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Abstract: Blockchain technology has become a fundamental enabler for secure and decentralized data management in fog computing 

and the Internet of Things (IoT). However, conventional consensus mechanisms such as Proof-of-Work (PoW) and Proof-of-Stake 

(PoS) suffer from limitations including high energy consumption, centralization risks, and limited scalability, making them inefficient 

for dynamic, resource-constrained fog environments. 

To address these challenges, this research proposes a Quality of Service (QoS)-aware privacy preservation framework that integrates 

blockchain, Attribute-Based Encryption (ABE), and machine learning. A Grey Wolf Optimization (GWO)-enhanced hybrid consensus 

model is introduced, combining PoW-based computational security with PoS-driven energy efficiency, dynamically balancing 

workload and trust-based miner selection. The proposed GWO-powered trust evaluation optimizes node selection based on trust score, 

mining efficiency, and energy consumption, ensuring enhanced security against Sybil attacks and other adversarial threats. 

Furthermore, a Modified Attribute-Based Encryption (ABE) scheme is incorporated to provide fine-grained access control and 

computational efficiency for privacy-preserving data sharing in fog computing. The modified ABE integrates lightweight 

cryptographic operations, reducing computational overhead while ensuring secure, policy-based access control. 

Experimental evaluations demonstrate that the proposed framework reduces communication delay by 16.5%, improves energy 

efficiency by 10.4%, and increases throughput by 23.5% compared to existing state-of-the-art models such as DRLBTS, 

QoS_ML_DSS, and SLGAF. These results highlight the effectiveness of the model in providing a scalable, secure, and energy-

efficient blockchain solution for privacy-sensitive fog computing applications in healthcare, smart cities, and industrial IoT. 
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1. INTRODUCTION 
In recent years, the proliferation of Internet of Medical Things 

(IoMT) devices has revolutionized healthcare by enabling 

real-time patient monitoring and personalized medical 

services. However, this advancement brings forth significant 

challenges concerning data privacy, security, and efficient 

management of the vast amounts of sensitive medical data 

generated [1]. Fog computing has emerged as a viable 

solution, extending cloud services to the network's edge to 

reduce latency and bandwidth usage, thereby enhancing the 

performance of IoMT systems. By processing data closer to 

its source, fog computing addresses the limitations of 

centralized cloud infrastructures, offering improved Quality of 

Service (QoS) for time-sensitive medical applications [2]. 

Blockchain technology further augments the security and 

privacy of IoMT by providing a decentralized framework for 

data management. Its inherent features, such as immutability 

and transparency, ensure that medical data remains tamper-

proof and accessible only to authorized entities. However, 

traditional blockchain consensus mechanisms like Proof-of-

Work (PoW) and Proof-of-Stake (PoS) present challenges in 

the context of IoMT and fog computing environments [3]. 

PoW is notorious for its high energy consumption, making it 

unsuitable for resource-constrained IoMT devices. On the 

other hand, PoS, while more energy-efficient, may lead to 

centralization risks, as nodes with significant stakes dominate 

the network [4]. To address these challenges, this research 

proposes a novel approach that integrates a Grey Wolf 

Optimization (GWO)-enhanced hybrid consensus model 

within a blockchain framework tailored for fog computing 

environments. The GWO algorithm dynamically balances the 

computational demands of PoW and the stake-based 

validation of PoS, optimizing energy efficiency and 

scalability. By employing a trust-based miner selection 

mechanism, the model ensures that nodes are chosen based on 

their reliability and performance metrics, thereby enhancing 

the overall security and efficiency of the network. In addition 

to the hybrid consensus model, this study introduces a 

Modified Attribute-Based Encryption (ABE) scheme to 

bolster data privacy and access control. The Modified ABE is 

designed to be computationally lightweight, facilitating fine-

grained access control without imposing significant overhead 

on IoMT devices. This ensures that sensitive medical data is 

encrypted and accessible only to authorized personnel, 

maintaining patient confidentiality and compliance with 

healthcare regulations. 

