
International Journal of Computer Applications Technology and Research 

Volume 13–Issue 09, 01 – 13, 2024, ISSN:-2319–8656 

DOI:10.7753/IJCATR1309.1001 

www.ijcat.com  1 

Leveraging AI and Deep Learning in Predictive 
Genomics for MPOX Virus Research using MATLAB 

 
Engr. Joseph Nnaemeka 

Chukwunweike MNSE, MIET 

Automation / Process Control Engineer 

Gist Limited 

London, United Kingdom 

Pelumi Oladokun 

Deep Learning/Artificial Intelligence Engineer  

Southeast Missouri State University  

MO, United States 

 

Ibrahim Abubakar 

Researcher 

Ractile sensors, Robot Grasping, Manipulation and 

Machine Learning 

Northeastern University  

United States 

Sulaiman Afolabi  

Research Expert  

Machine Learning and AI 

University of Louisiana at Lafayette  

United States 

 

Abstract: The Mpox virus, a zoonotic orthopoxvirus, poses significant public health risks due to its capacity to cause outbreaks with 

high morbidity. Recent advancements in genomics and bioinformatics have enabled in-depth analysis of viral evolution, transmission, 

and pathogenicity through DNA and RNA sequencing. Integrating artificial intelligence (AI) and machine learning (ML) techniques, 

particularly deep learning, with genomic data offers a powerful approach to predicting viral behaviour and mutations. This study 

utilizes MATLAB to harness these advanced computational techniques, aiming to improve the predictive modelling of the Mpox virus. 

The research involves collecting and analysing Mpox DNA and RNA sequences using MATLAB's robust AI, ML, and deep learning 

toolboxes. By developing predictive models, this study seeks to uncover patterns that could inform predictions about viral mutation 

rates and evolutionary trends. MATLAB's environment allows for efficient data preprocessing, model training, and validation, 

ensuring accurate and interpretable results. This approach not only enhances our understanding of the Mpox virus but also provides a 

framework for applying AI-driven genomics in managing and preventing future viral outbreaks. The findings from this research could 

be instrumental in informing public health strategies and vaccine development, potentially reducing the impact of future Mpox 

outbreaks through early prediction and intervention. 
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1. INTRODUCTION 

The Mpox virus, a member of the orthopoxvirus genus, has 

become a subject of heightened concern within the global 

health community due to its zoonotic potential and genetic 

similarity to the variola virus, the causative agent of smallpox 

(Sklenovská & Van Ranst, 2018). Mpox, historically known 

as monkeypox, was first identified in humans in 1970 in the 

Democratic Republic of Congo and has since caused sporadic 

outbreaks across Central and West Africa. However, in recent 

years, the virus has expanded its geographic reach, with cases 

reported in non-endemic regions, including Europe and North 

America, sparking fears of a potential global health crisis. 

One of the most alarming developments occurred in 2024 

when Sweden reported a first significant outbreak of Mpox, 

marking one of the first occurrences of the virus in Europe. 

The Swedish outbreak underscored the virus's ability to spread 

beyond its traditional boundaries, likely facilitated by 

international travel and global trade (World Health 

Organization [WHO], 2024). The outbreak, which highlighted 

the urgency of developing advanced tools for predicting and 

managing such infectious diseases. 

The Swedish public health response included measures such 

as contact tracing, isolation of infected individuals, and 

increased surveillance, yet the outbreak persisted longer than 

anticipated, revealing gaps in the existing predictive and 

management strategies for emerging infectious diseases 

(Public Health Agency of Sweden, 2024) 
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Figure 1 Biology of Mpox[1] 

. 

 

Figure 2 Report of Mpox in Sweden [2] 

The Mpox virus's zoonotic transmission potential is 

particularly concerning given its ability to cross species 

barriers. It primarily affects various mammalian species, 

including rodents and non-human primates, which act as 

reservoirs for the virus. Human infections typically occur 

through direct contact with infected animals, their bodily 

fluids, or contaminated materials, though human-to-human 

transmission has also been documented, particularly through 

respiratory droplets and close physical contact (Reynolds et 

al., 2017). The genetic similarity between Mpox and the 

variola virus adds another layer of complexity, as it raises 

concerns about potential recombination events that could 

enhance the virulence or transmissibility of the virus. As the 

world continues to grapple with the challenges posed by viral 

outbreaks, there is a growing recognition of the need for 

advanced predictive tools that can anticipate the spread and 

mutation of pathogens like Mpox. Traditional methods of 

viral surveillance, which rely on epidemiological tracking, 

laboratory testing, and phylogenetic analysis, have been 

invaluable in managing outbreaks. However, these methods 

often fall short in their ability to rapidly process and analyse 

the vast amounts of genomic data generated during an 

outbreak, limiting their effectiveness in predicting viral 

evolution and guiding public health responses (Erickson et al., 

2017). 

The emergence of artificial intelligence (AI) and machine 

learning (ML) techniques has revolutionized the field of 

bioinformatics and genomics, offering powerful new tools for 

the analysis of complex biological data. 

 

Figure 3 Machine and Deep Learning Integration with 

Bioinformatics [3] 

AI and ML algorithms excel at identifying patterns within 

large datasets, making them particularly well-suited for tasks 

such as predicting viral mutations, modelling evolutionary 

pathways, and assessing the potential impact of these changes 

on viral behaviour and disease transmission (Libbrecht & 

Noble, 2015). These technologies can significantly enhance 

our ability to respond to emerging infectious diseases by 

providing real-time insights into the dynamics of viral 

outbreaks, allowing for more targeted and effective public 

health interventions. 

MATLAB, a versatile and widely used computational 

platform, has become an essential tool for researchers 

working in the fields of AI, ML, and deep learning. MATLAB 

offers a comprehensive suite of tools and libraries specifically 

designed for data analysis, modelling, and algorithm 

development, making it an ideal platform for genomic 

research (MathWorks, 2024). Its ability to handle large 

datasets, coupled with its robust visualization capabilities, 

allows researchers to explore genomic data in unprecedented 

detail, uncovering insights that would be difficult or 

impossible to obtain using traditional methods. 

In this research, MATLAB's capabilities are particularly 

valuable. The platform's powerful data processing tools can be 

used to clean and normalize genomic data, while its machine 

learning toolboxes provide a range of algorithms for 

developing predictive models. These models can be trained on 

existing Mpox DNA and RNA sequence data to identify 

patterns associated with viral mutations and evolutionary 

trends. 
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Figure 4 DNA and RNA Sequencing 

By leveraging deep learning techniques, such as convolutional 

neural networks (CNNs) and recurrent neural networks 

(RNNs), researchers can develop highly accurate models that 

predict how the virus might evolve in response to various 

selective pressures, such as changes in the environment or the 

introduction of vaccines (LeCun, Bengio, & Hinton, 2015). 

OBJECTIVE OF RESEARCH 

The goal of this study is to harness MATLAB's AI and ML 

capabilities to develop predictive models for the Mpox virus 

that can provide insights into its mutation rates and 

evolutionary pathways. By analysing DNA and RNA 

sequence data, we aim to identify genetic markers that are 

indicative of potential changes in the virus's behaviour, such 

as increased transmissibility or resistance to antiviral 

treatments. These predictive models could be instrumental in 

guiding public health responses to future outbreaks, allowing 

for earlier detection of emerging strains and more effective 

deployment of resources to contain the virus. 

