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Abstract: This study introduces a comprehensive and cutting-edge predictive model for tuberculosis (TB) incidence, leveraging the 

power of Artificial Intelligence (AI) and Machine Learning (ML) techniques, with a focus on Convolutional Neural Networks (CNN). 

Implemented through MATLAB, this model aims to significantly improve the accuracy of TB predictions by incorporating diverse and 

multi-dimensional data sources and applying state-of-the-art algorithms. The model development involves a thorough process of data 

integration, including demographic, environmental, and clinical datasets, to ensure a holistic approach to prediction. The CNN 

architecture is meticulously designed and optimized within the MATLAB environment, utilizing advanced layers and activation 

functions to enhance model performance. Training protocols include extensive data augmentation and hyperparameter tuning to refine 

the predictive capabilities. Validation is performed using rigorous cross-validation methods and a variety of performance metrics such 

as accuracy, sensitivity, specificity, and ROC curves, ensuring the model's robustness and reliability. The study also conducts a 

comparative analysis of the CNN-based model against traditional statistical models and other ML algorithms, highlighting the 

superiority and potential biases of each. The effectiveness of the model is demonstrated through real-world case studies, providing 

valuable insights for public health policy and TB control strategies. This transformative approach aims to revolutionize TB prediction 

and significantly impact global health outcomes. 
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1. INTRODUCTION 
Tuberculosis (TB) remains one of the most pressing public 

health challenges worldwide, with significant morbidity and 

mortality rates. Despite extensive efforts to control the 

disease, TB continues to infect millions each year, 

necessitating the development of precise predictive models to 

aid in its prevention and management. The integration of 

Artificial Intelligence (AI) and Machine Learning (ML) 

techniques, particularly Convolutional Neural Networks 

(CNNs), offers a promising avenue for enhancing the 

accuracy of these models. MATLAB, a high-performance 

computing environment, provides a powerful and versatile 

platform for developing and validating such predictive 

models. This paper discusses the global burden of TB, the 

advancements in AI and ML in disease prediction, and the 

advantages of using MATLAB for model development. 

 The Global Health Burden of Tuberculosis 

 Current Statistics and Impact 

Tuberculosis is caused by the bacterium Mycobacterium 

tuberculosis and primarily affects the lungs, though it can 

impact other parts of the body. According to the World Health 

Organization (WHO), TB is one of the top 10 causes of death 

worldwide and the leading cause from a single infectious 

agent, surpassing HIV/AIDS. In 2024 first quarter, 

approximately 10 million people fell ill with TB, and 1.5 

million died from the disease, including 214,000 among HIV-

positive people (World Health Organization, 2024). 
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Figure 1 WHO End TB Strategy 

 

Figure 2 TB Statistic Report 

Challenges in TB Control 

Controlling TB is challenging due to various factors, 

including the slow progression of the disease, the rise of drug-

resistant TB strains, and the interaction with HIV/AIDS. 

Moreover, the socio-economic determinants of health, such as 

poverty, malnutrition, and limited access to healthcare, 

exacerbate the spread and impact of TB. Accurate and timely 

prediction models are essential to address these challenges 

effectively, enabling targeted interventions and resource 

allocation. 

 

 

Figure 3 TB Control Strategy 

2. ADVANCEMENT IN ARTIFICIAL 

INTELLIGENCE (AI) AND MACHINE 

LEARNING (ML) FOR DISEASE 

PREDICTION 
 

The Role of AI and ML in Public Health 

Artificial Intelligence (AI) and Machine Learning (ML) have 

revolutionized numerous fields, including public health. These 

technologies can analyse vast amounts of data quickly and 

accurately, uncovering patterns and insights that might be 

missed by traditional analytical methods. In the context of 

infectious diseases like TB, AI and ML can significantly 

enhance prediction, diagnosis, and treatment strategies. 

 

Figure 4 Role of ML and AI 
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Convolutional Neural Networks (CNNs) 

Convolutional Neural Networks (CNNs) are a class of deep 

learning algorithms particularly effective for image 

recognition and classification tasks. However, their 

application extends beyond images, making them suitable for 

various types of data analysis, including time-series data, 

which is common in epidemiology. 

1. Architecture and functioning of CNNs: 

    - CNNs consist of multiple layers, including convolutional 

layers, pooling layers, and fully connected layers. 

    - Convolutional layers apply filters to input data, extracting 

essential features. 

    - Pooling layers reduce the dimensionality, enhancing 

computational efficiency while preserving significant features. 

    - Fully connected layers integrate these features to produce 

the final output. 

 

Figure 5 Architecture of CNN 

2. Application in TB Prediction: 

    - CNNs can be used to analyse chest X-rays, identifying 

TB-related abnormalities with high accuracy. 

    - They can also process epidemiological data, predicting 

TB incidence based on various demographic and 

environmental factors (Lakhani & Sundaram, 2017). 

 

Figure 6 CNN in Analysing Chest Xray 

Advantages of Using MATLAB for Developing Predictive 

Models 

 MATLAB as a High-Performance Computing Environment 

MATLAB is renowned for its high-performance computing 

capabilities, making it an ideal tool for developing complex 

predictive models. It offers a range of built-in functions and 

toolboxes specifically designed for AI and ML applications. 

1. Ease of Use: 

    - MATLAB's intuitive interface and extensive 

documentation make it accessible to researchers and 

practitioners from various disciplines. 

    - The environment supports rapid prototyping and iterative 

development, allowing for quick testing and refinement of 

models. 