Experimental evaluations demonstrate that the proposed 

model significantly reduces communication delays and energy 

consumption while enhancing throughput compared to 

existing methods. These improvements underscore the 

model's potential to provide a scalable, secure, and efficient 

solution for IoMT applications within fog computing 

infrastructures. By leveraging the synergistic strengths of 

blockchain technology, advanced encryption schemes, and 

machine learning optimization algorithms, this research offers 

a comprehensive framework to address the pressing 

challenges of privacy preservation and QoS in modern 

healthcare systems. 
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2. LITERATURE REVIEW 
The widespread adoption of fog computing, which extends 

cloud computing to the network edge, necessitates advanced 

privacy-preserving models due to its decentralized nature and 

the sensitive data it processes. Fog computing is ideal for 

latency-sensitive applications such as IoT, smart cities, and 

autonomous systems, where real-time processing is crucial. 

However, ensuring privacy while maintaining high-quality 

service (QoS) remains a major challenge [1][4]. Traditional 

models often fail to balance privacy protection with 

performance requirements.   

This literature survey explores state-of-the-art privacy-

preserving and QoS-aware models, focusing on blockchain-

based and attribute-based approaches for multi-domain 

systems [8][9]. It examines how these models address privacy 

concerns, including location, data, and meta-information 

privacy, while sustaining QoS in fog environments. The 

integration of machine learning (ML) with blockchain 

technology is analyzed as a means to enhance both privacy 

and security in distributed fog networks.   

The study evaluates the scalability and efficiency of these 

models in large-scale, dynamic fog systems, discussing trade-

offs between privacy preservation and QoS optimization, 

especially in resource-constrained settings. Technologies like 

federated learning and homomorphic encryption are also 

assessed [12][17]. Additionally, the impact of privacy-

preserving techniques on latency-sensitive applications, such 

as IoT networks and smart city infrastructures, is examined 

[23].   

QoS in fog computing is defined by key performance, 

security, and resource efficiency metrics. Challenges in 

implementing privacy-preserving techniques include 

integration complexities, resource allocation, and maintaining 

system performance. Trust models and reputation systems 

play a role in enabling secure collaboration among fog nodes 

while preserving user privacy. Hybrid approaches combining 

blockchain and attribute-based encryption are identified as 

promising solutions for achieving a balance between security 

and performance [18][23]. The study also investigates 

regulatory considerations and the potential of adaptive ML-

powered privacy mechanisms to optimize privacy settings in 

real time.   

Practical case studies from sectors like healthcare, smart 

transportation, and industrial IoT highlight the benefits and 

limitations of existing privacy-preserving techniques in fog 

computing deployments [23]. By examining hybrid privacy 

models and emerging technologies, this research provides 

valuable insights into balancing privacy and performance in 

fog computing, paving the way for more secure, efficient, and 

scalable systems.   

Key QoS Parameters:   

Latency: Delay in data transmission and processing, crucial 

for real-time applications [24].   

Throughput: Volume of data processed per unit time, 

affecting system efficiency [18] [24].   

Energy Efficiency: Optimizing power consumption in 

resource-constrained fog nodes [18] [24] [25].   

Reliability: Ensuring robustness against failures and attacks.   

Privacy & Security: Protecting sensitive user data using 

cryptographic techniques [18].   

Resource Allocation: Dynamic task scheduling for CPU, 

bandwidth, and storage optimization.   

Table 1 summarizes the major contributions by the 

researchers and challenges that still need to address. 

Table 1: Major contributions and challenges 

Researcher Major Contribution Challenges  

Liu et al. 

[29], Jiang 

et al [31]. 

Scalability in 

heterogeneous and 

mobile mining 

Long-term 

sustainability; 

Adapting to dynamic 

environments. 

Energy Efficiency is 

not addressed 

Huang et 

al.[25] 

Proof-of-Work in 

permissioned 

blockchains; Hybrid 

consensus systems 

Defining consensus 

for security and 

participation; 

Designing incentives 

for different 

consensus models 

Asheralieva 

and Niyato, 

[38]  

Learning-based 

resource 

management; 

Offloading strategy 

for blockchain 

Security evaluation; 

Energy Efficiency 

Wang et 

al., [26] Liu 

et al. 

Proof-of-federated-

learning consensus 

mechanism; 

Sustainable 

incentive mechanism 

for blockchain 

storage 

Scalability concerns 

in federated learning; 

Privacy preservation; 

Economic 

implications 

Du et al., 

[39]  

Resource pricing 

and allocation in 

MEC-enabled 

blockchain; 

Compensation for 

power loss by Proof-

of-Stake consortium 

blockchain 

microgrid 

Dynamic resource 

management; 

Effective pricing 

mechanisms; Energy 

Efficiency, 

optimization 

Alofi et al., 

[40] 

Optimizing energy 

consumption with 

evolutionary 

algorithms;  

Balancing 

optimization and 

system efficiency 

Fog computing enables real-time processing but introduces 

security challenges due to its open architecture and resource 

constraints. Researchers [10][15] have assessed existing 

security models to mitigate these risks. 

