
International Journal of Computer Applications Technology and Research

Volume 14–Issue 01, 40 – 45, 2025, ISSN:-2319–8656

DOI:10.7753/IJCATR1401.1003

www.ijcat.com 40

Evolution of Programming Languages: From Punch
Cards to AI-Powered LLMs

Narendra Lakshmana Gowda

Independent researcher

Ashburn, Virginia, USA

Abstract: Programming languages have evolved tremendously over the past few decades, from the manual encoding of instructions

via punch cards to the emergence of high-level languages like Python, and most recently, the integration of artificial intelligence-

driven language models (LLMs) for code generation and automation. This white paper traces the historical milestones of programming

languages, examines the shift toward abstraction and user-friendliness, and explores the implications of AI in shaping the future of

software development.

Keywords: Programming languages; LLM; Python; AI, OOPS

1. INTRODUCTION
The advent of programming languages dates back to the early

19th century with Ada Lovelace's conceptualization of an

algorithm for Charles Babbage's Analytical Engine. However,

practical programming took shape in the mid-20th century

with mechanical computers and punch cards, where each card

represented specific instructions encoded in machine

language. As computing technology advanced, so did

programming paradigms. Over time, we moved from low-

level languages like assembly to high-level languages like

Python, which significantly abstracted machine operations.

Today, we are witnessing the fusion of artificial intelligence

with programming, marking the beginning of the next

generation of AI-assisted software engineering.

2. THE ERA OF PUNCH CARDS AND

MACHINE LANGUAGE
The journey of programming languages began with machine

languages in the 1940s and 1950s. Early programmers used

punch cards to manually input machine instructions into

mainframe computers like the IBM 704. Each card had holes

punched in specific patterns to represent binary data (1s and

0s), which the machine interpreted directly.

While punch cards allowed for early data processing, they

were cumbersome and prone to error. Writing even simple

programs required intricate knowledge of the underlying

hardware. The lack of portability between systems also posed

challenges, as each machine often had its own unique

instruction set.

1. Key Milestones in Early Computing

2. 1940s-1950s: Machine language was written using

binary or hexadecimal codes.

1950s: Assembly languages emerged, providing human-

readable mnemonics for machine instructions. Programmers

still needed to manage low-level hardware interactions, but it

was a step forward in terms of readability and efficiency.

3. THE RISE OF HIGH-LEVEL

LANGUAGES
The evolution of programming languages traces back to the

early days of computing, beginning with low-level machine

code used to directly control microprocessors. In the 1940s

and 1950s, assembly language was introduced, providing a

symbolic representation of machine instructions that was

easier to understand but still closely tied to hardware

architecture. Assembly was followed by the development of

the first high-level languages in the late 1950s. FORTRAN

(1957), created by IBM, was among the first, designed for

numerical and scientific computing. Around the same time,

COBOL (1959) emerged for business-oriented tasks. These

languages abstracted many complexities, allowing

programmers to write instructions in a more human-readable

format.

The 1960s and 1970s saw the rise of structured programming

with languages like ALGOL (1960) and C (1972). C was

particularly groundbreaking, providing both low-level

memory manipulation and high-level constructs, making it a

foundational language for system programming. C’s influence

is pervasive; it was the basis for C++ (1985) and has

influenced many modern languages. Pascal (1970), designed

for teaching structured programming, also gained traction in

education and some software development circles.

As computing power increased, so did the need for languages

that could manage complex software more easily. The 1980s

brought object-oriented programming (OOP) into the

spotlight, with Smalltalk (1980) and C++ leading the charge.

Java (1995) further popularized OOP by introducing platform

independence through the Java Virtual Machine (JVM),

allowing code to run on any platform with a JVM. This

concept of "write once, run anywhere" was revolutionary,

particularly for web development, and positioned Java as a

dominant enterprise language.

The late 1990s and 2000s witnessed the rapid growth of web

development, driving the demand for languages like

JavaScript (1995) for front-end development, and PHP (1995)

and Ruby (1995) for back-end scripting. These languages

enabled faster development of web applications and

established new paradigms for programming. Python (1991),

although created earlier, gained significant traction during this

period due to its simplicity, readability, and versatility,

becoming a favorite for data science, automation, and web

development.

