pooling layers, the high-level reasoning is performed by fully 

connected layers. These layers are similar to those in 

traditional neural networks and are used to classify the 

features extracted by the convolutional layers. 

Output Layer: The output layer produces the final 

classification or prediction. In a classification task, this layer 

typically uses a softmax function to output probabilities for 

each class. 

2. THE PROPOSED STUDY 
In this section we will explain briefly our proposed study. We 

will evaluate three optimizers, i.e. ADAM (Adaptive Moment 

Estimation), SGD (Stochastic Gradient Descent) and 

RMSprop (Root Mean Square Propagation). The 

convolutional layers are shown in Figure 1. 

 

Figure 1.  The 5 network architectures used in this study 

Figure 1 shows the input image size of 32×32 pixels in color 

format. The convolution process, we use 32 filters and 64 

filters with kernel size of 3×3. Max pooling, we use window 
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size 2×2 pixels, except architecture 5 we use window size 4×4 

pixels. 

 
Figure 2.  CIFAR10 datasets used in this study [3] 

 

2.1 ADAM (Adaptive Moment Estimation) 
The Adam optimizer is a widely used optimization algorithm 

that combines the ideas of momentum and adaptive learning 

rates to improve the training of neural networks and other 

machine learning models. Developed by D.P Kingma and 

J.Ba in 2015 [4]. 

Adam maintains two moving averages for each parameter: 

1. First Moment (Mean): This is the moving average of the 

gradients, similar to momentum. 

2. Second Moment (Variance): This is the moving average 

of the squared gradients, which adjusts the learning rate based 

on the variance of the gradients. 

 

Adam Algorithm Steps: 

1. Initialization: 

- Initialize parameters  with some values. 

- Initialize first moment vector m and second moment vector v 

to zero. 

- Set hyperparameters: learning rate , 1, 2, and ϵ. 

2. Update Rules: 

For each iteration t: 

- Compute the gradient gt of the loss function with respect to 

the parameters . 

- Update the first moment estimate: 

 
- Update the second moment estimate: 

 
- Compute bias-corrected first moment estimate: 

 
- Compute bias-corrected second moment estimate: 

 
- Update the parameters: 

 
Here,  is the learning rate, 1 is the exponential decay rate 

for the first moment estimate, 2 is the exponential decay rate 

for the second moment estimate, and ϵ is a small number 

added to prevent division by zero. 

 

Hyperparameters 

- Learning Rate  : Controls the step size for each update. 

Common default value: 0.001. 

- 1 : The decay rate for the first moment estimate. Common 

default value: 0.9. 

- 2 : The decay rate for the second moment estimate. 

Common default value: 0.999. 

- ϵ : A small constant to prevent division by zero. Common 

default value: 10-8. 

 

Advantages of Adam 

- Adaptive Learning Rates: Adam adjusts the learning rate for 

each parameter individually, which can lead to faster 

convergence. 

- Momentum: By incorporating the moving average of the 

gradients, Adam can navigate ravines more effectively and 

smooth out the updates. 

- Bias Correction: Adam's bias correction helps stabilize the 

estimates of the moments, especially during the initial stages 

of training. 

 

Disadvantages of Adam 

- Memory Usage: Adam requires storing additional vectors for 

the moments, which can increase memory usage compared to 

simpler optimizers. 

- Hyperparameter Sensitivity: While Adam is often robust, the 

choice of hyperparameters can still affect performance, and 

tuning may be necessary for optimal results. 

 

Overall, Adam is a versatile and effective optimizer that 

works well in many scenarios, particularly in training deep 

learning models. 

 

2.2 SGD (Stochastic Gradient Descent) 
SGD is one of the most fundamental and widely used 

optimization algorithms in machine learning and deep 

learning. Despite the advent of more sophisticated optimizers 

like Adam and RMSProp, SGD remains a popular choice due 

to its simplicity, effectiveness, and computational efficiency 

[5].  

Stochastic Gradient Descent is a variant of the classic 

Gradient Descent algorithm. While Gradient Descent updates 

model parameters based on the average of gradients computed 

over the entire training dataset (batch gradient descent), SGD 

uses a single or a small subset of training examples to update 

the parameters at each iteration. This approach has several 

implications for training: 

1. Gradient Computation: 

- In SGD, instead of computing the gradient of the loss 

function across the entire dataset, the gradient is computed for 

a randomly selected subset of the data (a mini-batch) or even 

a single training example. This stochastic approximation can 

be expressed as: 

 
where t represents the model parameters at time step t,  is 

the learning rate, (xi, yi) is the training example, and L is the 

gradient of the loss function. 