Security Models 

• MOMKT: Achieves 95% accuracy in detecting 

intrusions with high energy efficiency [41]. 

• Content-Aware Filtering: Improves attack 

mitigation but has scalability limitations [41]. 

• Hybrid Approaches: CP-ABE achieves 98% 

efficiency in unauthorized access prevention [42]. 

Research Gaps 

Key gaps in existing studies include: 

• Limited evaluation of privacy preservation models 

in fog computing [22-25]. 

• Lack of blockchain-based security frameworks [27]. 

• Absence of attribute-based privacy integrated with 

blockchain [27-30]. 

• No machine learning-based QoS optimization 

models for fog privacy [30-32]. 

• Insufficient integration of machine learning for 

enhanced security and QoS [33]. 

Machine learning-powered blockchain solutions can address 

these challenges, ensuring secure and high-QoS fog 

computing. 
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3. METHODOLOGY 

QoS-Aware Privacy Preservation in Fog Computing 

for IoMT 
This research proposes a QoS-aware, attribute-based privacy 

preservation system for fog computing in IoMT (Internet of 

Medical Things). The approach integrates fog computing, 

blockchain, attribute-based encryption (ABE), and machine 

learning (ML) to enhance security, privacy, and system 

efficiency. 

System Design and Architecture 

The framework is structured as follows: 

• IoMT Devices: Collect real-time health data using 

wearables (e.g., ECG monitors, smart watches). 

• Fog Nodes: Handle local data processing, reducing latency. 

• Blockchain Layer: Ensures secure, immutable medical 

records. 

• Machine Learning Layer: Enhances QoS by dynamically 

managing resources. 

Hybrid Blockchain Consensus (PoS & PoW) 

To balance security and efficiency, a hybrid Proof of 

Work (PoW) and Proof of Stake (PoS) model is 

implemented: 

• PoW: Guarantees blockchain integrity through 

computationally intensive validation. 

• PoS: Enhances energy efficiency by selecting 

validators based on their stake. 

Additionally, smart contracts enforce attribute-based 

access control (ABAC) to secure sensitive medical data 

while ensuring transaction integrity and traceability. 

Privacy Preservation with Attribute-Based Encryption 

(ABE) 

A Modified ABE scheme strengthens privacy by 

enforcing fine-grained access control: 

1. Encryption: Data is encrypted based on user 

attributes. 

2. Access Control: Policies define decryption 

eligibility. 

3. Key Management: Secure key generation and 

storage on the blockchain. 

4. Blockchain Integration: Encrypted data and 

keys are stored immutably. 

5. Decryption: Only authorized users can retrieve 

and decrypt data. 
This integration ensures secure, decentralized access 

control in fog-based IoMT applications. 

Machine Learning Optimization with Grey Wolf 

Optimizer (GWO) 

Machine learning is applied to optimize latency, 

throughput, and resource allocation using nature-

inspired optimization algorithms: 

• Grey Wolf Optimizer (GWO): Mimics the 

hunting behavior of grey wolves to enhance 

QoS in communication networks. 

This research presents a comprehensive, scalable, and 

secure framework for privacy-preserving, high-QoS fog 

computing in healthcare, smart cities, and industrial 

IoT. 

 

Fig1: Proposed Model 

DataSet 
In this research, a synthetic dataset is generated using NumPy 

and Pandas to simulate patient data for evaluating the 

proposed QoS-aware privacy preservation framework in 

IoMT systems. Initially, the HeartPy dataset with heart rate 

data was considered, but due to its lack of patient-specific 

information, a custom dataset was created, incorporating 

patient heart rate, personal details, and treating doctor 

information. This synthetic dataset provides a controlled 

environment for proof-of-concept validation without relying 

on external data sources, ensuring the system's ability to 

securely process and analyze medical data while maintaining 

high QoS. The dataset comprises 50,000 patients, 5,000 

doctors, and 500 hospitals, structured to reflect real world 

healthcare relationships while ensuring privacy, consistency, 

and completeness.   