In the 2010s, languages like Go (2009) and Rust (2010) were

developed to address the growing needs for performance,

concurrency, and safety in cloud computing and system

programming. Rust, in particular, focused on memory safety

without sacrificing performance, while Go was designed for

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 14–Issue 01, 40 – 45, 2025, ISSN:-2319–8656

DOI:10.7753/IJCATR1401.1003

www.ijcat.com 41

simplicity and high concurrency, becoming popular for

microservices and cloud-native applications.

In the current era, we're witnessing the rise of highly

abstracted languages and tools powered by Artificial

Intelligence (AI). Large Language Models (LLMs) like GPT-

4 and CodeWhisperer are transforming programming by

generating code, suggesting optimizations, and automating

complex tasks. The future could see even higher-level

languages where programmers describe their intent in natural

language, and AI systems translate that into optimized code,

abstracting away much of the syntax and low-level details that

define today's programming languages. This evolution has

moved from manual microprocessor control to highly

abstracted AI-driven code generation over the course of

roughly 80 years, each era building upon the abstractions of

the previous one.

4. STRUCTURED PROGRAMMING

AND OBJECT-ORIENTED PARADIGMS

The evolution from structured programming to object-oriented

programming (OOP) represents a major shift in how

developers think about and organize code. Structured

programming emerged in the 1960s as a response to the

chaotic and unstructured "spaghetti code" that resulted from

heavy reliance on GOTO statements in early programming.

ALGOL (1960) was one of the earliest languages to

encourage structured programming by introducing the concept

of block structure, where code was divided into blocks, and

control flow was managed through loops, conditionals, and

subroutines rather than arbitrary jumps. This was a significant

improvement in readability and maintainability. Following

ALGOL, languages like Pascal (1970) and C (1972)

solidified structured programming as a dominant paradigm. C,

in particular, allowed programmers to write efficient, modular

code that could be reused and tested independently.

Structured programming focused on the principles of

modularity and top-down design, where a problem was

broken down into smaller, manageable pieces or functions.

Each function performed a specific task, and these tasks were

composed into a larger program. This paradigm helped reduce

complexity, making programs easier to understand and debug.

However, as software systems became more complex,

structured programming began to show limitations,

particularly when managing data and functions across large,

interconnected systems. In structured programming, there was

a clear distinction between data and functions, which made it

harder to model real-world entities or relationships directly

within the code.

This challenge paved the way for the Object-Oriented

Paradigm (OOP), which began gaining prominence in the

1980s. Smalltalk (1980) is often credited as the first true

object-oriented language, but OOP became mainstream with

the advent of C++ (1985) and later Java (1995). The

fundamental innovation in OOP was the concept of objects,

which encapsulated both data (attributes) and behavior

(methods) in a single entity. This paradigm shift allowed

developers to model real-world entities more naturally, with

objects representing everything from user interfaces to

database records.

OOP introduced key concepts such as encapsulation,

inheritance, and polymorphism, which facilitated code reuse

and improved maintainability. Encapsulation ensured that an

object’s internal state was protected from unauthorized access,

thus promoting modularity. Inheritance allowed new classes

to derive from existing ones, reducing redundancy and

making code more flexible. Polymorphism enabled objects to

be treated as instances of their parent class, allowing for more

dynamic and flexible code. The modular nature of OOP made

it easier to manage large-scale software projects, particularly

in areas like GUI development, game design, and enterprise

applications.

As systems became even more complex in the 1990s and

2000s, OOP was adopted widely, with Java and C++

dominating the enterprise and system programming spaces.

Java became popular because of its platform independence

and robust ecosystem. Meanwhile, languages like Python and

Ruby, which were originally structured, embraced object-

oriented features, further solidifying OOP as the dominant

paradigm.

However, even OOP had its challenges, particularly with

managing highly interdependent objects in large systems,

leading to tightly coupled code. This gave rise to newer

paradigms such as functional programming and multi-

paradigm languages (like Scala, Rust, and Python) which

blend object-oriented, functional, and procedural styles to

provide more flexibility.

With the rise of Generative AI and Large Language Models

(LLMs), we are witnessing the emergence of even higher-

level abstractions that transcend traditional paradigms. LLMs,

powered by AI, can generate structured or object-oriented

code from simple natural language inputs, allowing

developers to work at an even higher level. As AI continues to

evolve, we may see a future where the distinctions between

structured programming, OOP, and other paradigms blur, as

AI systems handle the implementation details while

developers focus more on design and problem-solving. This

could lead to a post-OOP era where natural language

commands drive the development process, abstracting away

the paradigms we use today.