2. Parameter Update: 

- The parameters are updated iteratively as: 

 
 

     where  is the gradient computed from the 

mini-batch or single example. 

 

Advantages of SGD 

1. Computational Efficiency: By updating the parameters 

more frequently (with each mini-batch or training example), 

SGD often requires less memory and computational resources 
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compared to batch gradient descent. This can be particularly 

advantageous for large datasets. 

2. Faster Convergence: The frequent updates help the model 

to start improving more quickly, potentially leading to faster 

convergence to a good solution. 

3. Escape Local Minima: The noisy updates due to stochastic 

gradients can help the optimization process escape from local 

minima and explore the parameter space more broadly, which 

might lead to better overall solutions. 

4. Online Learning: SGD is suitable for online learning 

scenarios where data arrives sequentially. It allows the model 

to be updated continuously with new data. 

 

Challenges of SGD 

1. Hyperparameter Sensitivity: The learning rate  is a 

crucial hyperparameter that significantly affects the 

performance of SGD. If it's too high, the algorithm may 

converge too quickly to a suboptimal solution; if it's too low, 

convergence may be too slow. 

2. Convergence Issues: Due to the noisy nature of the 

gradients, SGD can exhibit high variance in updates, which 

might make the convergence path erratic. It may require 

careful tuning of learning rates and other hyperparameters. 

3. Learning Rate Scheduling: To mitigate issues with 

convergence, learning rate schedules (e.g., decaying learning 

rates) are often used. However, determining the right schedule 

can be complex. 

4. Local Minima and Saddle Points: Despite the ability to 

escape local minima, SGD may still get stuck in saddle points 

or poor local minima, depending on the problem landscape. 

 

Variations and Improvements 

1. Mini-Batch Gradient Descent: Instead of using a single 

training example, mini-batch gradient descent uses small 

random subsets of data (mini-batches) to compute gradients. 

This balances the trade-off between the noisy updates of SGD 

and the computational cost of batch gradient descent. 

2. Momentum: Momentum-based SGD helps accelerate 

convergence and smooth out oscillations by incorporating a 

moving average of past gradients. This can be expressed as:  

 

   
where vt is the velocity term and  is the momentum factor. 

3. Nesterov Accelerated Gradient (NAG): NAG improves 

upon traditional momentum by looking ahead at the estimated 

future position of the parameters, thus providing more 

informed updates. 

4. Learning Rate Schedulers: Various learning rate 

schedules, such as exponential decay, step decay, or cyclical 

learning rates, can help improve convergence by adjusting the 

learning rate during training. 

 

Best Practices 

1. Choosing the Right Learning Rate: Start with a moderate 

learning rate and use techniques like learning rate schedules 

or adaptive methods to fine-tune it. 

2. Using Mini-Batches: Employ mini-batch gradient descent 

to achieve a balance between computational efficiency and 

gradient estimation accuracy. 

3. Incorporating Momentum: Apply momentum to 

accelerate convergence and stabilize updates, especially in 

noisy or complex landscapes. 

4. Regularization: Combine SGD with regularization 

techniques (like dropout or L2 regularization) to prevent 

overfitting and improve generalization. 

 

Stochastic Gradient Descent remains a foundational 

optimization algorithm due to its simplicity and efficiency. 

While it can be challenging to tune and may have 

convergence issues, its variants and improvements have 

addressed many of these challenges. Understanding and 

effectively applying SGD can lead to significant 

advancements in training machine learning models. 

 

2.3 RMSprop  
RMSProp (Root Mean Square Propagation) is an adaptive 

learning rate optimization algorithm designed to address some 

of the limitations of traditional stochastic gradient descent 

(SGD) and its variants. Introduced by Geoffrey Hinton in his 

Coursera class on neural networks, RMSProp is especially 

effective in handling problems associated with non-stationary 

objectives and noisy gradients [10].  

RMSProp modifies the learning rate for each parameter by 

scaling it inversely proportional to a running average of recent 

magnitudes of the gradients. Here’s a detailed breakdown of 

how RMSProp operates: 

1. Gradient Computation: Similar to SGD, RMSProp 

computes gradients of the loss function with respect to the 

model parameters. However, it adjusts the learning rate for 

each parameter based on the historical gradient magnitudes. 

