
International Journal of Computer Applications Technology and Research

Volume 13–Issue 08, 115 – 122, 2024, ISSN:-2319–8656

DOI:10.7753/IJCATR1308.1011

www.ijcat.com 115

The Performance of Convolutional Neural Network

Architecture in Classification

Panca Mudjirahardjo

Department of Electrical

Engineering, Faculty of

Engineering,

Brawijaya University

Malang, Indonesia

Aqil Gama Rahmansyah

Department of Electrical

Engineering, Faculty of

Engineering

Brawijaya University

Malang, Indonesia

Alya Shafa Dianti

Department of Statistics,

Faculty of Mathematics and

Science,

Brawijaya University

Malang, Indonesia

Abstract: In this paper, we study the performance of convolutional neural network (CNN) architecture for object classification. We

evaluate three optimizers, i.e. ADAM, SGD and RMSprop and 5 convolutional layers use CIFAR10 datasets. We conduct the

experiment with python program language. We evaluate the training, validation accuracy and training execution time.

Keywords: convolutional neural network; optimizer; CIFAR10 datasets; CNN architecture; object classification

1. INTRODUCTION
In recent years, Convolutional Neural Networks (CNNs) have

revolutionized the field of artificial intelligence, particularly

in the areas of image and video recognition, natural language

processing, and beyond. A CNN is a type of deep learning

model specifically designed to process and analyze visual

data. Unlike traditional neural networks, which work with

vectorized inputs, CNNs are adept at recognizing patterns and

spatial hierarchies in grid-like data, such as images

[1][2][11][12].

Architecture of CNNs

Input Layer: The input layer accepts the raw data, typically

an image represented as a matrix of pixel values. For example,

a grayscale image might be a 2D matrix, while a color image

is represented as a 3D matrix (height x width x channels).

Convolutional Layer: The convolutional layer is the core

building block of a CNN. It applies a set of filters (or kernels)

to the input image. Each filter slides across the image (a

process known as convolution) and performs element-wise

multiplications to produce a feature map. This feature map

highlights specific patterns, such as edges or textures, at

various locations in the image [6][7][8][9].

Activation Function: After convolution, an activation

function like the Rectified Linear Unit (ReLU) is applied to

introduce non-linearity. This step helps the network learn

complex patterns by transforming the output of the

convolution operation.

Pooling Layer: Pooling (or subsampling) layers reduce the

spatial dimensions of the feature maps, typically through

operations like max pooling or average pooling. This step

helps to reduce computation, control overfitting, and make the

model more invariant to small translations in the image.

Fully Connected Layer: Following several convolutional and

pooling layers, the high-level reasoning is performed by fully

connected layers. These layers are similar to those in

traditional neural networks and are used to classify the

features extracted by the convolutional layers.

Output Layer: The output layer produces the final

classification or prediction. In a classification task, this layer

typically uses a softmax function to output probabilities for

each class.

2. THE PROPOSED STUDY
In this section we will explain briefly our proposed study. We

will evaluate three optimizers, i.e. ADAM (Adaptive Moment

Estimation), SGD (Stochastic Gradient Descent) and

RMSprop (Root Mean Square Propagation). The

convolutional layers are shown in Figure 1.

Figure 1. The 5 network architectures used in this study

Figure 1 shows the input image size of 32×32 pixels in color

format. The convolution process, we use 32 filters and 64

filters with kernel size of 3×3. Max pooling, we use window

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 13–Issue 08, 115 – 122, 2024, ISSN:-2319–8656

DOI:10.7753/IJCATR1308.1011

www.ijcat.com 116

size 2×2 pixels, except architecture 5 we use window size 4×4

pixels.

Figure 2. CIFAR10 datasets used in this study [3]

2.1 ADAM (Adaptive Moment Estimation)
The Adam optimizer is a widely used optimization algorithm

that combines the ideas of momentum and adaptive learning

rates to improve the training of neural networks and other

machine learning models. Developed by D.P Kingma and

J.Ba in 2015 [4].

Adam maintains two moving averages for each parameter:

1. First Moment (Mean): This is the moving average of the

gradients, similar to momentum.

2. Second Moment (Variance): This is the moving average

of the squared gradients, which adjusts the learning rate based

on the variance of the gradients.

Adam Algorithm Steps:

1. Initialization:

- Initialize parameters  with some values.

- Initialize first moment vector m and second moment vector v

to zero.

- Set hyperparameters: learning rate , 1, 2, and ϵ.