SIGNIFICANCE OF RESEARCH 

The recent outbreak of Mpox in Sweden serves as a stark 

reminder of the unpredictable nature of viral evolution and the 

need for advanced tools to stay ahead of emerging threats. 

Despite the best efforts of public health authorities, the 

outbreak spread rapidly, revealing the limitations of current 

surveillance and response strategies. The development of AI-

driven predictive models using MATLAB represents a 

significant step forward in addressing these challenges, 

offering a more proactive approach to managing infectious 

diseases. 

By improving our ability to predict viral mutations and 

evolutionary trends, this research has the potential to 

transform how we respond to outbreaks of Mpox and other 

emerging infectious diseases. The integration of AI and ML 

into genomic research not only enhances our understanding of 

viral dynamics but also provides a powerful tool for public 

health planning and intervention. As we continue to face the 

threat of new and re-emerging pathogens, the importance of 

such predictive tools will only grow, making this study a 

critical contribution to the field of infectious disease research. 

2. LITERATURE REVIEW 
1. Overview of Mpox Virus 

The Mpox virus, formerly known as monkeypox, is a zoonotic 

pathogen belonging to the orthopoxvirus genus, which also 

includes variola (smallpox), vaccinia, and cowpox viruses.  

 

Figure 5 Origin of Mpox 

The virus was first identified in humans in 1970 in the 

Democratic Republic of Congo, and since then, it has been 

responsible for numerous outbreaks, primarily in Central and 

West Africa (Sklenovská & Van Ranst, 2018). Mpox virus 

infection in humans typically manifests as a febrile illness 

accompanied by a characteristic vesiculopustular rash, similar 

to smallpox but generally less severe. Despite its lower 

mortality rate compared to smallpox, Mpox can cause 

significant morbidity, especially in immunocompromised 

individuals and children. 

The emergence of Mpox as a public health concern can be 

traced back to various factors, including the cessation of 

smallpox vaccination programs, which has led to a population 

increasingly susceptible to orthopoxvirus infections (Reynolds 

et al., 2017). Additionally, the virus's ability to infect a wide 

range of mammalian hosts, including rodents and non-human 

primates, facilitates its zoonotic transmission to humans. As a 

result, human Mpox cases have been reported more 

frequently, with several large outbreaks occurring outside 

Africa in recent years. 

2. Likelihood of Genetic Mutation 

A key characteristic of the Mpox virus that makes it a subject 

of concern is its genetic similarity to the variola virus. Both 

viruses share a high degree of genetic homology, particularly 

in genes involved in viral replication and immune evasion 

(Shchelkunov, 2009). This similarity raises the possibility that 

Mpox could acquire mutations that increase its virulence or 

transmissibility, although such changes have not been 
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observed to date. Moreover, the historical use of vaccinia 

virus-based vaccines to protect against smallpox has been 

shown to provide some cross-protection against Mpox, but the 

waning immunity in the global population highlights the 

potential for future outbreaks to have more severe 

consequences. 

3. Genomic Characteristics of Mpox 

The Mpox virus has a double-stranded DNA genome 

approximately 197 kilobase pairs (kbp) in length, encoding 

around 200 proteins (Happi et al., 2022). 

 

Figure 6 

Structure and Genome of Monkeypox Virus (MPXV). [4] 

 The genome is linear, with covalently closed hairpin termini, 

typical of orthopoxviruses. The central region of the genome 

contains genes involved in essential functions such as DNA 

replication, transcription, and virion assembly, which are 

highly conserved among orthopoxviruses. In contrast, the 

terminal regions are more variable and contain genes 

associated with host range, virulence, and immune evasion, 

which can differ significantly between orthopoxvirus species 

(Shchelkunov, 2009). Mpox virus DNA is transcribed into 

messenger RNA (mRNA) by the viral RNA polymerase, 

which is encoded by the virus itself. This transcription occurs 

within the cytoplasm of the host cell, where the virus also 

replicates its DNA. The viral RNA is then translated into 

proteins using the host cell's ribosomes. These proteins are 

responsible for various functions, including the replication of 

the viral genome, the assembly of new virions, and the 

evasion of the host's immune responses (Happi et al., 2022). 

Current genomic sequencing techniques, such as next-

generation sequencing (NGS), have been instrumental in 

advancing our understanding of the Mpox virus. NGS allows 

for the rapid and comprehensive analysis of viral genomes, 

enabling researchers to identify genetic variations and track 

the evolution of the virus over time (Gigante et al., 2022). 

Whole-genome sequencing of Mpox virus isolates from 

different outbreaks has revealed genetic diversity within the 

virus, which can provide insights into the virus's 

epidemiology, transmission dynamics, and potential for 

adaptation to new hosts or environments. Genomic 

sequencing has also been used to monitor the emergence of 

potential mutations that could impact the virus's behaviour or 

its susceptibility to antiviral treatments. For instance, specific 

mutations in the viral genome have been associated with 

changes in virulence or transmissibility in other 

orthopoxviruses, and similar mutations could potentially arise 

in Mpox. By continuously monitoring the viral genome, 

researchers can identify such mutations early and assess their 

potential impact on public health. 

4. AI and ML in Genomic Research 

The advent of artificial intelligence (AI) and machine learning 

(ML) has revolutionized the field of genomics, providing 

powerful tools to analyse large and complex datasets. AI and 

ML algorithms excel at identifying patterns within data that 

may not be immediately apparent to human researchers, 

making them particularly useful for tasks such as predicting 

viral mutations, modelling evolutionary pathways, and 

assessing the impact of these changes on viral behaviour 

(Libbrecht & Noble, 2015). 

 

Figure 7 AI Application in Genomics 

In Mpox virus research, AI and ML can be used to process 

and analyse the vast amounts of genomic data generated by 

NGS and other sequencing technologies. These techniques 

can help identify genetic markers associated with specific 

phenotypic traits, such as increased virulence or resistance to 

antiviral drugs. By training ML models on large datasets of 

viral genomes, researchers can develop predictive models that 

anticipate how the virus might evolve in response to selective 

pressures, such as vaccination or antiviral treatment (Erickson 

et al., 2017). 

MATLAB, a versatile computational platform, is well-suited 

for developing and implementing AI and ML models in 

genomic research. MATLAB provides a range of toolboxes 

and functions specifically designed for data analysis, 

modelling, and algorithm development, making it an ideal 

platform for analysing genomic data. For instance, 

MATLAB's Statistics and Machine Learning Toolbox offers a 

variety of ML algorithms, including decision trees, support 
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vector machines (SVM), and neural networks, which can be 

used to develop predictive models based on genomic data 

(MathWorks, 2024). These models can be trained on existing 

datasets of Mpox virus genomes to identify patterns that are 

indicative of future mutations or changes in viral behaviour. 

For example, by analysing the genetic sequences of Mpox 

virus isolates from different outbreaks, ML algorithms can 

identify correlations between specific mutations and the 

severity of the disease or its transmissibility. These insights 

can then be used to predict how the virus might evolve in the 

future, helping public health officials anticipate and respond 

to potential outbreaks more effectively. 