 Each patient's data is stored in an individual blockchain block 

using Modified Attribute Based Encryption (ABE), ensuring 

secure and fine grained access control. This dataset serves as a 

realistic clinical data model for testing and analysis.  The 

dataset attributes are detailed in Table 2. 

Table 2:Dataset Information 

Dataset Attributes 

Patient 

Information 

Patient_ID, Name, Age, Gender, id_doc_type, 

id_doc_number, Location, Town, Hospital_ID, 

Assigned_Doctors, Heart_Rate_Samples, 

Clinical_Parameters, 

Emergency_Access(yes/no) 

Doctor 

Information 

Doctor_ID, Name, Specialization, 

Registration_Number, Qualification, 

Experience, Assigned_Hospital 

Hospital 
Hospital_ID, Name, Address, Contact, 

Doctor_List, Emergency_Access_Patients 

The synthetic dataset provides a realistic, scalable, and 

privacy-compliant alternative to real-world healthcare records. 

It enables attribute-based encryption (ABE) for secure 

blockchain storage, making it an ideal dataset for research in 

fog computing privacy, security, and Quality of Service 

(QoS). 

3.1 System Evaluation and Testing 
The proposed system is evaluated through extensive testing of 

the security, privacy, and QoS performance. 
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Evaluation Methods: 

• Security Evaluation: The privacy and security of 

medical data are tested by varying percentage of attacked 

nodes from 2% to 20%.  The effectiveness of the ABE 

encryption and the hybrid PoS/PoW blockchain approach is 

assessed by simulating attack and analyzing the system’s 

resilience. 

• QoS Evaluation: Key QoS metrics such as latency, 

throughput and energy consumption, are evaluated using 

dataset generated. The system is tested under varying 

conditions to assess the performance of the machine learning 

algorithms in optimizing resource allocation and minimizing 

delays. 

• Performance Testing: The blockchain layer’s performance 

is evaluated by measuring block validation times, transaction 

throughput, and block propagation delays. 

4. DESIGN AND IMPLEMENTATION 

OF BLOCKCHAIN USING POW AND 

POS CONSENSUS 
Blockchain technology has become a transformative solution 

for enhancing security, transparency, and trust in distributed 

systems. In fog computing, it offers a decentralized approach 

to securing data and transactions across fog nodes. However, 

conventional blockchain mechanisms such as Proof of Work 

(PoW) and Proof of Stake (PoS) encounter limitations, 

including high energy consumption and scalability 

constraints. This chapter explores the design and 

implementation of a hybrid blockchain model that integrates 

PoW and PoS consensus mechanisms to overcome these 

challenges, improving both security and performance in fog 

computing environments. Blockchain is highly applicable in 

fog computing for several reasons: 

• Decentralized Trust: Blockchain eliminates the need for a 

central authority, enabling secure peer-to-peer 

transactions among fog nodes. 

• Data Integrity: Cryptographic hashing ensures that data 

stored on the blockchain is tamper-proof. 

• Authentication and Authorization: Blockchain provides a 

robust framework for verifying the identities of fog nodes 

and ensuring only authorized entities can access resources. 

• Auditability: The immutable ledger of blockchain allows 

for traceability and accountability of transactions. 

By integrating blockchain into fog computing, it becomes 

possible to address vulnerabilities such as man-in-the-middle 

attacks, unauthorized data access, and node impersonation. 

While blockchain offers significant benefits in fog computing, 

its implementation comes with several challenges: 

Resource Limitations: Fog nodes have constrained 

computational and storage capacities, making traditional 

blockchain operations difficult to sustain. 

Latency Issues: Consensus mechanisms like PoW introduce 

delays, which can negatively impact real-time fog applications. 

High Energy Consumption: The computational demands of 

PoW are energy-intensive, making it unsuitable for resource-

constrained fog environments. 

Scalability Concerns: As the number of fog nodes grows, the 

blockchain network must efficiently scale to maintain optimal 

performance. 

Interoperability Challenges: Integrating blockchain with 

diverse fog architectures and communication protocols requires 

seamless compatibility and standardization. 

PoW and PoS-Based Blockchain Implementation 
PoW is a consensus mechanism where miners compete to 

solve complex cryptographic puzzles to validate transactions 

and append blocks to the blockchain. While PoW ensures 

strong security and immutability, it suffers from high energy 

consumption and increased latency. 