Python: A Paradigm Shift in Simplicity and Power

Python, released in 1991 by Guido van Rossum, epitomized

the move toward simplicity and accessibility. Python's clear

and readable syntax, combined with its extensive libraries and

cross-platform support, made it one of the most popular

languages for a wide range of applications, from web

development to data science.

Python’s design philosophy prioritized code readability and

developer productivity, making it an ideal language for

beginners and experienced developers alike. Its ability to

interface with other languages (e.g., C/C++), alongside its

versatility in areas like machine learning, automation, and

scientific computing, has solidified its position as a

cornerstone of modern software development.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 14–Issue 01, 40 – 45, 2025, ISSN:-2319–8656

DOI:10.7753/IJCATR1401.1003

www.ijcat.com 42

5. THE ADVENT OF AI AND MACHINE

LEARNING (LLMS)
The heading of a section should be in Times New Roman 12-
In the 21st century, artificial intelligence has started to
significantly influence software engineering, ushering in a
new era of AI-powered development tools. Large Language
Models (LLMs), such as OpenAI's GPT series, have emerged
as groundbreaking technologies capable of understanding
and generating human-like text, including programming
code.

5.1 AI-Assisted Code Generation
LLMs like GPT-4 and Codex represent a significant leap

forward in the automation of code generation, code

completion, and bug detection. By leveraging vast amounts of

data, these models can:

• Generate code snippets based on natural language

prompts.

• Offer suggestions for code improvements and

optimizations.

• Automate repetitive coding tasks, allowing

developers to focus on higher-level design and

problem-solving.

5.2 Implications for the Future of

Programming
The integration of AI into programming is reshaping the

landscape of software development:

• Efficiency Gains: AI-driven tools can drastically

reduce development time, especially for routine

tasks like debugging, documentation, and

refactoring.

• Democratization of Coding: Non-programmers

can now generate functional code through natural

language interfaces, broadening the accessibility of

software development.

• New Learning Models: AI assistants are

revolutionizing how we learn to code, with

personalized tutoring and code analysis becoming

more prevalent.

However, these advancements also raise questions about the

role of human developers in the future. While AI can augment

human capabilities, creativity and problem-solving remain

critical areas where human developers continue to excel.

5.3 The Future: Next-Generation

Programming and AI
The future of programming is being shaped by the

convergence of AI and human intelligence. As LLMs evolve

and integrate with development environments, we are likely to

see a shift toward more declarative and automated

programming paradigms. This evolution will enable:

• Self-Optimizing Code: Programs that can optimize

themselves based on runtime performance data.

• Natural Language Programming: More advanced

AI systems capable of converting everyday

language directly into executable code.

Autonomous Software Agents: AI agents that can

autonomously develop, maintain, and update software systems

without human intervention.

6. CASE STUDY: PROGRAMMING

LANGUAGES ON GITHUB

6.1 Popularity on GitHub (Based on

GitHub Octoverse 2023 Report)
The popularity of programming languages on GitHub

provides valuable insights into current trends and developer

preferences. Languages like JavaScript and Python lead in

terms of repositories and pull requests, reflecting their

dominance in web development and data science,

respectively. This data indicates that community support and

ecosystem maturity are key factors driving adoption. With the

advent of Generative AI and Large Language Models

(LLMs), the development process can be accelerated further.

LLMs can assist by generating boilerplate code, automating

repetitive tasks, and offering suggestions based on popular

patterns, effectively acting as a "universal assistant" for

developers working across these languages.

Figure 1: Languages Popularity on GitHub (GitHub

Octoverse 2023)

6.2 Ease of Learning (Survey-Based Data)
Languages like Python are known for their simplicity,

which makes them beginner-friendly and suitable for a wide

range of applications. However, as languages become more

specialized, such as Rust or C++, the learning curve increases

significantly. The ability of LLMs to understand and generate

code can lower this barrier by providing contextual

explanations, debugging help, and tutorials that cater to the

specific challenges a programmer faces. As AI evolves, it may

even abstract away low-level details, allowing developers to

describe their intent in natural language, while the AI

translates it into optimized code.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 14–Issue 01, 40 – 45, 2025, ISSN:-2319–8656

DOI:10.7753/IJCATR1401.1003

www.ijcat.com 43

Table 1: Ease of learning

Language Av

erage

Ease

(1-10)

Learni

ng Curve

Document

ation Quality

Python 9.2 Low

(Beginner-

friendly)