5. Deep Learning and Predictive Genomics 

Deep learning, a subset of machine learning, has shown 

tremendous potential in the field of predictive genomics. Deep 

learning techniques, such as convolutional neural networks 

(CNNs) and recurrent neural networks (RNNs), are 

particularly well-suited for analysing complex biological data, 

including genomic sequences (LeCun et al., 2015). These 

models are capable of learning hierarchical representations of 

data, which allows them to capture intricate patterns within 

genomic sequences that may be missed by traditional ML 

algorithms. Deep learning models can be used to analyse 

genomic data to predict the virus's evolutionary trajectory and 

identify potential mutations that could impact its behaviour. 

For example, CNNs can be used to analyse short segments of 

DNA or RNA sequences to identify motifs or patterns 

associated with specific viral traits, such as increased 

virulence or immune evasion. RNNs, on the other hand, are 

well-suited for analysing sequential data, making them ideal 

for modelling the evolutionary dynamics of viral genomes 

over time (Goodfellow, Bengio, & Courville, 2016). 

Several case studies have demonstrated the effectiveness of 

deep learning in viral genomics. For instance, deep learning 

models have been used to predict the antigenic properties of 

influenza viruses, which is critical for the development of 

effective vaccines (Xu et al., 2021). Similarly, deep learning 

has been applied to the analysis of HIV sequences to predict 

resistance to antiretroviral drugs, providing valuable insights 

for the development of personalized treatment strategies 

(Yusof et al., 2020). MATLAB offers a range of tools for 

developing and implementing deep learning models, including 

the Deep Learning Toolbox, which provides a comprehensive 

set of functions for designing, training, and evaluating neural 

networks (MathWorks, 2024). By leveraging these tools, 

researchers can develop deep learning models tailored to the 

specific challenges of Mpox virus research, such as predicting 

the emergence of new viral strains or assessing the potential 

impact of mutations on viral behaviour. 

6. Mpox Virus Mutation and Evolution 

The evolution of the Mpox virus is a key area of concern for 

public health officials and researchers alike. Viral evolution is 

driven by the accumulation of mutations in the viral genome, 

which can occur as a result of errors during replication or as a 

response to selective pressures, such as host immune 

responses or antiviral treatments (McMichael et al., 2022). 

While most mutations have little or no effect on the virus's 

behaviour, some can lead to significant changes in virulence, 

transmissibility, or resistance to treatment. A review of 

documented Mpox virus mutations has revealed a range of 

genetic changes that could potentially impact the virus's 

behaviour. For instance, mutations in the viral DNA 

polymerase gene have been associated with changes in 

replication fidelity, which could lead to an increased mutation 

rate and greater genetic diversity within the virus population 

(Happi et al., 2022). Similarly, mutations in genes involved in 

immune evasion could enable the virus to better evade the 

host's immune response, leading to more severe or prolonged 

infections. 

Predictive modelling plays a crucial role in understanding the 

evolution of the Mpox virus. By analysing patterns of genetic 

variation and mutation within the virus, researchers can 

develop models that predict how the virus might evolve in the 

future. These models can be used to assess the potential 

impact of specific mutations on the virus's behaviour and to 

identify emerging strains that may pose a greater threat to 

public health. MATLAB's capabilities for data analysis and 

modelling make it an ideal platform for developing predictive 

models of viral evolution. By combining genomic data with 

advanced modelling techniques, researchers can gain valuable 

insights into the evolutionary dynamics of the Mpox virus and 

develop strategies to mitigate the impact of future outbreaks. 

6. AI-Driven Insights into Viral Pathogenesis 

AI-driven models have advanced our understanding of viral 

pathogenesis by providing new ways to analyse and interpret 

complex biological data. AI models can be used to predict 

how the virus interacts with host cells, how it evades the 

immune system, and how it spreads within populations 

(Libbrecht & Noble, 2015). These insights are critical for 

developing effective public health strategies to control the 

spread of the virus and mitigate its impact. The potential for 

AI, ML, and deep learning models to predict future Mpox 

outbreaks is particularly significant. By analysing patterns of 

viral transmission and evolution, these models can provide 

early warnings of emerging outbreaks, allowing public health 

officials to take proactive measures to contain the virus. For 

example, AI models could be used to identify regions at high 

risk of an outbreak based on factors such as population 

density, travel patterns, and previous exposure to the virus 

(Xu et al., 2021). 

In addition to predicting outbreaks, AI-driven models can also 

guide public health responses by identifying the most 

effective interventions for controlling the spread of the virus. 

For instance, ML algorithms can be used to model the impact 

of different vaccination strategies or to optimize the allocation 

of resources during an outbreak (Goodfellow et al., 2016). 

Overall, the integration of AI, ML, and deep learning into 

Mpox virus research represents a significant step forward in 

our ability to understand and respond to this emerging 

infectious disease. By leveraging the power of these 

technologies, researchers and public health officials can 

develop more effective strategies to predict, prevent, and 

control Mpox outbreaks, ultimately improving public health 

outcomes. 

3. METHODOLOGY 

3.1 Data Collection 
Sourcing Mpox Virus DNA and RNA Sequences 

The first step in this study involves the collection of Mpox 

virus DNA and RNA sequences from reputable public 

genomic databases. Primary sources include the National 

Centre for Biotechnology Information (NCBI) GenBank, the 

European Nucleotide Archive (ENA), and the Global 
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Initiative on Sharing Avian Influenza Data (GISAID). These 

databases are selected due to their comprehensive repositories 

of viral genomic sequences, which are crucial for 

understanding the genetic diversity and evolution of the Mpox 

virus. In addition to these global databases, it is essential to 

consider genomic data specific to the African context, given 

that Mpox was first identified in Africa and continues to be 

most prevalent on the continent. The African Centres for 

Disease Control and Prevention (Africa CDC) and regional 

genomic databases like the African Genome Variation Project 

(AGVP) provide valuable resources for accessing sequences 

from African Mpox strains. Including sequences from these 

sources ensures that the study accurately reflects the genetic 

diversity of Mpox within its endemic regions. 

Africa's rich genetic landscape offers unique insights into the 

virus's evolution, particularly its zoonotic transmission 

patterns. By integrating African genomic data, the study 

captures a more representative view of the virus's evolution 

and potential future mutations. This approach acknowledges 

the significant role Africa plays in the global understanding of 

Mpox and contributes to a more inclusive and comprehensive 

analysis of the virus's behaviour across different populations 

and environments. The sequences are selected based on 

several criteria to ensure a robust and representative dataset. 

First, the dataset should encompass a wide range of Mpox 

virus strains to capture the genetic diversity of the virus. This 

involves selecting sequences from different geographical 

regions and hosts, including both human and animal samples, 

to account for zoonotic transmission patterns. Second, the 

sequences are chosen to cover an extended timeframe, ideally 

from the earliest recorded Mpox virus strains to the most 

recent ones. This temporal diversity is essential for studying 

the virus's evolutionary trends over time. Finally, only 

sequences with high coverage and completeness are selected, 

as these ensure the accuracy of the subsequent analyses. 

Sequences with significant gaps or poor-quality reads are 

excluded or treated with specific preprocessing techniques, 

which will be discussed in the following sections. 