PoS selects validators based on the amount of cryptocurrency 

they hold and are willing to stake. Unlike PoW, PoS 

eliminates the need for intensive computations, making it 

more energy-efficient while enabling faster transaction 

processing. 

Hybrid PoW-PoS Model 
To optimize both security and efficiency, a hybrid approach is 

adopted that leverages the advantages of PoW and PoS: 

PoW is utilized for the initial block validation, ensuring 

robust security and resistance against malicious attacks. 

PoS is applied for subsequent validations, reducing 

computational overhead, lowering energy consumption, and 

enhancing transaction speed. 

This hybrid model enhances blockchain performance in fog 

computing by improving scalability, minimizing latency, and 

maintaining security. 

Algorithm for Proposed Hybrid Blockchain Implementation 

(PoW and PoS) 

Algorithm for Hybrid PoW-PoS Blockchain Consensus 

Input: 

• Tx: Set of pending transactions 

• B: Blockchain ledger 

• S: Stake values of participating nodes 

Output: 

• B': Updated blockchain with the newly added block 

Algorithm: Hybrid PoW-PoS Consensus 

Transaction Initialization 

   Collect pending transactions Tx from the network. 

   Form a candidate block B_new containing Tx. 

PoW Phase (Initial Block Validation for 

Security) 

   Select a miner M from the network. 

   Miner solves a cryptographic puzzle: 

 
where: 

-  is the hash function. 

-  is the previous block’s hash. 

-  is the nonce. 

-  is the target difficulty threshold. 

    If valid, miner broadcasts the solution to the 

network. 

PoS Phase (Efficient Validation and Finalization) 

Select a committee of k validators based on stake S: 

 
where: 

-  is the probability of validator i being selected. 

-  is the stake of validator i. 

Validators verify transactions in B_new. 

 If , where  is the total votes and  is the 

consensus threshold, finalize B_new. 

Block Addition 

Append B_new to blockchain: 
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4.2. Update stake balances for validators. 

6. Repeat: Continue for the next block. 

5. DESIGN AND IMPLEMENTATION 

OF MODIFIED ABE FOR PRIVACY 

PRESERVATION 
Attribute-Based Encryption (ABE) is a public-key encryption 

technique that provides fine-grained access control by 

assigning access permissions based on attributes rather than 

user identities. This approach is well-suited for secure data 

sharing among multiple users with different access privileges. 

The Modified Attribute-Based Encryption (ABE) Scheme for 

blockchain ensures that only users with the required attributes 

can access encrypted data. The encryption and decryption 

processes are securely integrated with the blockchain for key 

management and retrieval. 

Process Workflow: 

Input: Data to be shared, Access control policies, Attribute 

set and public parameters 

Encryption & Storage: 

1. Key Generation:  

o A master key is generated using public 

parameters and SHA-256 for secure 

initialization. 

o The hashes are combined iteratively using 

an AND operation to derive a single key. 

o The key is adjusted to 32 bytes and 

encoded in Base64 format. 

o A Fernet object is initialized with the 

derived key for encryption. 

2. Encryption:  

o Data is encrypted using the attribute set 

and ABE encryption algorithm. 

o An access structure is defined based on 

policies and attributes. 

o A secret key is generated for each 

authorized user using the master key and 

access structure. 

3. Blockchain Integration:  

o The encrypted data and corresponding 

secret keys are stored securely on the 

blockchain. 

• Decryption & Access Control: 

4. Access Request: 

o When a user requests access, their 

attributes are verified against the stored 

access structure. 

o The corresponding secret key is retrieved 

from the blockchain. 

5. Decryption: 

o The data is decrypted using the retrieved 

secret key and ABE decryption algorithm. 

• Output: 

• The decrypted data is provided only to authorize 

users based on their attributes. 

 

6. DESIGN AND IMPLEMENTATION 

OF QOS OPTIMIZATION USING 

MACHINE LEARNING TECHNIQUES 
In fog computing, Quality of Service (QoS) is crucial due to 

the distributed and resource-constrained nature of fog nodes. 

Optimizing QoS requires addressing key factors such as 

latency, bandwidth, computational efficiency, and reliability. 