2. Update Rules:

For each iteration t:

- Compute the gradient gt of the loss function with respect to

the parameters .

- Update the first moment estimate:

- Update the second moment estimate:

- Compute bias-corrected first moment estimate:

- Compute bias-corrected second moment estimate:

- Update the parameters:

Here,  is the learning rate, 1 is the exponential decay rate

for the first moment estimate, 2 is the exponential decay rate

for the second moment estimate, and ϵ is a small number

added to prevent division by zero.

Hyperparameters

- Learning Rate  : Controls the step size for each update.

Common default value: 0.001.

- 1 : The decay rate for the first moment estimate. Common

default value: 0.9.

- 2 : The decay rate for the second moment estimate.

Common default value: 0.999.

- ϵ : A small constant to prevent division by zero. Common

default value: 10-8.

Advantages of Adam

- Adaptive Learning Rates: Adam adjusts the learning rate for

each parameter individually, which can lead to faster

convergence.

- Momentum: By incorporating the moving average of the

gradients, Adam can navigate ravines more effectively and

smooth out the updates.

- Bias Correction: Adam's bias correction helps stabilize the

estimates of the moments, especially during the initial stages

of training.

Disadvantages of Adam

- Memory Usage: Adam requires storing additional vectors for

the moments, which can increase memory usage compared to

simpler optimizers.

- Hyperparameter Sensitivity: While Adam is often robust, the

choice of hyperparameters can still affect performance, and

tuning may be necessary for optimal results.

Overall, Adam is a versatile and effective optimizer that

works well in many scenarios, particularly in training deep

learning models.

2.2 SGD (Stochastic Gradient Descent)
SGD is one of the most fundamental and widely used

optimization algorithms in machine learning and deep

learning. Despite the advent of more sophisticated optimizers

like Adam and RMSProp, SGD remains a popular choice due

to its simplicity, effectiveness, and computational efficiency

[5].

Stochastic Gradient Descent is a variant of the classic

Gradient Descent algorithm. While Gradient Descent updates

model parameters based on the average of gradients computed

over the entire training dataset (batch gradient descent), SGD

uses a single or a small subset of training examples to update

the parameters at each iteration. This approach has several

implications for training:

1. Gradient Computation:

- In SGD, instead of computing the gradient of the loss

function across the entire dataset, the gradient is computed for

a randomly selected subset of the data (a mini-batch) or even

a single training example. This stochastic approximation can

be expressed as:

where t represents the model parameters at time step t,  is

the learning rate, (xi, yi) is the training example, and L is the

gradient of the loss function.

2. Parameter Update:

- The parameters are updated iteratively as:

 where is the gradient computed from the

mini-batch or single example.

Advantages of SGD

1. Computational Efficiency: By updating the parameters

more frequently (with each mini-batch or training example),

SGD often requires less memory and computational resources

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 13–Issue 08, 115 – 122, 2024, ISSN:-2319–8656

DOI:10.7753/IJCATR1308.1011

www.ijcat.com 117

compared to batch gradient descent. This can be particularly

advantageous for large datasets.

2. Faster Convergence: The frequent updates help the model

to start improving more quickly, potentially leading to faster

convergence to a good solution.

3. Escape Local Minima: The noisy updates due to stochastic

gradients can help the optimization process escape from local

minima and explore the parameter space more broadly, which

might lead to better overall solutions.

4. Online Learning: SGD is suitable for online learning

scenarios where data arrives sequentially. It allows the model

to be updated continuously with new data.

Challenges of SGD

1. Hyperparameter Sensitivity: The learning rate  is a

crucial hyperparameter that significantly affects the

performance of SGD. If it's too high, the algorithm may

converge too quickly to a suboptimal solution; if it's too low,

convergence may be too slow.

2. Convergence Issues: Due to the noisy nature of the

gradients, SGD can exhibit high variance in updates, which

might make the convergence path erratic. It may require

careful tuning of learning rates and other hyperparameters.

3. Learning Rate Scheduling: To mitigate issues with

convergence, learning rate schedules (e.g., decaying learning

rates) are often used. However, determining the right schedule

can be complex.

4. Local Minima and Saddle Points: Despite the ability to

escape local minima, SGD may still get stuck in saddle points

or poor local minima, depending on the problem landscape.

Variations and Improvements

1. Mini-Batch Gradient Descent: Instead of using a single

training example, mini-batch gradient descent uses small

random subsets of data (mini-batches) to compute gradients.