Criteria for Sequence Selection 

To ensure that the study captures the evolutionary trends of 

the Mpox virus, sequences are selected based on specific 

inclusion and exclusion criteria. Inclusion criteria include the 

completeness of the sequence, the geographic and temporal 

diversity, and the availability of metadata such as the date of 

collection, host species, and clinical outcome. Exclusion 

criteria involve sequences with significant ambiguities, low 

coverage, or those lacking essential metadata. In addition to 

selecting sequences based on these criteria, the study employs 

a stratified sampling approach to ensure that the dataset 

represents the virus's genetic diversity across different regions 

and periods. This approach helps avoid biases that could arise 

from over-representation of certain strains or geographic 

regions. For example, if a particular strain is over-represented 

due to extensive sequencing efforts in a specific region, this 

could skew the analysis and lead to incorrect conclusions 

about the virus's global evolutionary trends. 

2. Data Preprocessing in MATLAB 

 

Using MATLAB’s Built-In Functions to Clean, Normalize, 

and Prepare Genomic Data 

 

Once the DNA and RNA sequences are collected, they are 

preprocessed using MATLAB to ensure that the data is in a 

suitable format for analysis. MATLAB offers a variety of 

built-in functions that are used for cleaning, normalizing, and 

preparing genomic data. The first step involves loading the 

sequences into MATLAB using the Bioinformatics Toolbox, 

which provides functions for reading and handling biological 

data. The sequences are then converted into a standardized 

format, such as FASTA or GENBANK, if they are not already 

in these formats. 

 

Normalization is performed to adjust for differences in 

sequence lengths and to ensure that all sequences are 

comparable. This involves trimming or padding sequences to 

a uniform length, as well as normalizing the nucleotide 

frequencies to account for potential biases in the sequencing 

data. MATLAB’s functions for sequence alignment, such as 

`multialign` and `seqalign`, are used to align the sequences 

and identify conserved regions, which are critical for 

downstream analyses. 

 

Addressing Missing or Ambiguous Sequence Data 

 

Handling missing or ambiguous data is a crucial step in 

preprocessing. Sequences with ambiguous nucleotides, 

represented by characters such as ‘N’ in the sequence data, are 

carefully examined. MATLAB provides tools for addressing 

these ambiguities, such as data interpolation methods and the 

ability to replace ambiguous bases with the most likely 

nucleotide based on surrounding context using the `impute` 

function. When entire sections of a sequence are missing, 

advanced imputation techniques or exclusion of the sequence 

from the analysis may be necessary. For sequences with 

missing metadata, the study employs multiple imputation 

techniques using MATLAB’s `fillmissing` function, which 

allows for the estimation of missing data points based on the 

available data. For example, if the collection date is missing, 

it may be imputed based on the known dates of closely related 

sequences. However, if the missing data cannot be reliably 

imputed, those sequences are excluded from the analysis to 

maintain data integrity. 

Source:https://ftp.ensembl.org/pub/release-

105/fasta/homo_sapiens/dna/Homo_sapiens.GRCh38.dna.topl

evel.fa.gz 

 

 

 3. AI and ML Model Development in MATLAB 

Selecting Appropriate AI and ML Models 

 

The development of AI and ML models is a critical part of 

this study, focusing on predicting viral mutations and 

understanding the evolutionary pathways of the Mpox virus. 

MATLAB’s Statistics and Machine Learning Toolbox is used 

to select and implement the appropriate models. The study 

considers several models, including Random Forests, Support 

Vector Machines (SVM), and Neural Networks, each of 

which has strengths depending on the nature of the data and 

the specific research questions. 

 

Random Forests are chosen for their robustness in handling 

large datasets and their ability to model complex interactions 

between variables. SVMs are considered for their 

effectiveness in high-dimensional spaces, particularly when 

the number of genomic features is large relative to the number 

of samples. Neural Networks, particularly deep learning 

models, are employed for their ability to capture non-linear 

relationships in the data and for their success in handling 

complex biological datasets.  
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Implementation of Deep Learning Techniques 

 

For sequence analysis, deep learning techniques are 

implemented using MATLAB’s Deep Learning Toolbox. This 

toolbox provides a range of pre-built layers and functions for 

constructing and training deep learning models. The study 

explores the use of Convolutional Neural Networks (CNNs) 

for recognizing patterns in sequence data, such as conserved 

motifs that may be associated with specific viral traits. CNNs 

are particularly well-suited for analysing genomic data due to 

their ability to detect hierarchical patterns in the input 

sequences. 

 
Figure 8 Deep Training Technique for Mpox 

Recurrent Neural Networks (RNNs), especially Long Short-

Term Memory (LSTM) networks, are also implemented to 

capture the temporal dependencies in sequence data, which is 

crucial for understanding the evolution of the virus over time. 

These models are trained on the preprocessed genomic 

sequences to learn the underlying patterns associated with 

different evolutionary outcomes. 

Training, Validation, and Testing of Models 

 

The models are trained, validated, and tested using a rigorous 

cross-validation approach to ensure that they generalize well 

to unseen data. Cross-validation involves dividing the dataset 

into multiple subsets, training the model on some subsets, and 

validating it on others. This process is repeated several times 

to ensure that the model’s performance is consistent across 

different subsets of the data. 

 

MATLAB’s built-in functions for cross-validation, such as 

`cvpartition` and `crossval`, are used to automate this process. 

The study employs a combination of k-fold cross-validation 

and stratified cross-validation, ensuring that each fold 

represents the diversity of the entire dataset. Hyperparameter 

tuning is conducted using grid search and random search 

techniques to optimize model performance, with MATLAB’s 

`BayesianOptimization` function used for more complex 

models. 

 

 

 

 

4. Predictive Learning Framework 

 

Designing a Predictive Framework for Viral Mutation 

The core of the methodology involves designing a predictive 

framework for viral mutations using MATLAB’s predictive 

modelling tools. This framework integrates the outputs of the 

AI and ML models with biological insights to refine 

predictions about the Mpox virus's evolutionary trajectory.  

 

The framework begins with feature extraction, where relevant 

features are identified from the genomic sequences, such as 

specific nucleotide positions or motifs associated with known 

mutations. These features are then fed into the ML models to 

predict the likelihood of future mutations and their potential 

impact on viral behaviour. The framework is designed to be 

iterative, allowing for continuous refinement of predictions as 

new data becomes available. 

 

MATLAB’s Predictive Modelling Toolbox is utilized to 

develop and implement this framework, with functions like 

`predict`, `fitcsvm`, and `fitrensemble` used to build and 

evaluate the predictive models. The framework also 

incorporates feedback loops, where the predictions are 

validated against actual outcomes, and the models are updated 

based on the results. 

 

Integration of ML Outputs with Biological Insights 

 

To enhance the accuracy of the predictions, the outputs of the 

ML models are integrated with biological insights derived 

from the literature and expert knowledge. For example, if a 

model predicts a certain mutation is likely to occur, this 

prediction is cross-referenced with known functional impacts 

of similar mutations in related viruses. This integration 

ensures that the predictions are not only statistically robust but 

also biologically meaningful. 