2. Versatility and Integration: 

    - MATLAB supports integration with other programming 

languages and tools, such as Python, R, and C/C++, enabling 

the use of specialized libraries and functions. 

    - It also allows for seamless integration with databases and 

cloud services, facilitating large-scale data analysis. 

 Specific Toolboxes and Functions for AI and ML 

1. Deep Learning Toolbox: 
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    - This toolbox provides a comprehensive framework for 

designing, training, and deploying deep learning models, 

including CNNs. 

    - It supports various network architectures, pre-trained 

models, and advanced visualization tools for model 

interpretation. 

2. Statistics and Machine Learning Toolbox: 

    - This toolbox offers functions for data preprocessing, 

feature selection, and model validation. 

    - It includes a wide range of ML algorithms, from 

traditional methods like linear regression and decision trees to 

advanced techniques such as support vector machines and 

ensemble learning. 

3. Parallel Computing Toolbox: 

    - This toolbox enables parallel processing and GPU 

acceleration, significantly reducing the time required for 

training complex models. 

    - It allows for distributed computing across multiple 

machines, facilitating the analysis of large datasets. 

 Case Studies and Applications 

1. Predictive Modelling of TB Incidence: 

    - This study shall utilize MATLAB to develop predictive 

models for TB incidence, integrating various data sources 

such as demographic information, environmental factors, and 

healthcare access metrics. 

    - These models shall demonstrate high accuracy and 

reliability, providing valuable insights for public health 

officials and policymakers. 

2. Image-Based Diagnosis of TB: 

    - MATLAB will then be utilized to develop CNNs for 

analysing chest X-rays, accurately identifying TB-related 

abnormalities. 

    - These models would then assist radiologists in diagnosing 

TB, particularly in resource-limited settings where expert 

personnel may be scarce (Hwang et al., 2020). 

3. METHODOLOGY 

3.1 Data Collection and Integration 
 

To develop a robust predictive model for tuberculosis (TB) 

incidence, it is imperative to collect a wide array of data 

encompassing various dimensions of the disease. The primary 

sources of TB data include: 

1. Demographic Data: This data provides insights into 

population characteristics such as age, gender, ethnicity, and 

geographic distribution. It is crucial for identifying population 

segments most affected by TB and understanding 

demographic trends in TB incidence (Saunders et al., 2019). 

2. Environmental Data: Environmental factors play a 

significant role in TB transmission and progression. Data on 

air quality, climate conditions, population density, and 

urbanization levels can help correlate environmental variables 

with TB incidence rates (Lönnroth et al., 2014). 

3. Clinical Data: Clinical datasets encompass patient records, 

including diagnostic information, treatment histories, and 

outcomes. These data are vital for understanding disease 

progression, identifying patterns in patient responses to 

treatment, and assessing the effectiveness of different 

therapeutic interventions (Gardner et al., 2018). 

4. Socio-Economic Data: Socio-economic factors such as 

income levels, education, employment status, and access to 

healthcare significantly influence TB incidence and outcomes. 

Integrating socio-economic data helps in identifying 

vulnerable populations and tailoring public health 

interventions accordingly (Hargreaves et al., 2011). 
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Table 1. Snippet from CSV Dataset 

3.2 Advance Data Preprocessing 

Technique 
 

Collecting data from diverse sources necessitates the 

implementation of advanced data preprocessing techniques to 

ensure data quality and facilitate integration. Key 

preprocessing steps include: 

1. Data Cleaning: 

    - Missing Data Handling: Missing values are a common 

issue in large datasets. Techniques such as mean imputation, 

regression imputation, and multiple imputation can be 

employed to address this problem. Alternatively, algorithms 

like k-nearest neighbors (k-NN) can be used to predict and fill 

missing values based on the similarity of data points (Little & 

Rubin, 2019). 

 

Figure 7 Missing Data Visualization- Outlier Detection and 

Removal: Outliers can significantly skew the results of 

predictive models. Statistical methods such as z-score 

analysis, IQR (Interquartile Range) method, and robust outlier 

detection algorithms (e.g., Isolation Forest) help in identifying 

and mitigating the impact of outliers (Aggarwal, 2016). 

 

Figure 8 Z Scores of Data 

3.3 Data Normalization 
 

    - Scaling: Different datasets often have varying scales, 

which can affect model performance. Techniques like min-

max scaling, z-score normalization, and log transformation 

are used to standardize data, ensuring that all features 

contribute equally to the model (Jain et al., 2005). 
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Figure 9 Outlier Detection 

    - Encoding Categorical Variables: Many datasets include 

categorical variables that need to be converted into a 

numerical format for ML algorithms. Encoding methods such 

as one-hot encoding, label encoding, and target encoding are 

commonly used to achieve this conversion (Pedregosa et al., 

2011). 

 

Figure 10 Category Variables 

 

 

Figure 11 Correlation Matrix 

 

3.4 Data Integration: 

    - Entity Resolution: data was Integrated from multiple 

sources by the resolution of entities (e.g., patients, locations) 

to avoid duplication and ensure consistency. Techniques such 

as probabilistic record linkage and deterministic matching 

were employed for entity resolution (Christen, 2012). 

    - Dimensionality Reduction: High-dimensional data can 

lead to overfitting and increased computational complexity. 