This balances the trade-off between the noisy updates of SGD

and the computational cost of batch gradient descent.

2. Momentum: Momentum-based SGD helps accelerate

convergence and smooth out oscillations by incorporating a

moving average of past gradients. This can be expressed as:

where vt is the velocity term and  is the momentum factor.

3. Nesterov Accelerated Gradient (NAG): NAG improves

upon traditional momentum by looking ahead at the estimated

future position of the parameters, thus providing more

informed updates.

4. Learning Rate Schedulers: Various learning rate

schedules, such as exponential decay, step decay, or cyclical

learning rates, can help improve convergence by adjusting the

learning rate during training.

Best Practices

1. Choosing the Right Learning Rate: Start with a moderate

learning rate and use techniques like learning rate schedules

or adaptive methods to fine-tune it.

2. Using Mini-Batches: Employ mini-batch gradient descent

to achieve a balance between computational efficiency and

gradient estimation accuracy.

3. Incorporating Momentum: Apply momentum to

accelerate convergence and stabilize updates, especially in

noisy or complex landscapes.

4. Regularization: Combine SGD with regularization

techniques (like dropout or L2 regularization) to prevent

overfitting and improve generalization.

Stochastic Gradient Descent remains a foundational

optimization algorithm due to its simplicity and efficiency.

While it can be challenging to tune and may have

convergence issues, its variants and improvements have

addressed many of these challenges. Understanding and

effectively applying SGD can lead to significant

advancements in training machine learning models.

2.3 RMSprop
RMSProp (Root Mean Square Propagation) is an adaptive

learning rate optimization algorithm designed to address some

of the limitations of traditional stochastic gradient descent

(SGD) and its variants. Introduced by Geoffrey Hinton in his

Coursera class on neural networks, RMSProp is especially

effective in handling problems associated with non-stationary

objectives and noisy gradients [10].

RMSProp modifies the learning rate for each parameter by

scaling it inversely proportional to a running average of recent

magnitudes of the gradients. Here’s a detailed breakdown of

how RMSProp operates:

1. Gradient Computation: Similar to SGD, RMSProp

computes gradients of the loss function with respect to the

model parameters. However, it adjusts the learning rate for

each parameter based on the historical gradient magnitudes.

2. Exponential Decay of Squared Gradients: RMSProp

maintains a running average of the squared gradients, which

helps to normalize the gradient updates. This is achieved

through an exponentially decaying average:

where vt represents the average of squared gradients at time

step t,  is the decay factor (often set to 0.9), and gt is the

gradient at time step t.

3. Parameter Update: The parameters are updated using the

following rule:

where  is the learning rate, is the root of the running

average of squared gradients, and ϵ is a small constant added

for numerical stability (e.g., 10-8).

Advantages of RMSProp

1. Adaptive Learning Rates: RMSProp adapts the learning

rate for each parameter individually, which helps to address

issues like vanishing or exploding gradients and improves

convergence speed.

2. Handling Non-Stationary Objectives: By normalizing the

gradient updates, RMSProp can handle non-stationary

objectives, where the distribution of data or the objective

function changes over time.

3. Stable Updates: The running average of squared gradients

smooths out the updates, making them more stable and

reducing the variance caused by noisy gradients.

4. Efficient Computation: RMSProp requires only a modest

amount of memory and computational resources, making it

suitable for large-scale and complex models.

Challenges of RMSProp

1. Hyperparameter Tuning: Choosing appropriate values for

the learning rate  and the decay factor  can be challenging.

These hyperparameters can significantly impact the

performance of the optimizer.

2. Sensitivity to Initial Learning Rate: The performance of

RMSProp can be sensitive to the initial learning rate. Careful

tuning is necessary to achieve optimal results.

3. No Global Optimal Learning Rate: While RMSProp

adapts the learning rate for each parameter, it does not

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 13–Issue 08, 115 – 122, 2024, ISSN:-2319–8656

DOI:10.7753/IJCATR1308.1011

www.ijcat.com 118

guarantee a globally optimal learning rate for all parameters,

which can sometimes lead to suboptimal convergence.

Variations and Improvements

1. RMSProp with Warm Restarts: Adding warm restarts

(also known as cyclical learning rates) to RMSProp can

improve its performance by periodically resetting the learning

rate, which helps the optimizer escape local minima.