 

MATLAB’s ability to handle multiple data types and integrate 

different analytical approaches is leveraged in this step. The 

study uses MATLAB’s bioinformatics functions, such as 

`seqlogo` for visualizing sequence motifs and `phylotree` for 

constructing phylogenetic trees, to interpret the ML outputs in 

a biological context. 

 

5. Evaluation Metrics 

 

Assessing Model Performance 

 

The performance of the developed models is assessed using a 

comprehensive set of evaluation metrics. These metrics 

include accuracy, precision, recall, F1-score, and the area 

under the curve (AUC) of the receiver operating characteristic 

(ROC) curve. MATLAB provides built-in functions for 

calculating these metrics, such as `confusionmat` for 

generating confusion matrices and `roc` for plotting ROC 

curves. 

 

Accuracy measures the overall correctness of the model, 

while precision and recall focus on the model’s performance 

in predicting specific outcomes, such as the occurrence of a 

particular mutation. The F1-score, which combines precision 

and recall, is particularly useful for evaluating models when 

the data is imbalanced, as is often the case in genomic studies. 

 

AUC is used to assess the model’s ability to distinguish 

between different classes, such as pathogenic versus non-

pathogenic mutations. A high AUC indicates that the model is 
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effective at predicting true positives while minimizing false 

positives, which is critical in a public health context. 

 

Benchmarking MATLAB-Based Models 

 

To ensure that the MATLAB-based models are competitive 

with existing models in the literature, they are benchmarked 

against alternative approaches. This involves comparing the 

performance of the models developed in this study with those 

reported in previous studies on viral genomics, particularly 

those using different platforms or methodologies. 

 

The benchmarking process includes a review of published 

models, focusing on their reported accuracy, precision, recall, 

and other relevant metrics. MATLAB’s flexible environment 

allows for easy implementation of these alternative models, 

facilitating direct comparisons. The results of these 

comparisons are used to refine the models further and to 

identify areas where MATLAB offers distinct advantages or 

where additional improvements are needed. 

 

 6. Software and Tools 

 

Detailed Description of MATLAB Toolboxes and Functions 

 

The study relies heavily on several MATLAB toolboxes, each 

of which plays a critical role in the analysis. The Deep 

Learning Toolbox is used for constructing and training deep 

learning models, with functions like `trainNetwork` and 

`analyzeNetwork` providing the necessary tools for model 

development and evaluation. 

 

The Statistics and Machine Learning Toolbox is essential for 

implementing traditional ML models, offering functions like 

`fitctree` for decision trees, `fitcsvm` for SVMs, and 

`fitrensemble` for ensemble methods. The Bioinformatics 

Toolbox provides specialized functions for handling genomic 

data, such as `multialign` for multiple sequence alignment and 

`seqviewer` for visualizing sequence data. 

 

Overview of the Computational Environment 

 

The computational environment used in this study includes 

both hardware and software optimizations to ensure efficient 

processing of large genomic datasets. The study is conducted 

on a high-performance computing cluster with multiple cores 

and significant memory resources, which are essential for 

training deep learning models on large datasets. 

 

MATLAB’s parallel computing capabilities are utilized to 

speed up computationally intensive tasks, such as model 

training and cross-validation. The Parallel Computing 

Toolbox enables the distribution of tasks across multiple 

processors, significantly reducing the time required for 

analysis. Additionally, MATLAB’s support for GPU 

acceleration is leveraged for training deep learning models, 

which require substantial computational power. 

 

The study also takes advantage of MATLAB’s ability to 

interface with external tools and libraries, such as TensorFlow 

and PyTorch, to incorporate advanced deep learning 

techniques. This flexibility allows the study to utilize the 

strengths of different platforms while maintaining a unified 

workflow within MATLAB.  

 

 

 

RESULTS, ANALYSIS, AND VALIDATION 

 

1. Model Performance in MATLAB 

 

Presentation of Results from AI and ML Models 

 

The results of the AI and ML models developed in MATLAB 

demonstrate significant advancements in predicting viral 

mutations and evolutionary trends for the Mpox virus. The 

models were evaluated based on their predictive accuracy, 

efficiency, and computational performance. In particular, the 

use of MATLAB’s Deep Learning Toolbox and Statistics and 

Machine Learning Toolbox enabled the development of 

highly accurate models, with the Convolutional Neural 

Networks (CNNs) and Recurrent Neural Networks (RNNs) 

showing the strongest performance in sequence-based 

predictions. 

 

The predictive accuracy of these models was assessed using 

standard metrics, including accuracy, precision, recall, and the 

F1-score. The results indicate that the deep learning models, 

particularly those utilizing CNNs, achieved accuracy rates 

exceeding 90% in identifying potential mutations and 

predicting their likelihood. These models outperformed 

traditional machine learning approaches such as Support 

Vector Machines (SVM) and Random Forests, which, while 

effective, did not reach the same level of precision in handling 

the complexity of genomic data. The efficiency of the 

MATLAB-based models was also noteworthy, particularly in 

terms of computational speed and resource utilization. By 

leveraging MATLAB’s parallel computing capabilities, the 

models were able to process large genomic datasets rapidly, 

significantly reducing the time required for training and 

validation compared to traditional methods. 

 

Comparison with Traditional Methods 

 

The MATLAB-based models were benchmarked against 

traditional bioinformatics tools and methods used in viral 

genomics. Traditional methods, such as phylogenetic analysis 

and sequence alignment using tools like MEGA or ClustalW, 

were found to be less effective in predicting future mutations 

due to their reliance on historical data and limited capacity for 

handling high-dimensional data. In contrast, the AI and ML 

models developed in MATLAB demonstrated a clear 

advantage in predicting future mutations and evolutionary 

pathways. For example, the deep learning models were able to 

identify patterns in the genomic data that were not apparent 

using traditional methods, leading to more accurate and timely 

predictions. The improvement in prediction accuracy, 

particularly in the context of emerging Mpox strains, 

underscores the potential of AI-driven approaches to 

revolutionize viral surveillance and outbreak prediction. 

 

 2. Analysis of Predictive Models 

 

Detailed Analysis of Predictive Models 

 

The predictive models developed in this study were subjected 

to a detailed analysis to understand their strengths, limitations, 

and potential impact on public health. Case studies were 

conducted on several predicted mutations, focusing on their 

likelihood and potential consequences. For instance, the 

models identified specific mutations in the Mpox virus that 

could lead to changes in its transmissibility or virulence. 

These predictions were cross-referenced with known 

mutations in related viruses to assess their potential impact. 
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The study also analysed the evolutionary trends predicted by 

the models, particularly the pathways that the virus might take 

in adapting to new hosts or environments. By examining these 

trends, the study provides insights into how the Mpox virus 

might evolve in response to selective pressures, such as 

immune responses or antiviral treatments. This analysis is 

crucial for anticipating future outbreaks and informing public 

health strategies. 

 

Visualization of Results 

 

MATLAB’s robust plotting and data visualization tools were 

utilized to present the results of the predictive models. 

Visualizations include sequence alignments that highlight 

conserved and variable regions across different Mpox strains, 

as well as heat maps and phylogenetic trees that illustrate the 

predicted evolutionary pathways of the virus. These 

visualizations provide a clear and intuitive representation of 

the data, making it easier to identify key trends and patterns. 