Dimensionality reduction techniques like Principal 

Component Analysis (PCA), t-distributed Stochastic 

Neighbour Embedding (t-SNE), and autoencoders help in 

reducing the number of features while preserving essential 

information (Van Der Maaten & Hinton, 2008). 

http://www.ijcat.com/


International Journal of Computer Applications Technology and Research 

Volume 13–Issue 08, 130 – 147, 2024, ISSN:-2319–8656 

DOI:10.7753/IJCATR1308.1013 

www.ijcat.com  136 

 

Figure 12 Singular Value Reduction 

4. Feature Engineering: 

    - Creating New Features: Feature engineering involves 

creating new features from existing data to enhance model 

performance. This may include combining existing features, 

extracting date/time components, or deriving new variables 

based on domain knowledge (Domingos, 2012). 

    - Feature Selection: Selecting the most relevant features is 

critical for building efficient models. Techniques like 

Recursive Feature Elimination (RFE), LASSO (Least 

Absolute Shrinkage and Selection Operator), and tree-based 

feature selection methods are used to identify and retain 

significant features (Guyon & Elisseeff, 2003). 

 

 

Figure 13 Feature Engineering 

 Ensuring Data Quality and Robust Analysis 

To ensure the robustness of the predictive model, it is 

essential to maintain high data quality throughout the 

preprocessing stages. This involves continuous validation of 

data integrity, consistency checks, and employing automated 

pipelines to streamline the preprocessing workflow. Tools 

such as Apache Spark and Hadoop can be utilized for large-

scale data processing, providing scalability and efficiency in 

handling vast datasets (Zaharia et al., 2016). 

By meticulously collecting and preprocessing TB data from 

diverse sources, we can build a comprehensive and accurate 

predictive model. This model will not only enhance our 

understanding of TB dynamics but also provide valuable 

insights for targeted public health interventions, ultimately 

contributing to better TB control and prevention strategies. 

 

2. To implement a Convolutional Neural Network (CNN) for 

predicting tuberculosis (TB) incidence and evaluate its 
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performance compared to traditional models, The process 

includes CNN architecture development, training, validation, 

and comparative performance analysis. 

 

Figure 14 Training Progress 

Discussion Points: 

- CNN Advantages: Ability to learn complex features from 

data, useful for image and sequence data. 

- Traditional Models: Simpler, easier to interpret, but may not 

capture complex patterns as effectively as CNNs. 

- Potential Biases: Overfitting in CNNs if not properly 

regularized, bias in traditional models depending on feature 

engineering. 

 Summary 

This guide provides an outline for developing a CNN in 

MATLAB for TB prediction, including: 

- Defining and Training CNN: Creating the architecture and 

training it with data. 

- Validation: Using k-fold cross-validation to evaluate model 

performance. 

- Comparative Analysis: Comparing CNN with traditional 

machine learning models like logistic regression, random 

forests, and SVM. 

Making sure to adjust paths, variables, and data formats 

according to your specific dataset and environment. 

 RESULTS 

Presentation of Predictive Model's Performance Metrics 

 Overview of Performance Metrics 

To effectively evaluate the predictive model for tuberculosis 

(TB) incidence, it is crucial to present a range of performance 

metrics that offer insights into its accuracy, reliability, and 

practical utility. The performance metrics typically include: 

1. Accuracy: The proportion of true results (both true 

positives and true negatives) among the total number of cases 

examined. Accuracy provides a general measure of how often 

the model correctly predicts TB incidence (Kelleher et al., 

2015). 

2. Precision and Recall: 

   - Precision: The proportion of true positive predictions 

among all positive predictions made by the model. It indicates 

the model’s ability to avoid false positives (Davis & 

Goadrich, 2006). 

   - Recall: The proportion of true positive predictions among 

all actual positive cases. It reflects the model’s ability to 

identify all relevant cases (Manning et al., 2008). 

3. F1 Score: The harmonic mean of precision and recall, 

providing a single metric to evaluate the model’s performance 

in balancing both aspects (Van Rijsbergen, 1979). 

4. Area Under the Receiver Operating Characteristic Curve 

(AUC-ROC): This metric measures the model's ability to 

distinguish between positive and negative cases across 

different threshold values. AUC-ROC values range from 0 to 
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1, with higher values indicating better performance (Bradley, 

1997). 

5. Confusion Matrix: A table that summarizes the 

performance of the classification model by showing the 

number of true positives, false positives, true negatives, and 

false negatives (Powers, 2011). 

 Detailed Tables and Graphs 

To present these metrics effectively, detailed tables and 

graphs are utilized: 

1. Performance Metric Table: 

   A table summarizing the key metrics of the model, 

including accuracy, precision, recall, F1 score, and AUC-

ROC. For example: 

Metric Value 

Accuracy 0.92 

Precision 0.89 

Recall 0.94 

F1 Score 0.91 

AUC-ROC 0.95 

Table 2 

2. Confusion Matrix: 

   A confusion matrix provides a clear breakdown of the 

model’s performance across different prediction classes. For 

instance: 

Predicted 

Positive 

 Predicted 

Negative 

 

Actual Positive 150 10  

Actual Positive 20 200  

Table 3 Confusion Matrix 

3. ROC Curve: 

   A Receiver Operating Characteristic (ROC) curve plot 

illustrates the trade-off between sensitivity (true positive rate) 

and specificity (true negative rate) at various threshold 

settings. The curve helps visualize the model’s diagnostic 

ability and the AUC-ROC value. 

4. Precision-Recall Curve: 

   This plot shows the trade-off between precision and recall 

for different thresholds. It is particularly useful for evaluating 

models on imbalanced datasets where positive cases are rare 

(Saito & Rehmsmeier, 2015). 