2. RMSProp with Decoupled Weight Decay (AdamW):

Combining RMSProp with decoupled weight decay (as in

AdamW) can improve generalization by addressing issues

with weight regularization.

Best Practices

1. Learning Rate Scheduling: Experiment with different

learning rates and use learning rate scheduling techniques to

adjust the learning rate during training.

2. Decay Factor: Set the decay factor  to a value like 0.9,

which works well in practice, but be prepared to adjust it

based on the specific problem and dataset.

3. Numerical Stability: Ensure that ϵ is appropriately set to

avoid division by zero and numerical instability.

4. Experimentation: As with other optimizers, empirical

testing and experimentation are crucial for finding the best

hyperparameters and configurations for your specific

application.

RMSProp is a powerful optimization algorithm that addresses

many of the limitations of traditional gradient descent

methods by adapting learning rates based on the magnitude of

recent gradients. Its ability to handle noisy gradients and non-

stationary objectives makes it particularly useful for training

deep learning models. By understanding its mechanics and

applying best practices, you can leverage RMSProp to

improve the performance and efficiency of your machine

learning models.

3. THE EXPERIMENTAL RESULT
In this section, we explain our experimental result. As in

Figure 1 show the convolutional layers we used in this study,

and the datasets CIFAR10 is depicted in Figure 2. The

CIFAR-10 dataset consists of 60000 32x32 colour images in

10 classes, with 6000 images per class. There are 50000

training images and 10000 test images.

To conduct this study, we write code programming in python

language as Program 1. The model summary of architectures

are depicted in Figure 3, 6, 7, 8, 10 for architecture 1, 2, 3, 4

and 5 respectively. We evaluate each architecture and

optimizer in 10, 30 and 50 epoch.

Program 1:

print('CNN with CIFAR10 ..\n'*5)
print("SB_Montag,29.07.2024; 07:24")
print("Panca" +
 " Mudjirahardjo")
print("")
print("==")

print("")
print('')
modelKE = input('What model (1 .. 5) : ')

print('')
optim = input('Optimizer ((1)SGD, (2)ADAM, (3)RMSprop) : ')
if optim=='1':
 optim='SGD'

 print('-- optimizer: SGD')
elif optim=='2':
 optim='ADAM'
 print('-- optimizer: ADAM')
elif optim=='3':
 optim='RMSprop'
 print('-- optimizer: RMSprop')

print('')
ep = input('Jumlah epoch (1 epoch 42 sec !): ')
ep = int(ep)

print('')
print('---- import library & tools dimulai --- ')

import datetime
import numpy as np
import os
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'

import tensorflow as tf
import matplotlib.pyplot as plt
from tqdm import tqdm

from tensorflow.keras import datasets, layers, models
from tensorflow.keras.models import Sequential
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.losses import categorical_crossentropy
from tensorflow.keras.preprocessing.image import
ImageDataGenerator
from tensorflow.keras.layers import Dense, Flatten, Conv2D,
MaxPooling2D, Dropout

def create_model_1():
 model = models.Sequential()
 model.add(layers.Conv2D(32, (3, 3), activation='relu',
input_shape=(32, 32, 3)))
 model.add(layers.MaxPooling2D((2, 2)))
 model.add(layers.Conv2D(64, (3, 3), activation='relu'))
 model.add(layers.MaxPooling2D((2, 2)))
 model.add(layers.Conv2D(64, (3, 3), activation='relu'))

 print('')
 model.summary()

 model.add(layers.Flatten())
 model.add(layers.Dense(64, activation='relu'))
 model.add(layers.Dense(10))

 print('')
 model.summary()

 return model

def create_model_2():
 model = models.Sequential()
 model.add(layers.Conv2D(32, (3, 3), activation='relu',
input_shape=(32, 32, 3)))
 model.add(layers.Conv2D(64, (3, 3), activation='relu'))
 model.add(layers.MaxPooling2D((2, 2)))
 model.add(layers.Conv2D(64, (3, 3), activation='relu'))

 print('')
 model.summary()

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 13–Issue 08, 115 – 122, 2024, ISSN:-2319–8656