2. Exponential Decay of Squared Gradients: RMSProp 

maintains a running average of the squared gradients, which 

helps to normalize the gradient updates. This is achieved 

through an exponentially decaying average: 

 
where vt represents the average of squared gradients at time 

step t,  is the decay factor (often set to 0.9), and gt is the 

gradient at time step t. 

3. Parameter Update: The parameters are updated using the 

following rule: 

 

where  is the learning rate,  is the root of the running 

average of squared gradients, and ϵ is a small constant added 

for numerical stability (e.g., 10-8). 

 

Advantages of RMSProp 

1. Adaptive Learning Rates: RMSProp adapts the learning 

rate for each parameter individually, which helps to address 

issues like vanishing or exploding gradients and improves 

convergence speed. 

2. Handling Non-Stationary Objectives: By normalizing the 

gradient updates, RMSProp can handle non-stationary 

objectives, where the distribution of data or the objective 

function changes over time. 

3. Stable Updates: The running average of squared gradients 

smooths out the updates, making them more stable and 

reducing the variance caused by noisy gradients. 

4. Efficient Computation: RMSProp requires only a modest 

amount of memory and computational resources, making it 

suitable for large-scale and complex models. 

 

Challenges of RMSProp 

1. Hyperparameter Tuning: Choosing appropriate values for 

the learning rate  and the decay factor  can be challenging. 

These hyperparameters can significantly impact the 

performance of the optimizer. 

2. Sensitivity to Initial Learning Rate: The performance of 

RMSProp can be sensitive to the initial learning rate. Careful 

tuning is necessary to achieve optimal results. 

3. No Global Optimal Learning Rate: While RMSProp 

adapts the learning rate for each parameter, it does not 

http://www.ijcat.com/


International Journal of Computer Applications Technology and Research 

Volume 13–Issue 08, 115 – 122, 2024, ISSN:-2319–8656 

DOI:10.7753/IJCATR1308.1011 

www.ijcat.com  118 

guarantee a globally optimal learning rate for all parameters, 

which can sometimes lead to suboptimal convergence. 

 

Variations and Improvements 

1. RMSProp with Warm Restarts: Adding warm restarts 

(also known as cyclical learning rates) to RMSProp can 

improve its performance by periodically resetting the learning 

rate, which helps the optimizer escape local minima. 

2. RMSProp with Decoupled Weight Decay (AdamW): 

Combining RMSProp with decoupled weight decay (as in 

AdamW) can improve generalization by addressing issues 

with weight regularization. 

 

Best Practices 

1. Learning Rate Scheduling: Experiment with different 

learning rates and use learning rate scheduling techniques to 

adjust the learning rate during training. 

2. Decay Factor: Set the decay factor  to a value like 0.9, 

which works well in practice, but be prepared to adjust it 

based on the specific problem and dataset. 

3. Numerical Stability: Ensure that ϵ is appropriately set to 

avoid division by zero and numerical instability. 

4. Experimentation: As with other optimizers, empirical 

testing and experimentation are crucial for finding the best 

hyperparameters and configurations for your specific 

application. 

 

RMSProp is a powerful optimization algorithm that addresses 

many of the limitations of traditional gradient descent 

methods by adapting learning rates based on the magnitude of 

recent gradients. Its ability to handle noisy gradients and non-

stationary objectives makes it particularly useful for training 

deep learning models. By understanding its mechanics and 

applying best practices, you can leverage RMSProp to 

improve the performance and efficiency of your machine 

learning models. 

 

3. THE EXPERIMENTAL RESULT 
In this section, we explain our experimental result. As in 

Figure 1 show the convolutional layers we used in this study, 

and the datasets CIFAR10 is depicted in Figure 2. The 

CIFAR-10 dataset consists of 60000 32x32 colour images in 

10 classes, with 6000 images per class. There are 50000 

training images and 10000 test images. 

To conduct this study, we write code programming in python 

language as Program 1. The model summary of architectures 

are depicted in Figure 3, 6, 7, 8, 10 for architecture 1, 2, 3, 4 

and 5 respectively. We evaluate each architecture and 

optimizer in 10, 30 and 50 epoch. 