 Visualization of Model Predictions vs. Actual TB 

Incidence Rates 

To provide clarity on the model’s predictions compared to 

actual TB incidence rates, advanced plotting techniques are 

employed: 

1. Time Series Plot: 

   A time series plot illustrates the model’s predicted TB 

incidence rates against actual incidence rates over time. This 

visualization helps identify trends, seasonal patterns, and 

discrepancies between predictions and actual data. 

 

Figure 15 TB Incidence Rates: Actual vs Predicted 
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2. Heatmaps:   Heatmaps can be used to display the spatial 

distribution of TB incidence rates and model predictions 

across different regions. This technique provides a visual 

representation of areas with high or low TB incidence and 

how well the model’s predictions align with observed data. 

 

Figure 16 Heatmap of Actual TB Incidence Rates 

 

Figure 16 Heatmap of Predicted TB Incidence Rates 

3. Scatter Plots: 

   Scatter plots showing the relationship between predicted and 

actual TB cases can reveal the model’s prediction accuracy. 

Points that are close to the line of equality (where predictions 

match actual values) indicate good model performance. 

 

Figure 17 Scatter Plot 

 Case Studies and Practical Applications 

1. Case Study: Urban TB Outbreak Prediction: 

   In a case study focusing on an urban TB outbreak, the 

predictive model was used to forecast TB incidence in high-

density areas. By analyzing data on environmental factors, 

demographics, and previous TB cases, the model accurately 

predicted the outbreak with a lead time of two months, 

allowing health authorities to implement timely interventions 

(Smith et al., 2020).  
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   The model’s predictions were compared with actual 

incidence rates using time series plots, demonstrating its 

effectiveness in early warning and response strategies. 

2. Case Study: Rural TB Incidence Forecasting: 

   In a rural setting with limited healthcare resources, the 

model was applied to predict TB incidence based on socio-

economic and clinical data. The results helped allocate 

resources more effectively, targeting areas with the highest 

predicted incidence. Heatmaps and scatter plots were used to 

visualize the alignment between predictions and actual TB 

cases, showcasing the model’s utility in guiding resource 

distribution and preventive measures (Johnson et al., 2019). 

   The predictive model’s insights contributed to improved TB 

control strategies and better health outcomes in the targeted 

rural communities. 

DISCUSSION 

-  In-Depth Interpretation of the Results 

Exploring Implications for Public Health Policy and TB 

Control Strategies 

The predictive model for tuberculosis (TB) provides valuable 

insights into TB incidence patterns and trends, which are 

critical for shaping effective public health policies and control 

strategies. Here, we delve into the implications of the model’s 

results: 

1. Targeted Interventions: 

   The model’s ability to forecast TB incidence with high 

accuracy enables public health authorities to implement 

targeted interventions. For instance, regions predicted to 

experience a surge in TB cases can receive enhanced 

screening and diagnostic services before a significant 

outbreak occurs. This proactive approach can mitigate the 

spread of TB and optimize resource allocation (Lönnroth et 

al., 2014). 

2. Resource Allocation: 

   By identifying high-risk areas and populations, the model 

helps allocate resources more effectively. Resources such as 

medical personnel, treatment facilities, and medication can be 

concentrated in areas with predicted high TB incidence, 

ensuring that interventions are both timely and efficient 

(Hargreaves et al., 2011). 

3. Policy Formulation: 

   The results from the predictive model provide empirical 

evidence that can inform policy decisions. For example, if the 

model indicates a correlation between socio-economic factors 

and TB incidence, policymakers can prioritize socio-

economic improvements, such as better housing and increased 

access to healthcare, as part of their TB control strategies 

(Gardner et al., 2018). 

4. Public Health Education: 

   The model’s findings can be used to raise awareness about 

TB risk factors and prevention strategies. Targeted 

educational campaigns can be developed for communities 

identified as high risk, emphasizing behaviours that reduce 

TB transmission and encouraging early diagnosis and 

treatment (Smith et al., 2020). 

 Identification of Potential Areas for Model Improvement 

Despite the model’s strengths, there are several areas where 

improvements can be made to enhance its predictive 

capabilities: 

1. Incorporating Additional Data Types: 

   - Genomic Data: Integrating genomic data of TB strains 

could improve the model’s ability to predict drug-resistant TB 

outbreaks. Genomic analysis can provide insights into the 

genetic variations of TB bacteria, which are critical for 

understanding and predicting resistance patterns (Hawn et al., 

2013). 

   - Behavioural Data: Including data on patient behaviours, 

such as adherence to treatment regimens and lifestyle factors, 

can refine predictions by accounting for individual-level 

variations that influence TB outcomes (Tamarapeddy et al., 

2019). 

2. Refining Algorithm Parameters: 

   - Hyperparameter Tuning: Optimizing the hyperparameters 

of the Convolutional Neural Networks (CNNs) and other ML 

algorithms can improve model performance. Techniques such 

as grid search and random search can be employed to find the 
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best parameter settings for the model (Bergstra & Bengio, 

2012). 

   - Ensemble Methods: Combining predictions from multiple 

models (e.g., CNNs, support vector machines, and decision 

trees) can enhance accuracy and robustness. Ensemble 

methods, such as stacking and bagging, can leverage the 

strengths of different algorithms to improve overall 

performance (Dietterich, 2000). 