DOI:10.7753/IJCATR1308.1011

www.ijcat.com 119

 model.add(layers.Flatten())
 model.add(layers.Dense(64, activation='relu'))
 model.add(layers.Dense(10))

 print('')
 model.summary()

 return model

def create_model_3():
 model = models.Sequential()
 model.add(layers.Conv2D(32, (3, 3), activation='relu',
input_shape=(32, 32, 3)))
 model.add(layers.Conv2D(32, (3, 3), activation='relu'))
 model.add(layers.MaxPooling2D((2, 2)))
 model.add(layers.Conv2D(32, (3, 3), activation='relu'))
 model.add(layers.MaxPooling2D((2, 2)))
 model.add(layers.MaxPooling2D((2, 2)))

 print('')
 model.summary()

 model.add(layers.Flatten())
 model.add(layers.Dense(64, activation='relu'))
 model.add(layers.Dense(10))

 print('')
 model.summary()

 return model

def create_model_4():
 model = models.Sequential()
 model.add(layers.Conv2D(32, (3, 3), activation='relu',
input_shape=(32, 32, 3)))
 model.add(layers.Conv2D(64, (3, 3), activation='relu'))
 model.add(layers.MaxPooling2D((2, 2)))
 model.add(layers.Conv2D(64, (3, 3), activation='relu'))
 model.add(layers.MaxPooling2D((2, 2)))
 model.add(layers.Conv2D(64, (3, 3), activation='relu'))

 print('')
 model.summary()

 model.add(layers.Flatten())
 model.add(layers.Dense(64, activation='relu'))
 model.add(layers.Dense(10))

 print('')
 model.summary()
 return model

def create_model_5():
 model = models.Sequential()
 model.add(layers.Conv2D(64, (3, 3), activation='relu',
input_shape=(32, 32, 3)))
 model.add(layers.MaxPooling2D((4, 4)))
 model.add(layers.Conv2D(32, (3, 3), activation='relu'))

 print('')
 model.summary()

 model.add(layers.Flatten())
 model.add(layers.Dense(64, activation='relu'))
 model.add(layers.Dense(10))

 print('')

 model.summary()

 return model

print('')
print('--- download datasets --')
(train_images, train_labels), (test_images, test_labels) =
datasets.cifar10.load_data()

Normalize pixel values to be between 0 and 1
train_images, test_images = train_images / 255.0, test_images /
255.0

class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer',
 'dog', 'frog', 'horse', 'ship', 'truck']

plt.figure(figsize=(10,10))
for i in range(25):
 plt.subplot(5,5,i+1)
 plt.xticks([])
 plt.yticks([])
 plt.grid(False)
 plt.imshow(train_images[i])
 # The CIFAR labels happen to be arrays,
 # which is why you need the extra index
 plt.xlabel(class_names[train_labels[i][0]])
plt.show()

print('')
print('')
if modelKE == '1':
 model = create_model_1()
 print('---- model ke 1 (satu) ---')
elif modelKE == '2':
 model = create_model_2()
 print('---- model ke 2 (dua) ---')
elif modelKE == '3':
 model = create_model_3()
 print('---- model ke 3 (tiga) ---')
elif modelKE == '4':
 model = create_model_4()
 print('---- model ke 4 (empat) ---')
elif modelKE == '5':
 model = create_model_5()
 print('---- model ke 5 (lima) ---')

print('')
print('---- training dimulai --- ')
print('---- Optimizer: ' +optim)
print('')

-- optimizer: SGD, RMSprop, dan ADAM
model.compile(optimizer=optim,

loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logit
s=True),
 metrics=['accuracy'])

Restore the weights
history = model.fit(train_images, train_labels, epochs=ep,
 validation_data=(test_images, test_labels))

plt.plot(history.history['accuracy'], label='accuracy')
plt.plot(history.history['val_accuracy'], label = 'val_accuracy')
plt.xlabel('Epoch')

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 13–Issue 08, 115 – 122, 2024, ISSN:-2319–8656

DOI:10.7753/IJCATR1308.1011

www.ijcat.com 120

plt.ylabel('Accuracy')
plt.ylim([0.5, 1])
plt.legend(loc='lower right')
plt.show()

print('')
print(' ----- model evaluate ---- ')
test_loss, test_acc = model.evaluate(test_images, test_labels,
verbose=2)

print("")
print('.. press ENTER to quit ..')
input()

--

3.1 Architecture 1

The model summary

Figure 3. Model summary of architecture #1

 (a) (b)

 (c)

Figure 4. Architecture #1 with optimizer (a) adam (b) SGD (c)

RMSprop

(a)

(b)

Figure 5. Architecture #1 (a) training accuracy (b) validation

accuracy

3.2 Architecture 2

The model summary

Figure 6. Model summary of architecture #2

3.3 Architecture 3

The model summary

Figure 7. Model summary of architecture #3

3.4 Architecture 4

The model summary

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 13–Issue 08, 115 – 122, 2024, ISSN:-2319–8656