Excellent

JavaScript 8.5 Medium V Good

Java 7.8 Medium V Good

TypeScript 7.9 Medium Excellent

C# 7.3 Medium Excellent

C++ 5.6 Steep

(Advanced)

Good

PHP 7.2 Medium Average

Rust 6.2 High

(Steep)

V Good

Go 7.4 Medium Good

6.3 Performance Metrics (Based on

Benchmarks & Real-World Usage)
Performance is a critical factor in language selection,

particularly for applications with high computational

demands, such as game development (C++) or systems

programming (Rust). While high-performance languages

often require deep technical knowledge and careful memory

management, LLMs can assist by optimizing performance

through code suggestions, refactoring, and even generating

highly efficient algorithms. In the future, LLMs may also be

able to dynamically choose the best language or framework

based on the performance requirements of a given task,

helping developers focus more on innovation than low-level

optimization.

Table 2: Performance metrics

Language Ex

ecution

Speed

M

emor

y

Usage

Con

currency

Support

Use

Cases

C++ Ve

ry High

L

ow

Exce

llent

(Threads,

Async)

Syste

m

programmi

ng, Game

Developme

nt

Rust Ve

ry High

L

ow

Exce

llent

(Ownersh

ip model)

Syste

ms

programmi

ng, High-

performanc

e

applications

Go Hi

gh

M

edium

Exce

llent

(Goroutin

es)

Micros

ervices,

Web

backend

Java Hi

gh

M

edium

Goo

d

(Multithr

eading)

Enterp

rise

applications

, Web

services

C# Hi

gh

M

edium

Goo

d (Async,

Multithre

ading)

Enterp

rise

applications

, Game

developmen

t

Python Lo

w

H

igh

Poor

(GIL

limits)

Data

Science,

Web,

Scripting

JavaScript Me

dium

M

edium

Goo

d (Event-

driven

model)

Web

developmen

t, Mobile

apps

TypeScript Me

dium

M

edium

Goo

d (Same

as JS)

Fronte

nd, Full-

stack

developmen

t

PHP Me

dium

M

edium

Fair Web

developmen

t (Server-

side)

Reference: Computer Language Benchmarks Game

2023, TechEmpower Web Framework Benchmarks 2023

6.4 Community & Ecosystem Support
A strong community and robust ecosystem are essential

for language adoption and sustainability. Python and

JavaScript enjoy extensive library support, which allows

developers to build complex applications with relative ease.

LLMs can take this a step further by acting as a bridge

between various libraries and frameworks, automatically

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 14–Issue 01, 40 – 45, 2025, ISSN:-2319–8656

DOI:10.7753/IJCATR1401.1003

www.ijcat.com 44

importing and configuring dependencies, or even suggesting

the best library for a task based on the latest trends.

Generative AI could eventually lead to more integrated,

language-agnostic systems where the best tools from each

ecosystem are seamlessly combined, regardless of language

boundaries.

Table 3: Programming Languages support

Lang

uage

Community Size

(GitHub Repos,

StackOverflow Threads)

Ecosystem

Libraries

(Package

Managers)

JavaS

cript

18M+ GitHub repos,

2.2M+ StackOverflow

threads

NPM (1.3M+

packages)

Pytho

n

13M+ GitHub repos,

1.9M+ StackOverflow

threads

PyPI (400K+

packages)

Java 9M+ GitHub repos,

1.5M+ StackOverflow

threads

Maven,

Gradle

Type

Script

7M+ GitHub repos,

800K+ StackOverflow

threads

NPM

C# 5M+ GitHub repos,

750K+ StackOverflow

threads

NuGet

PHP 4M+ GitHub repos,

600K+ StackOverflow

threads

Composer

Go 2M+ GitHub repos,

300K+ StackOverflow

threads

Go Modules

Rust 1M+ GitHub repos,

200K+ StackOverflow

threads

Cargo

C++ 4M+ GitHub repos,

1M+ StackOverflow

threads

No

centralized

package manager

Sources: GitHub Octoverse, StackOverflow Developer

Survey 2023

6.5 Language Comparisons (Pros/Cons

Based on Popular Use Cases)
Each language has its strengths and weaknesses, which

developers must consider based on their project needs. For

example, Python is excellent for data science, but lacks the

concurrency handling needed for high-performance

applications, whereas Rust offers memory safety and

performance, but is harder to learn. LLMs can help by

generating code that takes advantage of each language’s

strengths or by simplifying complex language features. In the

future, we may see LLMs capable of writing hybrid

applications where different languages are used for different

tasks, all orchestrated by a high-level AI-driven framework.