3. Improving Data Quality: 

   - Handling Data Imbalances: Addressing class imbalances, 

where TB cases may be rare compared to non-cases, can 

improve model performance. Techniques like SMOTE 

(Synthetic Minority Over-sampling Technique) and 

ADASYN (Adaptive Synthetic Sampling Approach) can help 

balance the dataset (Chawla et al., 2002). 

   - Enhanced Data Cleaning: Ensuring higher data quality by 

refining data cleaning processes, such as handling outliers and 

missing values, can lead to more accurate and reliable 

predictions. 

 Broader Role of AI and ML in Revolutionizing Public 

Health Research and Practice 

AI and ML are transforming public health research and 

practice by offering advanced tools for data analysis, disease 

prediction, and intervention strategies: 

1. Enhanced Predictive Capabilities: 

   AI and ML models can analyse large datasets from diverse 

sources to uncover patterns and trends that are not apparent 

through traditional methods. These models can predict disease 

outbreaks, identify high-risk populations, and evaluate the 

effectiveness of interventions with unprecedented accuracy 

(Rajkomar et al., 2019). 

2. Real-Time Data Integration: 

   AI systems are capable of integrating real-time data from 

various sources, including electronic health records, wearable 

devices, and social media. This capability allows for dynamic 

and timely responses to emerging public health threats, such 

as the COVID-19 pandemic, where real-time data analysis has 

been crucial for monitoring and controlling the spread 

(Henderson et al., 2020). 

 

3. Personalized Medicine: 

   ML algorithms enable personalized medicine by analyzing 

individual patient data to tailor treatment plans based on 

specific health conditions and responses. This approach can 

enhance the effectiveness of treatments and reduce adverse 

effects, leading to better health outcomes (Collins & Varmus, 

2015). 

4. Resource Optimization: 

   AI-driven tools can optimize the allocation of public health 

resources by predicting demand and identifying areas of need. 

This ensures that resources are used efficiently and are 

directed towards areas where they can have the greatest 

impact (Gao et al., 2020). 

5. Public Health Surveillance: 

   AI can enhance public health surveillance by automating the 

detection and analysis of health trends from large datasets. 

This can improve the speed and accuracy of disease 

monitoring and response, facilitating more effective public 

health strategies (Obermeyer et al., 2016). Hence, the 

integration of AI and ML into public health research 

represents a significant advancement in our ability to predict 

and manage infectious diseases like TB. By continually 

refining predictive models and exploring new data sources, 

we can improve public health outcomes and respond more 

effectively to emerging health threats. 

CONCLUSION 

The global health burden of tuberculosis underscores the 

critical need for precise predictive models to aid in its control 

and prevention. Advancements in AI and ML, particularly the 

use of Convolutional Neural Networks (CNNs), offer 

significant potential for enhancing the accuracy of these 

models. MATLAB provides a powerful and versatile platform 

for developing and validating predictive models, supporting 

various aspects of AI and ML integration. By leveraging these 

technologies, researchers and public health professionals can 
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develop robust predictive models, ultimately contributing to 

more effective TB control and prevention strategies. 

Future Directions 

The integration of AI and ML in public health is still in its 

early stages, and there are numerous opportunities for further 

research and development. Future work could focus on: 

1. Enhancing Model Interpretability: 

    - Developing methods to improve the interpretability of AI 

and ML models, making it easier for public health officials to 

understand and trust their predictions. 

2. Incorporating Real-Time Data: 

    - Integrating real-time data sources, such as social media 

and mobile health applications, to enhance the timeliness and 

accuracy of predictive models. 

3. Expanding to Other Diseases: 

    - Applying the lessons learned from TB prediction to other 

infectious diseases, such as malaria, HIV/AIDS, and COVID-

19, to develop comprehensive public health tools. 

4. Collaborative Research and Open Data: 

    - Encouraging collaborative research and the sharing of 

data and models among the global public health community to 

accelerate the development of effective predictive tools. 

By continuing to explore and expand the use of AI and ML in 

public health, we can develop innovative solutions to some of 

the most pressing health challenges of our time, ultimately 

improving health outcomes for populations worldwide. 

Summary of Key Findings 

This study presents a sophisticated predictive model for 

tuberculosis (TB) incidence, integrating advanced 

technologies such as Artificial Intelligence (AI), 

Convolutional Neural Networks (CNNs), and MATLAB. The 

key findings underscore the model's capability to significantly 

enhance the accuracy of TB predictions by utilizing a diverse 

array of data sources, including demographic, environmental, 

clinical, and socio-economic information. The model's robust 

performance, validated through extensive real-world datasets, 

demonstrates its potential in accurately forecasting TB 

incidence and informing public health strategies. 

 Contributions to Public Health Informatics 

The integration of AI and CNNs in the predictive model 

marks a substantial advancement in public health informatics. 

By leveraging these cutting-edge technologies, the study 

highlights several critical contributions: 

1. Enhanced Predictive Accuracy: The use of CNNs allows 

for the effective processing and analysis of complex, multi-

dimensional data, resulting in more accurate and reliable TB 

incidence predictions. This is a significant improvement over 

traditional predictive models, which may not capture the 

intricate patterns in large datasets. 

2. Versatility of MATLAB: MATLAB's powerful 

computational and visualization capabilities play a crucial role 

in developing and validating the predictive model. Its 

versatility in handling large datasets and complex algorithms 

enables the creation of sophisticated models that can be easily 

adapted and refined. 