DOI:10.7753/IJCATR1308.1011

www.ijcat.com 121

Figure 8. Model summary of architecture #4

 (a) (b)

(c)

Figure 9. Validation Accuracy of architecture #4 (a) adam of 0,7145

(b) SGD of 0,6940 (c) RMSprop, of 0,7005

3.5 Architecture 5

The model summary

Figure 10. Model summary of architecture #5

 (a) (b)

(c)

Figure 11. Validation Accuracy of architecture #5 (a) adam of 0,6867

(b) SGD of 0,6951 (c) RMSprop, of 0,6770

Figure 12. Comparison of validation accuracy based on architecture

and optimizer

Figure 13. Average training time for 1 epoch

4. CONCLUSION
In this paper, we study the performance of CNN in

classification based on the different architecture and

optimizer. In the Figure 12, it is shown the highest validation

accuracy belongs to architecture 4. Figure 13 shows the

average training time for one epoch.

5. REFERENCES
[1] Alzubaidi, L., Zhang, J., Humaidi, A.J., et.al. 2021.

Review of deep learning: concepts, CNN architectures,

challenges, applications, future directions. Journal of Big

Data.

[2] Yamashita, R., Nishio, M., Do, R.K.G. et al. (2018).

Convolutional neural networks: an overview and

application in radiology. Insights Imaging 9, 611–629

https://doi.org/10.1007/s13244-018-0639-9

[3] Will Cukierski. (2013). CIFAR-10 - Object Recognition

in Images. Kaggle.

https://kaggle.com/competitions/cifar-10

[4] Kingma, Diederik & Ba, Jimmy. (2014). Adam: A

Method for Stochastic Optimization. International

Conference on Learning Representations.

http://www.ijcat.com/
https://doi.org/10.1007/s13244-018-0639-9

International Journal of Computer Applications Technology and Research

Volume 13–Issue 08, 115 – 122, 2024, ISSN:-2319–8656

DOI:10.7753/IJCATR1308.1011

www.ijcat.com 122

[5] Gower RM, Loizou N, Qian X, Sailanbayev A, Shulgin

E, Richtárik P (2019). SGD: general analysis and

improved rates. In international conference on machine

learning (pp. 5200-5209). PMLR.

[6] Mudjirahardjo, P. (2024). The comparison of convolution

and Max Pooling Process in real-time. International

Journal of Advanced Multidisciplinary Research and

Studies (IJAMRS). Vol. 4, Issue 3. pp. 1039-1044. ISSN:

2583-049x.

[7] Mudjirahardjo, P. (2024). Real-Time 2-D Convolution

Layer for Feature Extraction. International Journal of

Modern Engineering Research (IJMER). Vol. 14, Issue

03. pp. 211-216. ISSN: 2249-6645.

[8] Mudjirahardjo, P. (2024). Real-Time 2D Convolution

and Max Pooling Process. International Journal of

Computer Applications Technology and Research

(IJCATR). Vol. 13, Issue 06. pp. 18-23. ISSN: 2319-

8656. DOI: 10.7753/IJCATR1306.1003.

[9] Mudjirahardjo, P. (2024). The Effect of Grayscale,

CLAHE Image and Filter Images in Convolution

Process. International Journal of Advanced

Multidisciplinary Research and Studies (IJAMRS). Vol.

4, issue 3. Pp. 943-946. ISSN: 2583-049x.

[10] Elshamy, Reham & Abu Elnasr, Osama & Elhoseny,

Mohamed & Elmougy, Samir. (2023). Improving the

efficiency of RMSProp optimizer by utilizing Nestrove in

deep learning. Scientific Reports. 13. 10.1038/s41598-

023-35663-x.

[11] Hassan, E., Shams, M.Y., Hikal, N.A. et al. (2023). The

effect of choosing optimizer algorithms to improve

computer vision tasks: a comparative study. Multimed

Tools Appl 82, 16591–16633.

https://doi.org/10.1007/s11042-022-13820-0

[12] Abdulkadirov, R.; Lyakhov, P.; Nagornov, N. (2023)

Survey of Optimization Algorithms in Modern Neural

Networks. Mathematics, 11, 2466.

https://doi.org/10.3390/math11112466

http://www.ijcat.com/
https://doi.org/10.1007/s11042-022-13820-0