 

Figure 2. Design of the proposed model for efficient mining 

operations 

 

 
Machine learning (ML) offers an effective approach for 

dynamic resource allocation and QoS enhancement. This 

chapter presents a QoS optimization framework using the 

Grey Wolf Optimizer (GWO) to improve throughput, reduce 

delays, and enhance overall system performance in fog 

computing environments. Machine learning enables intelligent 

decision-making and predictive analytics in distributed 

systems, making it ideal for adaptive resource management in 

fog computing. 

Key Benefits: 

• Energy Efficiency: Reduces power consumption 

through optimized resource allocation. 

• Latency Reduction: Dynamically schedules tasks 

to minimize response times. 
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• Throughput Enhancement: Improves overall 

system performance by optimizing resource 

distribution. 

Grey Wolf Optimizer (GWO) for QoS Optimization 

The Grey Wolf Optimizer (GWO) is a nature-inspired 

optimization algorithm that simulates the hunting behaviour 

of grey wolves. It is well-suited for multi-objective 

optimization in fog computing, balancing latency, throughput, 

and energy efficiency. 

GWO Optimization Process: 

1. Initialization:  

o Generate an initial population of solutions 

(wolves). 

o Define objective functions (e.g., minimize 

latency, maximize throughput). 

2. Leadership Hierarchy Formation:  

o Identify alpha, beta, and delta wolves 

based on their fitness values. 

3. Position Update:  

o Adjust the positions of wolves using 

mathematical models that mimic 

encircling, hunting, and attacking prey. 

4. Convergence Check:  

o Repeat iterations until an optimal solution 

is reached or a stopping criterion is met. 

Figures 2 illustrate the proposed model for efficient mining 

operations.  

7. RESULTS AND DISCUSSION 
The proposed model combines Proof-of-Work (PoW) and 

Proof-of-Stake (PoS) to create a hybrid blockchain that 

improves mining efficiency and addresses the limitations of 

standalone consensus mechanisms. Implemented in Python 

and simulated on Google Colab using a synthetic patient 

dataset, the system evaluates a QoS-aware Attribute-Based 

Privacy Preservation framework for Fog Computing. The 

implementation leverages cryptographic and blockchain 

libraries, incorporating: 

• Trust-based miner selection 

• Grey Wolf Optimizer (GWO) for node trust 

evaluation 

• Attribute-Based Encryption (ABE) for secure data 

sharing 

This ensures enhanced security, efficient consensus, and 

optimized resource utilization in blockchain-based fog 

computing environments. 

The simulation utilized a synthetic dataset containing patient 

vital signs, including heart rate data, along with clinical 

parameters and doctor information for 50,000 patients. The 

proposed hybrid consensus model was evaluated based on the 

following key performance metrics: 

• Blockchain Throughput (Tx/s): Number of 

transactions processed per second. 

• Transaction Processing Speed (TPS): Successfully 

validated transactions per second. 

• Packet Delivery Ratio (PDR): Ratio of successfully 

transmitted packets to total packets sent. 

• Mining Delay: Average time required to validate 

and append a block to the blockchain. 

• Security Evaluation: Impact of attack probability on 

blockchain integrity and data confidentiality. 

Simulation Results and Analysis of proposed PoW and 

PoS hybrid consensus approach for Blockchain 

implementation: 
Table 4 presents a comparative analysis of different 

blockchain models, measuring the average block mining time 

across varying blockchain sizes, with time recorded in 

seconds. 

Table: Average time to mine the blocks using various 

approaches 

Number 

of blocks  

in the 

Blockchai

n 

PoW approach Proposed hybrid PoW 

and PoS 

Average 

time to 

mine the  

block 

Total 

Time 

Required 

Average 

time to 

mine the  

block 

Total Time 

Required 

100 0.2654s 26.5825s 0.0023 0.3217s 

500 0.3221s 161.2792s 0.0126 6.5180s 

1000 0.3033s 303.7354s 0.0248s 25.3494s 

2500 0.3066S 767.6972s 0.0639s 160.9989s 

5000 0.3085s 1597.643s 0.1381 692.8182s 

 

PoW is significantly slower because of its computationally 

intensive nature, as illustrated in Fig. 5. The hybrid approach 

considerably decreases the overall mining time, with the ML-

optimized version yielding the best performance. 