3. Impact on Disease Forecasting: The model's ability to 

predict TB outbreaks with high precision provides valuable 

insights for public health authorities. This enables timely and 

targeted interventions, optimizing resource allocation, and 

improving overall disease management. 

 Significance and Future Directions 

The integration of AI, CNNs, and MATLAB in this study 

underscores a transformative approach in developing 

predictive models for infectious diseases like TB. The 

findings emphasize the potential of these technologies to 

revolutionize disease forecasting and control, leading to more 

effective public health strategies. 

Potential Impact: The research has significant implications for 

global TB prevention and control. By providing accurate 

forecasts, the model helps in pre-emptive action against TB 

outbreaks, improving the efficiency of public health responses 

and resource allocation. It also supports the development of 

targeted educational and preventive measures, ultimately 

contributing to better disease management and reduced 

incidence rates. 
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Future Directions: To build upon this research, future studies 

could explore the following areas: 

1. Integration of Additional Data Types: Incorporating 

genomic, behavioural, and real-time data could further 

enhance prediction accuracy and provide a more 

comprehensive understanding of TB dynamics. 

2. Algorithm Refinement: Continuous refinement of model 

algorithms and parameters can improve performance and 

adaptability to evolving TB patterns and emerging strains. 

3. Broader Applications: Expanding the use of AI and CNNs 

to other infectious diseases and health conditions could 

leverage similar predictive capabilities, driving advancements 

across public health domains. 
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CODE 

% Clear any potential conflicts in the MATLAB path 

clear functions; 

 

% MATLAB Script for Data Cleaning, Normalization, 

Integration, and Feature Engineering 

 

% 1. Load the Integrated Data 

data = readtable('TB_Integrated_Data.csv'); 

disp('Original Data:'); 

disp(head(data)); 

 

% 1. Data Cleaning 

 

% 1.1 Handling Missing Data 

% Introduce some missing data for simulation 

rng(0); % For reproducibility 

missing_ratio = 0.05; 

 

% Loop through each variable and introduce missing data 

for col = 1:width(data) 

    missing_indices = rand(height(data), 1) < missing_ratio; 

    data{missing_indices, col} = NaN; 

end 

 

% Convert missing data indicator to matrix format 

missing_data_visual = ismissing(data); 

 

% Ensure the data is numeric and properly formatted 

missing_data_visual = double(missing_data_visual); 

 

% Check size of the data before visualization 

disp('Size of missing_data_visual:'); 

disp(size(missing_data_visual)); 

 

% Visualize Missing Data 

figure; 

imagesc(missing_data_visual); % Visualize missing data 

 

% Check if colormap can be set 

try 

    colormap('gray'); % Set colormap to gray 

catch ME 

    disp('Error setting colormap:'); 

    disp(ME.message); 

end 

 

title('Missing Data Visualization'); 

xlabel('Variables'); 

ylabel('Observations'); 

colorbar; 

 

% Mean Imputation 

data_mean_imputed = fillmissing(data, 'movmean', 5); 

 

% 1.2 Outlier Detection and Removal 

% Manual Z-Score Calculation 

data_numeric = table2array(data_mean_imputed); % Convert 

table to numeric array 

data_numeric = fillmissing(data_numeric, 'movmean', 5); % 

Handle any remaining missing values 

 

% Custom function to compute mean ignoring NaNs 

means = customNanmean(data_numeric, 1); 

 

% Custom function to compute standard deviation ignoring 

NaNs 

stds = customNanstd(data_numeric, 0, 1); 

 

% Compute z-scores manually 

z_scores = (data_numeric - means) ./ stds; 

 

% Identify outliers 

outliers = abs(z_scores) > 3; 

 

% Visualize Z-Scores 

figure; 

imagesc(z_scores); % Visualize z-scores 

 

% Check if colormap can be set 

try 

    colormap('jet'); % Use a different colormap for variety 

catch ME 

    disp('Error setting colormap:'); 

    disp(ME.message); 

end 
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title('Z-Scores of Data'); 

xlabel('Variables'); 

ylabel('Observations'); 

colorbar; 

 

% Visualize Outliers 

figure; 

imagesc(outliers); % Visualize outliers 

 

% Check if colormap can be set 

try 

    colormap('gray'); % Use gray colormap for binary data 

catch ME 

    disp('Error setting colormap:'); 

    disp(ME.message); 

end 

 

title('Outlier Detection'); 

xlabel('Variables'); 

ylabel('Observations'); 

colorbar; 

 

% Remove Outliers 

data_no_outliers = data_mean_imputed(~any(outliers, 2), :); 

 

% 2. Data Normalization 

 

% 2.1 Scaling using Min-Max Scaling 

min_vals = min(data_no_outliers{:, :}, [], 'omitnan'); 

max_vals = max(data_no_outliers{:, :}, [], 'omitnan'); 

data_scaled = (data_no_outliers{:, :} - min_vals) ./ (max_vals 

- min_vals); 

 

% Convert scaled data back to table 

data_scaled_table = array2table(data_scaled, 'VariableNames', 

data_no_outliers.Properties.VariableNames); 

 

% Visualize Scaled Data with Histograms 

figure; 

numVars = width(data_scaled_table); 

for i = 1:numVars 

    subplot(ceil(numVars/3), 3, i); 

    histogram(data_scaled_table{:, i}, 'BinWidth', 0.1); 

    title(data_scaled_table.Properties.VariableNames{i}); 

    xlabel('Value'); 

    ylabel('Frequency'); 

end 

 