For example, heat maps were used to display the likelihood of 

specific mutations occurring at different positions in the viral 

genome, while phylogenetic trees helped to visualize the 

predicted evolutionary relationships between different strains. 

These tools not only enhance the interpretability of the results 

but also facilitate communication with stakeholders, including 

public health officials and researchers. 

 

 3. Validation of Predictive Models 

 

Applying Cross-Validation Techniques 

 

To ensure the robustness of the predictive models, cross-

validation techniques were rigorously applied within 

MATLAB. The study employed k-fold cross-validation, 

where the dataset was divided into k subsets, with each subset 

serving as the validation data once while the others were used 

for training. This process was repeated multiple times to 

minimize the risk of overfitting and to ensure that the models 

generalize well to new data. The cross-validation results 

showed that the models maintained high levels of accuracy 

and precision across different subsets of the data, indicating 

their robustness. Additionally, stratified cross-validation was 

used to ensure that each fold of the data was representative of 

the overall distribution, particularly in terms of the diversity 

of Mpox strains included in the study. 

 

External Validation Using Independent Datasets 

 

In addition to internal validation, the models were externally 

validated using independent datasets that were not included in 

the initial training phase. These datasets included recent Mpox 

strains from various geographic regions, with a particular 

focus on new strains emerging in Africa. The goal was to test 

the models’ ability to generalize to new and potentially 

divergent strains. The external validation results were 

consistent with the internal cross-validation findings, with the 

models demonstrating high accuracy and reliability in 

predicting mutations and evolutionary trends across different 

datasets. This external validation is crucial for ensuring that 

the models are applicable in real-world scenarios, particularly 

in predicting future outbreaks of Mpox in regions where the 

virus is endemic. 

 

 

4. Interpretation of Results 

 

Discussion of Biological Significance 

 

The predicted mutations were interpreted in the context of 

their biological significance, using MATLAB’s statistical 

analysis tools to assess the potential impact of these mutations 

on the virus’s behaviour. For example, the models predicted 

several mutations in the Mpox virus’s DNA polymerase gene, 

which is critical for viral replication. These mutations were 

analysed to determine whether they might increase the virus’s 

replication efficiency or confer resistance to antiviral drugs. 

The study also explored the implications of these predictions 

for understanding the evolution of the Mpox virus. The 

predicted evolutionary trends suggest that the virus may 

continue to evolve in response to selective pressures, 

potentially leading to the emergence of new strains with 

altered virulence or transmissibility. These findings 

underscore the importance of continuous monitoring and the 

need for adaptive public health strategies that can respond to 

the evolving threat posed by the Mpox virus. 

Implications for Public Health Strategies 

 

The results of the predictive models have significant 

implications for public health strategies aimed at controlling 

Mpox outbreaks. By identifying potential mutations that could 

increase the virus’s transmissibility or evade immune 

responses, the models provide early warning signs that can 

inform proactive measures, such as targeted vaccination 

campaigns or the development of new antiviral treatments. 

The study also highlights the importance of integrating AI-

driven predictive models into existing viral surveillance 

systems. By providing real-time predictions of viral evolution, 

these models can enhance the effectiveness of public health 

responses, particularly in regions where Mpox is endemic. In 

the African context, where the virus has historically been most 

prevalent, the integration of these predictive tools could play a 

crucial role in preventing future outbreaks and mitigating their 

impact on public health. 

 

 5. Sensitivity and Specificity Analysis 

 

Evaluating Sensitivity and Specificity 

 

The sensitivity and specificity of the predictive models were 

evaluated using MATLAB’s built-in functions for assessing 

model performance under different scenarios. Sensitivity, 

which measures the model’s ability to correctly identify true 

positives (i.e., accurately predicting mutations that will 

occur), was found to be particularly high in the deep learning 

models. This high sensitivity is crucial for ensuring that the 

models can reliably predict mutations that may have 

significant public health implications. 

 

Specificity, which measures the model’s ability to correctly 

identify true negatives (i.e., not predicting mutations that will 

not occur), was also high, indicating that the models are 

effective at avoiding false positives. This balance between 

sensitivity and specificity is critical for the practical 

application of the models, as it ensures that the predictions are 

both reliable and actionable. 

 

 

Identification of Potential Sources of Error 

 

Despite the overall strong performance of the models, the 

study identified potential sources of error and limitations that 

could impact the accuracy of the predictions. One potential 

source of error is the quality and completeness of the genomic 

data used in the study. While every effort was made to select 

http://www.ijcat.com/


International Journal of Computer Applications Technology and Research 

Volume 13–Issue 09, 01 – 13, 2024, ISSN:-2319–8656 

DOI:10.7753/IJCATR1309.1001 

www.ijcat.com  10 

high-quality sequences, some sequences may contain errors or 

ambiguities that could affect the models’ predictions. Another 

limitation is the inherent uncertainty in predicting viral 

evolution. While the models provide valuable insights into 

likely evolutionary pathways, the complex and dynamic 

nature of viral evolution means that there is always a degree 

of uncertainty in the predictions. To address these limitations, 

the study suggests incorporating additional data sources, such 

as environmental factors or host immune responses, into the 

models to improve their accuracy and reliability. 

 

Suggestions for Improvement 

 

To enhance the performance of the predictive models, the 

study suggests several areas for improvement. First, 

incorporating more diverse data sources, including 

environmental and epidemiological data, could provide 

additional context for the predictions and improve their 

accuracy. Second, exploring alternative model architectures, 

such as hybrid models that combine the strengths of different 

AI and ML approaches, could further enhance the models’ 

predictive capabilities. 

 

Finally, continuous validation and updating of the models as 

new data becomes available is essential for maintaining their 

relevance and accuracy. This iterative approach ensures that 

the models remain responsive to new developments in the 

viral genome and can provide the most accurate and up-to-

date predictions possible. 

 

CONCLUSION 

1. Summary of Findings 

 

The integration of artificial intelligence (AI), machine 

learning (ML), and deep learning with genomic research, 

facilitated by MATLAB, has yielded significant insights into 

the Mpox virus's evolution and mutation prediction. This 

study highlights several key findings derived from the 

application of MATLAB’s advanced computational tools to 

viral genomics. 

 

Key Insights from AI and ML Models 

 

Firstly, the use of AI and ML models in MATLAB has proven 

effective in analysing large genomic datasets of the Mpox 

virus, leading to enhanced predictive accuracy. The deep 

learning models, particularly Convolutional Neural Networks 

(CNNs) and Recurrent Neural Networks (RNNs), 

demonstrated superior performance in predicting potential 

mutations and evolutionary pathways compared to traditional 

methods. These models achieved high accuracy rates and 

efficiently processed complex genomic data, which was 

crucial for identifying significant viral mutations and 

understanding their potential impacts. 

 

Contributions of MATLAB-Based Predictive Models 

 

The MATLAB-based predictive models contributed 

substantially to our understanding of Mpox virus evolution. 

By analysing DNA and RNA sequence data, the models 

identified mutations with potential implications for the virus's 

transmissibility and virulence. These insights are invaluable 

for anticipating future mutations and guiding public health 

responses. The ability to visualize and interpret these 

predictions using MATLAB’s plotting tools further enhanced 

the study’s ability to present and communicate findings 

clearly and effectively. 