 
Simulation Results and Analysis of proposed modified 

ABE in blockchain: 
Table 5 and 6 shows the comparative analysis of execution of 

AES, traditional ABE and proposed Modified ABE by 

varying data size to be encrypted from 1 MB to 100 MB.    

Table: Encryption time comparison 

Data 

Size 
 In 

MB 

AES 

Encryptio

n time 
(seconds) 

Traditional ABE 

Encryption time 

(seconds) 

Modified 

ABE 

Encryption 

time (seconds) 

1 0.03471 0.018164 0.011528 

5 0.17344 0.069698 0.054246 

10 0.49972 0.350899 0.309402 

20 0.69235 0.284355 0.251531 

50 1.7786 0.85201 0.712643 

100 3.55436 1.541922 1.493984 

Modified ABE consistently performs better than Traditional 

ABE for all data sizes. 
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• Modified ABE performs better than AES for larger 

data sizes, particularly at 50MB and 100MB, where AES's 

encryption and decryption times are much higher. 

Table: Decryption time comparison 

Data 

Size 
 In 

MB 

AES 

Decryption 

time 

(seconds) 

Traditional 

ABE 

Decryption 

time (seconds) 

Modified ABE 

Decryption time 

(seconds) 

1 0.03317 0.013071 0.00988 

5 0.16553 0.052335 0.05011 

10 0.33035 0.243725 0.22223 

20 0.70438 0.278316 0.21971 

50 1.67702 0.720687 0.66962 

100 3.34859 2.638511 1.43718 

 

Fig: Encryption Time Comparison 

 
 

Fig 7: Decryption time comparison 

 

 
 

 
As shown in Fig. 6, the Modified ABE algorithm achieves an 

average encryption time reduction of approximately 9% 

compared to the Traditional ABE algorithm. 

The proposed Modified ABE encryption algorithm 

significantly reduced decryption time, with an average 

decrease of 33.90%, as shown in Fig. 7, enhancing its 

applicability for real-time fog computing environments. The 

blockchain-based privacy-preserving model integrates ABE 

encryption with hybrid PoW-PoS mining to strengthen 

security, access control, and QoS. Experimental results 

demonstrate high efficiency, low latency, and enhanced data 

security, making it well-suited for secure fog computing 

applications in IoMT and healthcare. 

Simulation Results and Analysis of Machine Learning 

implementation in Blockchain architecture to improve QoS  

Table 7 compares the Proposed Hybrid PoW-PoS approach 

with the Machine Learning Optimized Hybrid PoW-PoS 

approach based on the average block mining time and the total 

time required for varying numbers of blocks in the 

blockchain. 

 

Table 7: Comparative analysis of Hybrid and Machine 

Learning Approach 

Number 

of 

blocks  

in the 

Blockch

ain 

Proposed hybrid PoW 

and PoS 

Machine learning 

Optimized hybrid 

PoW and PoS 

Average 

time to 

mine the  

block 

Total Time 

Required 

Average 

time to 

mine the  

block 

Total 

Time 

Required 

100 0.0023s 0.3217s 0.0004s 0.0487s 

500 0.0126s 6.5180s 0.0004s 0.3388s 

1000 0.0248s 25.3494s 0.0004s 5.6025s 

2500 0.0639s 160.9989s 0.0004s 11.2174s 

5000 0.1381s 692.8182s 0.0004s 13.3629s 

10000 0.3041s 3043.2345s 0.0004s 18.4568s 

20000 0.6510s 13020.457s 0.0005s 22.3478s 

50000 1.3923s 69619.237s 0.0006s 37.7245s 

 
The findings highlight the efficiency gains achieved through 

the integration of machine learning into the hybrid PoW-PoS 

approach. The Proposed Hybrid PoW-PoS model exhibits an 

increasing trend in average mining time per block as the 

number of blocks grows, whereas the Machine Learning 

Optimized Hybrid PoW-PoS maintains a consistently lower 

and stable average mining time. Similarly, the total mining 

time for the Proposed Hybrid PoW-PoS increases 

exponentially with the number of blocks, while the ML-

optimized variant significantly reduces total time, even for 

larger block sizes. For instance, for 5000 blocks, the Machine 

Learning Optimized Hybrid PoW-PoS completes mining in 

just 13.3629 seconds—approximately 98.1% faster than the 

Hybrid PoW-PoS, which takes 692.8182 seconds. This 

substantial improvement demonstrates the scalability and high 

performance of machine learning integration in blockchain 

mining. 