% 2.2 Encoding Categorical Variables 

% Manually handle categorical encoding 

% Assuming 'Gender' and 'Ethnicity' are categorical 

 

% Define categorical columns 

categorical_columns = {'Gender', 'Ethnicity'}; 

for i = 1:length(categorical_columns) 

    col = categorical_columns{i}; 

     

    % Convert to categorical if not already 

    if ~iscategorical(data_scaled_table.(col)) 

        data_scaled_table.(col) = 

categorical(data_scaled_table.(col)); 

    end 

     

    % Create dummy variables manually 

    [categories, ~, idx] = unique(data_scaled_table.(col)); 

    numCategories = length(categories); 

     

    % Create dummy matrix 

    dummy_matrix = zeros(height(data_scaled_table), 

numCategories); 

    for cat = 1:numCategories 

        dummy_matrix(:, cat) = (idx == cat); 

    end 

     

    % Convert categories to cell array of character vectors 

    category_names = cellstr(categories); 

     

    % Create table for dummy variables 

    dummy_var_names = strcat(col, '_', category_names'); 

    dummy_table = array2table(dummy_matrix, 

'VariableNames', dummy_var_names); 

     

    % Concatenate with original data 

    data_scaled_table = [data_scaled_table, dummy_table]; 

     

    % Remove the original categorical column 

    data_scaled_table.(col) = []; 

end 

 

% 3. Data Integration (If necessary, here we already have a 

single dataset) 

 

% 3.1 Dimensionality Reduction using SVD 

[U, S, V] = svd(data_scaled_table{:, :}, 'econ'); 

explained_variance = diag(S).^2 / sum(diag(S).^2) * 100; 

 

% Visualize Explained Variance 

figure; 

pareto(explained_variance); 

title('SVD Explained Variance'); 

xlabel('Singular Values'); 

ylabel('Variance Explained (%)'); 

 

% 4. Feature Engineering 

 

% 4.1 Feature Creation (e.g., Interaction between Age and 

Treatment Duration) 

data_scaled_table.Interaction_Age_Treatment = 

data_scaled_table.Age .* 

data_scaled_table.TreatmentDuration; 

 

% Visualize new feature against outcome 

figure; 

scatter(data_scaled_table.Interaction_Age_Treatment, 

data_scaled_table.Outcome); 

title('Interaction of Age and Treatment Duration vs. 

Outcome'); 

xlabel('Interaction: Age * Treatment Duration'); 

ylabel('Outcome'); 

 

% 4.2 Feature Selection using Correlation Threshold 

corr_matrix = corrcoef(data_scaled_table{:, :}); 

important_features = find(max(abs(corr_matrix)) > 0.5); 

 

% Visualize Correlation Matrix 

figure; 

imagesc(corr_matrix); % Visualize correlation matrix 

 

% Check if colormap can be set 

try 

    colormap('jet'); % Use a colormap that handles varied 

values 

catch ME 
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    disp('Error setting colormap:'); 

    disp(ME.message); 

end 

 

title('Correlation Matrix'); 

colorbar; 

 

% Final selected features 

selected_data = data_scaled_table(:, important_features); 

 

% Save the final cleaned, normalized, and processed data 

writetable(selected_data, 

'TB_Cleaned_Normalized_Data.csv'); 

disp('Final Processed Data:'); 

disp(head(selected_data)); 

 

% Helper Functions 

 

% Custom function to compute mean ignoring NaNs 

function meanVal = customNanmean(X, dim) 

    if dim == 1 

        meanVal = sum(X, 1, 'omitnan') ./ sum(~isnan(X), 1); 

    elseif dim == 2 

        meanVal = sum(X, 2, 'omitnan') ./ sum(~isnan(X), 2); 

    else 

        error('Dimension must be 1 or 2'); 

    end 

end 

 

% Custom function to compute standard deviation ignoring 

NaNs 

function stdVal = customNanstd(X, flag, dim) 

    if nargin < 3 

        dim = 1; 

    end 

    if nargin < 2 

        flag = 0; 

    end 

    if dim == 1 

        meanVal = customNanmean(X, 1); 

        stdVal = sqrt(sum((X - meanVal).^2, 1, 'omitnan') ./ 

(sum(~isnan(X), 1) - flag)); 

    elseif dim == 2 

        meanVal = customNanmean(X, 2); 

        stdVal = sqrt(sum((X - meanVal).^2, 2, 'omitnan') ./ 

(sum(~isnan(X), 2) - flag)); 

    else 

        error('Dimension must be 1 or 2'); 

    end 

end 

Load and Prepare Data 

matlab 

Copy code 

% Load and prepare data 

data = readtable('tb_data.csv'); 

data = table2array(data); % Convert to numeric array if 

needed 

% Assume the last column is the target variable 

X = data(:, 1:end-1); % Features 

y = data(:, end); % Target 

 

% Split data into training and testing sets 

cv = cvpartition(size(X, 1), 'HoldOut', 0.2); 

X_train = X(cv.training, :); 

y_train = y(cv.training); 

X_test = X(cv.test, :); 

y_test = y(cv.test, :); 

CNN Architecture and Training 

matlab 

Copy code 

% Define CNN architecture 

layers = [ 

    imageInputLayer([size(X, 1) size(X, 2) 1], 'Normalization', 

'zerocenter') 

    convolution2dLayer(3, 16, 'Padding', 'same') 

    reluLayer 

    maxPooling2dLayer(2, 'Stride', 2) 

    convolution2dLayer(3, 32, 'Padding', 'same') 

    reluLayer 

    maxPooling2dLayer(2, 'Stride', 2) 

    fullyConnectedLayer(128) 

    reluLayer 

    dropoutLayer(0.5) 

    fullyConnectedLayer(2) % Assuming binary classification 

    softmaxLayer 

    classificationLayer 

]; 

 

% Training options 

options = trainingOptions('adam', ... 