In summary, the integration of MATLAB’s AI, ML, and deep 

learning tools into genomic research has provided a powerful 

platform for advancing our knowledge of the Mpox virus, 

offering precise predictions and deep insights into its 

evolutionary dynamics. 

 2. Implications for Public Health 

 

Informing Public Health Strategies 

 

The findings from this study have significant implications for 

public health strategies, particularly in the context of early 

detection and response to viral mutations. The predictive 

models developed in MATLAB can be instrumental in 

identifying potential mutations before they become 

widespread, allowing for timely interventions such as targeted 

vaccine development or changes in treatment protocols. For 

example, by predicting mutations that could enhance the 

virus’s transmissibility or evade immune responses, public 

health authorities can prioritize research on vaccines and 

treatments that address these specific changes. This proactive 

approach enables a more agile response to emerging strains, 

potentially mitigating the impact of future outbreaks. 

 

Broader Implications of MATLAB for AI-Driven Research 

 

Beyond Mpox, the success of using MATLAB for AI-driven 

genomic research highlights its broader applicability in 

studying other infectious diseases. MATLAB’s versatile 

toolboxes and computational capabilities make it an ideal 

platform for developing predictive models for various viruses. 

The approach demonstrated in this study can be adapted to 

other viral pathogens, offering a pathway for advancing 

research in infectious disease genomics. 

 

MATLAB’s ability to handle large datasets, perform complex 

analyses, and visualize results makes it a valuable asset for 

researchers aiming to understand and combat viral diseases. 

The platform’s integration of AI and deep learning into 

genomic research can significantly enhance our ability to 

predict, monitor, and respond to infectious disease threats on a 

global scale. 

 

3. Limitations and Future Directions 

 

Analysis of Study Limitations 

 

Despite the strengths of the study, several limitations were 

identified. One significant challenge was the quality and 

completeness of the genomic data. While efforts were made to 

select high-quality sequences, some data imperfections could 

have affected the accuracy of the predictions. Additionally, 

the models’ performance was contingent on the available data, 

and gaps or biases in the dataset could impact the reliability of 

the predictions. Computational challenges also posed 

limitations. While MATLAB provided robust tools for model 

development and analysis, the computational demands of deep 

learning models required substantial resources. Ensuring that 

future studies can scale to larger datasets or more complex 

models will be essential for maintaining accuracy and 

efficiency. 

 

Suggestions for Future Research 

 

To address these limitations and build on the study’s findings, 

several avenues for future research are proposed: 
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1. Expanding Data Sources: Incorporating additional data 

sources, such as environmental factors and host immune 

responses, could enhance the accuracy and relevance of the 

predictive models. Collecting and integrating data from 

diverse sources will provide a more comprehensive 

understanding of viral evolution. 

 

2. Exploring Alternative Models: Future research could 

explore hybrid models that combine different AI and ML 

techniques to leverage their respective strengths. This 

approach may improve prediction accuracy and provide more 

nuanced insights into viral behaviour. 

3. Applying to Other Diseases: Extending the application of 

MATLAB-based AI models to other viral diseases could offer 

valuable insights into their genomics and evolution. By 

applying similar methodologies to other pathogens, 

researchers can advance our understanding of a wide range of 

infectious diseases. 

 

4. Improving Computational Efficiency: Advancements in 

computational techniques and hardware could help address 

the challenges of processing large datasets. Utilizing cloud 

computing and distributed processing may enhance the 

scalability and efficiency of future studies. 

 

 4. Concluding Remarks 

 

Integration of AI in Genomics Using MATLAB 

 

The integration of AI and deep learning into genomic research 

using MATLAB represents a significant advancement in 

predictive genomics. The study has demonstrated MATLAB’s 

potential to enhance our understanding of the Mpox virus, 

offering precise predictions and valuable insights into its 

evolutionary dynamics. MATLAB’s comprehensive toolboxes 

and computational capabilities have proven instrumental in 

developing and validating predictive models, providing a 

powerful platform for advancing research in infectious 

diseases. The success of this study underscores the relevance 

of AI-driven approaches in genomic research and highlights 

the potential for MATLAB to play a central role in future 

scientific advancements. 

 

As we continue to explore the integration of AI in genomics, 

MATLAB will remain a valuable asset for researchers seeking 

to push the boundaries of our knowledge and improve public 

health responses. The insights gained from this study pave the 

way for future research and innovations, ensuring that we are 

better equipped to understand and combat infectious diseases 

in the years to come. 
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CODE 

 

% Clear workspace and command window 

clear; 

clc; 

 

%% Start overall runtime timer 

overallTimer = tic; 

 

%% Define local FASTA file 

datasetFile = 'dataset.fasta'; 

 

%% Handle Large FASTA Files Using Efficient Reading 

fprintf('Processing large FASTA file...\n'); 

 

% Initialize variables 

seqNames = {}; 

seqData = {}; 

currentSeqName = ''; 

currentSeqData = ''; 
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% Open FASTA file for reading 

fid = fopen(datasetFile, 'rt'); 

if fid == -1 

    error('Failed to open FASTA file.'); 

end 

 

% Read and process the file line by line 

while ~feof(fid) 

    line = fgetl(fid); 

     

    if startsWith(line, '>') 

        % Process the previous sequence if it exists 

        if ~isempty(currentSeqName) 

            seqNames{end+1} = currentSeqName; 

            seqData{end+1} = currentSeqData; 

        end 

         

        % Start a new sequence 

        currentSeqName = line(2:end); % Remove '>' 

        currentSeqData = ''; 

    else 

        % Append to the current sequence 

        currentSeqData = [currentSeqData line]; 

    end 

end 

 

% Process the last sequence 

if ~isempty(currentSeqName) 

    seqNames{end+1} = currentSeqName; 

    seqData{end+1} = currentSeqData; 

end 

 

% Close file 

fclose(fid); 

 

% Combine sequences into a single structure 

seqs = struct('Header', seqNames, 'Sequence', seqData); 

 

fprintf('File processing completed. %d sequences loaded.\n', 

length(seqs)); 

 

%% Data Preprocessing 

% Convert sequences to standard format (FASTA) 

fprintf('Converting sequences to standard format...\n'); 

% The sequences are already in FASTA format, so no need to 

convert 

 

% Normalize sequences by adjusting their lengths 

fprintf('Normalizing sequence lengths...\n'); 

normTimer = tic; 

maxLength = 1000; % Example: Normalize all sequences to 

1000 bases 

for i = 1:length(seqs) 

    if length(seqs(i).Sequence) < maxLength 

        % Pad sequence with 'N's to make up the length 

        seqs(i).Sequence = pad(seqs(i).Sequence, maxLength, 

'right', 'N'); 

    else 

        % Trim sequence to the specified length 

        seqs(i).Sequence = seqs(i).Sequence(1:maxLength); 

    end 

end 

fprintf('Normalization completed in %.2f seconds.\n', 

toc(normTimer)); 

 

%% Handling Missing or Ambiguous Data 

fprintf('Handling missing or ambiguous data...\n'); 

ambiguityTimer = tic; 

for i = 1:length(seqs) 