Program 1: 

print('CNN with CIFAR10 ..\n'*5) 
print("SB_Montag,29.07.2024; 07:24") 
print("Panca" + 
      " Mudjirahardjo") 
print("") 
print("============================================") 
 
print("") 
print('') 
modelKE = input('What model (1 .. 5) : ') 
 
print('') 
optim = input('Optimizer ((1)SGD, (2)ADAM, (3)RMSprop) : ') 
if optim=='1': 
    optim='SGD' 

    print('-- optimizer: SGD') 
elif optim=='2': 
    optim='ADAM' 
    print('-- optimizer: ADAM') 
elif optim=='3': 
    optim='RMSprop' 
    print('-- optimizer: RMSprop') 
 
print('') 
ep = input('Jumlah epoch (1 epoch 42 sec !): ') 
ep = int(ep) 
 
print('')  
print('---- import library & tools dimulai --- ')  
 
# ----------------------------------------------------------------------------------- 
import datetime 
import numpy as np 
import os 
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0' 
 
import tensorflow as tf 
import matplotlib.pyplot as plt 
from tqdm import tqdm 
 
from tensorflow.keras import datasets, layers, models 
from tensorflow.keras.models import Sequential 
from tensorflow.keras.utils import to_categorical 
from tensorflow.keras.losses import categorical_crossentropy 
from tensorflow.keras.preprocessing.image import 
ImageDataGenerator 
from tensorflow.keras.layers import Dense, Flatten, Conv2D, 
MaxPooling2D, Dropout 
 
# ----------------------------------------------------------------------------------- 
def create_model_1(): 
    model = models.Sequential() 
    model.add(layers.Conv2D(32, (3, 3), activation='relu', 
input_shape=(32, 32, 3))) 
    model.add(layers.MaxPooling2D((2, 2))) 
    model.add(layers.Conv2D(64, (3, 3), activation='relu')) 
    model.add(layers.MaxPooling2D((2, 2))) 
    model.add(layers.Conv2D(64, (3, 3), activation='relu')) 
 
    print('') 
    model.summary() 
 
    model.add(layers.Flatten()) 
    model.add(layers.Dense(64, activation='relu')) 
   model.add(layers.Dense(10)) 
 
    print('') 
    model.summary() 
 
    return model 
 
def create_model_2(): 
    model = models.Sequential() 
    model.add(layers.Conv2D(32, (3, 3), activation='relu', 
input_shape=(32, 32, 3))) 
    model.add(layers.Conv2D(64, (3, 3), activation='relu')) 
    model.add(layers.MaxPooling2D((2, 2))) 
    model.add(layers.Conv2D(64, (3, 3), activation='relu')) 
 
    print('') 
    model.summary() 
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    model.add(layers.Flatten()) 
    model.add(layers.Dense(64, activation='relu')) 
    model.add(layers.Dense(10)) 
 
    print('') 
    model.summary() 
 
    return model 
 
def create_model_3(): 
    model = models.Sequential() 
    model.add(layers.Conv2D(32, (3, 3), activation='relu', 
input_shape=(32, 32, 3))) 
    model.add(layers.Conv2D(32, (3, 3), activation='relu')) 
    model.add(layers.MaxPooling2D((2, 2))) 
    model.add(layers.Conv2D(32, (3, 3), activation='relu')) 
    model.add(layers.MaxPooling2D((2, 2))) 
    model.add(layers.MaxPooling2D((2, 2))) 
 
    print('') 
    model.summary() 
 
    model.add(layers.Flatten()) 
    model.add(layers.Dense(64, activation='relu')) 
    model.add(layers.Dense(10)) 
 
    print('') 
    model.summary() 
 
    return model 
 
def create_model_4(): 
    model = models.Sequential() 
    model.add(layers.Conv2D(32, (3, 3), activation='relu', 
input_shape=(32, 32, 3))) 
    model.add(layers.Conv2D(64, (3, 3), activation='relu')) 
    model.add(layers.MaxPooling2D((2, 2))) 
    model.add(layers.Conv2D(64, (3, 3), activation='relu')) 
    model.add(layers.MaxPooling2D((2, 2))) 
    model.add(layers.Conv2D(64, (3, 3), activation='relu')) 
 
    print('') 
    model.summary() 
 
    model.add(layers.Flatten()) 
    model.add(layers.Dense(64, activation='relu')) 
    model.add(layers.Dense(10)) 
 
    print('') 
    model.summary() 
    return model 
 
def create_model_5(): 
    model = models.Sequential() 
    model.add(layers.Conv2D(64, (3, 3), activation='relu', 
input_shape=(32, 32, 3))) 
    model.add(layers.MaxPooling2D((4, 4))) 
    model.add(layers.Conv2D(32, (3, 3), activation='relu')) 
 
    print('') 
    model.summary() 
 
    model.add(layers.Flatten()) 
    model.add(layers.Dense(64, activation='relu')) 
    model.add(layers.Dense(10)) 
 
    print('') 

    model.summary() 
 
    return model 
 
# --------------------------------------------------------------------------------------- 
 
print('') 
print('--- download datasets --') 
(train_images, train_labels), (test_images, test_labels) = 
datasets.cifar10.load_data()     
 