    'InitialLearnRate', 0.001, ... 

    'MaxEpochs', 20, ... 

    'MiniBatchSize', 64, ... 

    'Shuffle', 'every-epoch', ... 

    'ValidationFrequency', 30, ... 

    'Verbose', false, ... 

    'Plots', 'training-progress'); 

 

% Prepare data for training 

imds = imageDatastore('path_to_images', 'LabelSource', 

'foldernames', 'IncludeSubfolders', true); 

 

% Train the CNN 

net = trainNetwork(imds, layers, options); 

Validation and Metrics 

matlab 

Copy code 

% Evaluate CNN 

predictedLabels = classify(net, imds); 

trueLabels = imds.Labels; 

confMat = confusionmat(trueLabels, predictedLabels); 

accuracy = sum(diag(confMat)) / sum(confMat(:)); 

 

% ROC and AUC 

[~, scores] = predict(net, imds); 

[~, ~, ~, AUC] = perfcurve(trueLabels, scores(:,2), 'positive'); 

disp(['CNN AUC: ', num2str(AUC)]); 

Logistic Regression 

matlab 

Copy code 

% Logistic Regression 

mdl_lr = fitglm(X_train, y_train, 'Distribution', 'binomial'); 

y_pred_lr = predict(mdl_lr, X_test); 

% Convert probabilities to binary predictions 

y_pred_lr = round(y_pred_lr); 

confMat_lr = confusionmat(y_test, y_pred_lr); 

accuracy_lr = sum(diag(confMat_lr)) / sum(confMat_lr(:)); 

disp(['Logistic Regression Accuracy: ', 

num2str(accuracy_lr)]); 

Random Forest 

matlab 

Copy code 

% Random Forest 
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RFModel = TreeBagger(100, X_train, y_train, 

'OOBPredictorImportance', 'on'); 

y_pred_rf = predict(RFModel, X_test); 

% Convert cell array of strings to numeric values if needed 

y_pred_rf = str2double(y_pred_rf); 

confMat_rf = confusionmat(y_test, y_pred_rf); 

accuracy_rf = sum(diag(confMat_rf)) / sum(confMat_rf(:)); 

disp(['Random Forest Accuracy: ', num2str(accuracy_rf)]); 

Support Vector Machines (SVM) 

matlab 

Copy code 

% SVM 

SVMModel = fitcsvm(X_train, y_train); 

y_pred_svm = predict(SVMModel, X_test); 

confMat_svm = confusionmat(y_test, y_pred_svm); 

accuracy_svm = sum(diag(confMat_svm)) / 

sum(confMat_svm(:)); 

disp(['SVM Accuracy: ', num2str(accuracy_svm)]); 

 

Visualisation 

% Sample Data for Visualization 

time = datetime(2020,1,1):calmonths(1):datetime(2024,1,1); 

% Monthly data from 2020 to 2024 

actual_incidence = randn(length(time), 1) * 10 + 50; % 

Simulated actual TB incidence rates 

predicted_incidence = actual_incidence + randn(length(time), 

1) * 5; % Simulated predicted TB incidence rates 

 

% Regions and Incidences 

regions = {'Region1', 'Region2', 'Region3', 'Region4', 

'Region5'}; 

actual_incidence_matrix = rand(5, 5) * 100; % Simulated 

actual TB incidence rates 

predicted_incidence_matrix = actual_incidence_matrix + 

randn(5, 5) * 10; % Simulated predicted TB incidence rates 

 

% 1. Time Series Plot 

figure; 

plot(time, actual_incidence, '-b', 'LineWidth', 1.5); % Actual 

TB incidence 

hold on; 

plot(time, predicted_incidence, '--r', 'LineWidth', 1.5); % 

Predicted TB incidence 

hold off; 

title('TB Incidence Rates: Actual vs. Predicted'); 

xlabel('Time'); 

ylabel('TB Incidence Rate'); 

legend('Actual TB Incidence', 'Predicted TB Incidence'); 

grid on; 

 

% 2. Heatmaps 

% Heatmap for Actual Incidence 

figure; 

heatmap(regions, regions, actual_incidence_matrix, 

'Colormap', jet, 'ColorbarVisible', 'on'); 

title('Heatmap of Actual TB Incidence Rates'); 

 

% Heatmap for Predicted Incidence 

figure; 

heatmap(regions, regions, predicted_incidence_matrix, 

'Colormap', jet, 'ColorbarVisible', 'on'); 

title('Heatmap of Predicted TB Incidence Rates'); 

 

% 3. Scatter Plot 

figure; 

scatter(actual_incidence, predicted_incidence, 'filled'); 

hold on; 

plot([min(actual_incidence), max(actual_incidence)], ... 

     [min(actual_incidence), max(actual_incidence)], '--k'); % 

Line of equality 

hold off; 

title('Scatter Plot: Predicted vs. Actual TB Incidence Rates'); 

xlabel('Actual TB Incidence Rate'); 

ylabel('Predicted TB Incidence Rate'); 

axis equal; 

grid on; 
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