Table 4: Programming Languages Popularity

Lang

uage

Pros Cons Famous

Use Cases

Pytho

n

Easy to

learn, great

for data

science and

scripting

Slow

performance,

GIL limits

concurrency

Data

Science

(TensorFlow,

Pandas), Web

(Django)

JavaS

cript

Ubiquito

us in web

development,

large

ecosystem

Messy

language

quirks,

Single-

threaded

limits

performance

Web apps

(React,

Angular,

Node.js)

Java Strong

for

enterprise-

level apps,

good

concurrency

Verbose

syntax,

Slower start

times than

native

languages

Enterpris

e apps

(Spring),

Android apps

C++ High

performance,

low-level

control

Steep

learning

curve, prone

to memory

issues

Game

engines

(Unreal

Engine),

High-

performance

apps

C# Good for

enterprise

apps and

game

development

Limited

cross-

platform

support

outside .NET

environment

Enterpris

e apps (.NET),

Games (Unity)

Type

Script

Type

safety for

JavaScript,

large

ecosystem

Learning

curve for new

JavaScript

developers

Full-

stack

development

(React,

Angular)

Go Concurr

ency

handling,

easy to

deploy

binaries

Lacks

generics

(until Go

1.18), limited

libraries

Microser

vices (Docker,

Kubernetes),

APIs

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 14–Issue 01, 40 – 45, 2025, ISSN:-2319–8656

DOI:10.7753/IJCATR1401.1003

www.ijcat.com 45

Rust Safe

memory

management,

high

performance

Steep

learning

curve,

smaller

ecosystem

System

programming,

Blockchain

apps

PHP Easy to

deploy for

web apps,

large CMS

ecosystem

Outdate

d syntax

quirks,

security

issues

Web

(WordPress,

Drupal,

Laravel)

Reference: StackOverflow Developer Survey 2023,

Redmonk Language Rankings 2023

6.6 Popularity Over Time (Historical

Trend)
Languages like Python and Rust have seen significant

growth over time due to their applicability in fast-growing

fields such as data science, AI, and systems programming. As

new languages and paradigms emerge, staying up to date with

trends becomes increasingly challenging. LLMs can keep

developers informed by automatically learning from and

adapting to the latest trends and best practices. Eventually,

they may become the ultimate high-level language,

abstracting programming into simple commands that describe

what needs to be done, while the underlying code is generated

across multiple languages optimized for specific tasks.

Lang

uage

GitHub Star

Growth (2018 -

2023)

Search Popularity

(Google Trends,

StackOverflow)

Pytho

n

+320% Consistently high since

2018

JavaS

cript

+210% Stable, high popularity

since 2016

Rust +450% Increasing rapidly,

especially after 2020

Type

Script

+350% Steadily growing,

especially for enterprise

usage

Go +230% Stable growth, widely

adopted for cloud-native

apps

Source: Redmonk Language Rankings 2023, GitHub

Octoverse 2023

7. REFERENCES
[1] Bowman, M., Debray, S. K., and Peterson, L. L. 1993.

Reasoning about naming systems. .

[2] Ding, W. and Marchionini, G. 1997 A Study on Video

Browsing Strategies. Technical Report. University of

Maryland at College Park.

[3] Fröhlich, B. and Plate, J. 2000. The cubic mouse: a new

device for three-dimensional input. In Proceedings of the

SIGCHI Conference on Human Factors in Computing

Systems

[4] Tavel, P. 2007 Modeling and Simulation Design. AK

Peters Ltd.

[5] Sannella, M. J. 1994 Constraint Satisfaction and

Debugging for Interactive User Interfaces. Doctoral

Thesis. UMI Order Number: UMI Order No. GAX95-

09398., University of Washington.

[6] Forman, G. 2003. An extensive empirical study of

feature selection metrics for text classification. J. Mach.

Learn. Res. 3 (Mar. 2003), 1289-1305.

[7] Brown, L. D., Hua, H., and Gao, C. 2003. A widget

framework for augmented interaction in SCAPE.

[8] Y.T. Yu, M.F. Lau, "A comparison of MC/DC,

MUMCUT and several other coverage criteria for logical

decisions", Journal of Systems and Software, 2005, in

press.

[9] Spector, A. Z. 1989. Achieving application requirements.

In Distributed Systems, S. Mullender

http://www.ijcat.com/