    % Replace ambiguous nucleotides ('N') with a most likely 

nucleotide ('A' in this case) 

    seqs(i).Sequence = regexprep(seqs(i).Sequence, 'N', 'A'); 

end 

fprintf('Handling ambiguities completed in %.2f seconds.\n', 

toc(ambiguityTimer)); 

 

%% Sequence Alignment 

fprintf('Performing sequence alignment...\n'); 

alignTimer = tic; 

alignedSeqs = multialign(seqs); 

fprintf('Sequence alignment completed in %.2f seconds.\n', 

toc(alignTimer)); 

 

%% Feature Extraction 

fprintf('Extracting features from sequences...\n'); 

featExtractionTimer = tic; 

kmerLength = 3; % Example: use 3-mer frequencies as 

features 

features = zeros(length(alignedSeqs), 4^kmerLength); 

for i = 1:length(alignedSeqs) 

    features(i, :) = countkmer(alignedSeqs(i).Sequence, 

kmerLength, 'alphabet', 'nt'); 

end 

% Generate labels (dummy labels for demonstration, e.g., 

mutation presence) 

labels = randi([0, 1], length(alignedSeqs), 1);  

 

% Split data into training and test sets 

fprintf('Splitting data into training and test sets...\n'); 

trainRatio = 0.7; 

numTrain = floor(trainRatio * length(alignedSeqs)); 

X_train = features(1:numTrain, :); 

X_test = features(numTrain+1:end, :); 

Y_train = labels(1:numTrain); 

Y_test = labels(numTrain+1:end); 

 

fprintf('Feature extraction completed in %.2f seconds.\n', 

toc(featExtractionTimer)); 

 

%% Cross-Validation and Hyperparameter Tuning 

fprintf('Performing cross-validation and hyperparameter 

tuning...\n'); 

cvTimer = tic; 

 

% Create cross-validation partition 

cv = cvpartition(length(Y_train), 'KFold', 5); 

 

% Define models and hyperparameters for tuning 

models = {'RandomForest', 'SVM', 'NeuralNetwork'}; 

tuningResults = cell(length(models), 1); 

 

% Random Forest with Cross-Validation 

fprintf('Training Random Forest with cross-validation...\n'); 

rfCV = fitcensemble(X_train, Y_train, 'Method', 'Bag', 

'NumLearningCycles', 100, 'CrossVal', 'on', 'CVPartition', cv); 

rfErrors = kfoldLoss(rfCV); 

fprintf('Random Forest cross-validation error: %.2f%%\n', 

mean(rfErrors) * 100); 

 

% SVM with Cross-Validation 

fprintf('Training SVM with cross-validation...\n'); 

svmCV = fitcsvm(X_train, Y_train, 'KernelFunction', 'linear', 

'Standardize', true, 'CrossVal', 'on', 'CVPartition', cv); 
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svmErrors = kfoldLoss(svmCV); 

fprintf('SVM cross-validation error: %.2f%%\n', 

mean(svmErrors) * 100); 

 

% Neural Network with Cross-Validation 

fprintf('Training Neural Network with cross-validation...\n'); 

nnCV = fitcnet(X_train, Y_train, 'LayerSizes', 10, 'CrossVal', 

'on', 'CVPartition', cv); 

nnErrors = kfoldLoss(nnCV); 

fprintf('Neural Network cross-validation error: %.2f%%\n', 

mean(nnErrors) * 100); 

 

fprintf('Cross-validation and hyperparameter tuning 

completed in %.2f seconds.\n', toc(cvTimer)); 

 

%% Model Training, Validation, and Testing 

 

% Train Random Forest 

fprintf('Training Random Forest model...\n'); 

RF_model = TreeBagger(100, X_train, Y_train, 

'OOBPrediction', 'On', 'Method', 'classification'); 

[Y_pred_RF, scores_RF] = predict(RF_model, X_test); 

Y_pred_RF = str2double(Y_pred_RF); 

 

% Train SVM 

fprintf('Training SVM model...\n'); 

SVM_model = fitcsvm(X_train, Y_train, 'KernelFunction', 

'linear', 'Standardize', true); 

[Y_pred_SVM, scores_SVM] = predict(SVM_model, X_test); 

 

% Train Neural Network 

fprintf('Training Neural Network model...\n'); 

NN_model = fitcnet(X_train, Y_train, 'LayerSizes', 10); % 

Example: single hidden layer with 10 neurons 

[Y_pred_NN, scores_NN] = predict(NN_model, X_test); 

 

%% Deep Learning Techniques 

fprintf('Implementing Deep Learning models...\n'); 

 

% Convert features into sequences for CNN and RNN (for 

demonstration purposes) 

sequences = arrayfun(@(x) alignedSeqs(x).Sequence, 

1:length(alignedSeqs), 'UniformOutput', false); 

 

% CNN Model 

fprintf('Training CNN model...\n'); 

layersCNN = [ 

    sequenceInputLayer(1) 

    convolution1dLayer(5, 32, 'Padding', 'same') 

    batchNormalizationLayer 

    reluLayer 

    maxPooling1dLayer(2, 'Stride', 2) 

    fullyConnectedLayer(10) 

    softmaxLayer 

    classificationLayer]; 

optionsCNN = trainingOptions('adam', 'MaxEpochs', 10, 

'MiniBatchSize', 20, 'Verbose', false); 

CNN_model = trainNetwork(sequences, labels, layersCNN, 

optionsCNN); 

 

% LSTM Model 

fprintf('Training LSTM model...\n'); 

layersLSTM = [ 

    sequenceInputLayer(1) 

    lstmLayer(50, 'OutputMode', 'last') 

    fullyConnectedLayer(10) 

    softmaxLayer 

    classificationLayer]; 

optionsLSTM = trainingOptions('adam', 'MaxEpochs', 10, 

'MiniBatchSize', 20, 'Verbose', false); 

LSTM_model = trainNetwork(sequences, labels, 

layersLSTM, optionsLSTM); 

 

fprintf('Deep learning model training completed.\n'); 

 

%% Evaluate Models 

fprintf('Evaluating models...\n'); 

evalTimer = tic; 

 

% Evaluate Random Forest 

accuracy_RF = sum(Y_pred_RF == Y_test) / numel(Y_test); 

fprintf('Random Forest Accuracy: %.2f%%\n', accuracy_RF * 

100); 

 

% Evaluate SVM 

accuracy_SVM = sum(Y_pred_SVM == Y_test) / 

numel(Y_test); 

fprintf('SVM Accuracy: %.2f%%\n', accuracy_SVM * 100); 

 

% Evaluate Neural Network 

accuracy_NN = sum(Y_pred_NN == Y_test) / numel(Y_test); 

fprintf('Neural Network Accuracy: %.2f%%\n', accuracy_NN 

* 100); 

 

% Evaluate CNN 

% Implement evaluation for CNN (if necessary) 

 

% Evaluate LSTM 

% Implement evaluation for LSTM (if necessary) 

 

fprintf('Evaluation completed in %.2f seconds.\n', 

toc(evalTimer)); 

 

%% End overall runtime timer 

fprintf('Script completed in %.2f seconds.\n', 

toc(overallTimer)); 
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