# Normalize pixel values to be between 0 and 1 
train_images, test_images = train_images / 255.0, test_images / 
255.0 
 
class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer', 
               'dog', 'frog', 'horse', 'ship', 'truck'] 
 
plt.figure(figsize=(10,10)) 
for i in range(25): 
    plt.subplot(5,5,i+1) 
    plt.xticks([]) 
    plt.yticks([]) 
    plt.grid(False) 
    plt.imshow(train_images[i]) 
    # The CIFAR labels happen to be arrays,  
    # which is why you need the extra index 
    plt.xlabel(class_names[train_labels[i][0]]) 
plt.show() 
 
print('')  
print('')  
if modelKE == '1': 
    model = create_model_1() 
    print('---- model ke 1 (satu) ---') 
elif modelKE == '2': 
    model = create_model_2() 
    print('---- model ke 2 (dua) ---') 
elif modelKE == '3': 
    model = create_model_3() 
    print('---- model ke 3 (tiga) ---') 
elif modelKE == '4': 
    model = create_model_4() 
    print('---- model ke 4 (empat) ---') 
elif modelKE == '5': 
    model = create_model_5() 
    print('---- model ke 5 (lima) ---') 
 
print('')  
print('---- training dimulai --- ')  
print('---- Optimizer: ' +optim) 
print('')  
 
# -- optimizer: SGD, RMSprop, dan ADAM 
model.compile(optimizer=optim, 
      
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logit
s=True), 
              metrics=['accuracy']) 
 
# Restore the weights 
history = model.fit(train_images, train_labels, epochs=ep,                  
                validation_data=(test_images, test_labels)) 
 
plt.plot(history.history['accuracy'], label='accuracy') 
plt.plot(history.history['val_accuracy'], label = 'val_accuracy') 
plt.xlabel('Epoch') 
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plt.ylabel('Accuracy') 
plt.ylim([0.5, 1]) 
plt.legend(loc='lower right') 
plt.show() 
 
print('') 
print(' ----- model evaluate ---- ') 
test_loss, test_acc = model.evaluate(test_images,  test_labels, 
verbose=2) 
 
print("") 
print('.. press ENTER to quit ..') 
input() 
 
# -------------------------------------------------------------------------------- 
 

3.1 Architecture 1  

The model summary 

 
Figure 3. Model summary of architecture #1 

    
                               (a)                                               (b) 

 
    (c) 

Figure 4. Architecture #1 with optimizer (a) adam (b) SGD (c) 

RMSprop 

 

 
(a) 

 
(b) 

Figure 5. Architecture #1 (a) training accuracy (b) validation 

accuracy 

3.2 Architecture 2  

The model summary 

 
Figure 6. Model summary of architecture #2 

3.3 Architecture 3  

The model summary 

 
Figure 7. Model summary of architecture #3 

3.4 Architecture 4  

The model summary 
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Figure 8. Model summary of architecture #4 

  
                                (a)                                              (b) 

 
(c) 

Figure 9. Validation Accuracy of architecture #4 (a) adam of 0,7145 

(b) SGD of 0,6940 (c) RMSprop, of 0,7005 

 

3.5 Architecture 5  

The model summary 

 
Figure 10. Model summary of architecture #5 

  
                                (a)                                              (b) 

 
(c) 

Figure 11. Validation Accuracy of architecture #5 (a) adam of 0,6867 

(b) SGD of 0,6951 (c) RMSprop, of 0,6770 

 

 
Figure 12. Comparison of validation accuracy based on architecture 

and optimizer 

  

 
Figure 13. Average training time for 1 epoch 

 

4. CONCLUSION 
In this paper, we study the performance of CNN in 

classification based on the different architecture and 

optimizer. In the Figure 12, it is shown the highest validation 

accuracy belongs to architecture 4. Figure 13 shows the 

average training time for one epoch. 
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