The hybrid model further enhances efficiency through a trust-

based miner selection process leveraging Grey Wolf 

Optimization (GWO), which prioritizes nodes with superior 

temporal performance under heterogeneous mining 

conditions. By optimizing resource utilization and reliability, 

this approach reduces mining delays and improves overall 

blockchain efficiency. The GWO-based model employs a 

temporal fitness function to assess nodes based on mining 

delay, energy consumption, throughput, and efficiency, 

ensuring high-QoS node selection. This not only accelerates 

consensus but also enhances blockchain reliability. 

Additionally, self-correcting mechanisms dynamically adapt 

to network changes, maintaining optimal performance even in 

adversarial conditions. 

Comparative Analysis 
By integrating hybrid consensus with trust-based miner 

selection, the proposed model exhibits superior QoS resilience 

compared to existing approaches such as DRLBTS, 

QoS_ML_DSS, and SLGAF. Its efficiency is validated 

through QoS metric evaluations under varying attacker node 

percentages, ranging from 2% to 20%. The evaluation was 
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conducted on a simulated network of 1000 nodes, with QoS 

values computed over a dataset of 50,000 blocks. 

The results demonstrate the model's ability to accurately 

predict performance, reinforcing its potential for large-scale 

deployment across diverse applications. Table 8 presents the 

measured end-to-end delays (D) under multiple Sybil attack 

scenarios, highlighting the model’s capability to maintain high 

QoS even in adversarial conditions. This evaluation 

underscores the robustness of the proposed hybrid consensus 

mechanism, making it well-suited for environments 

demanding both high security and performance. 

In summary, the proposed model represents a significant 

advancement in blockchain consensus mechanisms by 

integrating hybrid consensus, trust-based miner selection, and 

self-correcting capabilities. These innovations collectively 

enhance mining speed, reduce delays, and improve QoS, 

positioning the model as a viable solution for real-world 

blockchain applications. 

 

Table 8 Communication delay required under different attacks 

NA 

(%) 

D (ms) 

DRLBTS  

D (ms) 

QoS_ML_DSS  

D (ms) 

SLGAF  

D (ms) 

Proposed 

TMSCQB 

2 3.61 3.81 4.08 3.13 

3 3.84 4.04 4.31 3.33 

4 4.06 4.27 4.59 3.53 

5 4.30 4.61 5.04 3.82 

6 4.74 5.28 5.85 4.35 

7 5.62 6.38 7.09 5.22 

8 6.92 7.73 8.52 6.34 

9 8.29 9.12 9.97 7.48 

10 9.65 10.47 11.37 8.60 

11 10.92 11.73 12.72 9.67 

12 12.13 13.06 14.19 10.76 

13 13.52 14.62 15.85 12.03 

14 15.19 16.23 17.53 13.38 

16 16.67 17.72 19.09 14.62 

18 18.07 19.16 20.61 15.81 

20 19.48 20.52 22.07 16.97 

 
Figure 8 Comparative analysis of obtained Communication 

Delay 

 
 
The evaluation results, illustrated in Figure 8, confirm the 

superior performance of the proposed Grey Wolf 

Optimization (GWO)-powered approach in minimizing 

communication delays, even under adversarial attacks. The 

model achieves reductions of 10.5% compared to DRLBTS, 

12.4% compared to QoS_ML_DSS, and 16.5% compared to 

SLGAF, demonstrating its robustness and efficiency. This 

improvement is driven by two key factors: Effective Miner 

Selection, where the GWO-based selection prioritizes nodes 

with superior temporal performance, optimizing mining delay, 

energy consumption, throughput, and efficiency; and Low-

Complexity Hybrid Consensus, where the PoW-PoS 

mechanism reduces computational and communication 

complexity, accelerating block propagation and validation. 

Additionally, as shown in Table 8, the GWO-powered 

approach significantly enhances energy efficiency by 

minimizing redundant computations and streamlining 

consensus. These advancements make the proposed model 

highly practical for real-world blockchain deployments, 

especially in resource-constrained environments or scenarios 

with high attack probabilities. By ensuring both low delay and 

energy consumption, the GWO-powered approach establishes 

itself as a scalable, high-performance solution for blockchain 

networks requiring enhanced QoS and resilience. 

 

Table 9: The energy requirements for communication under 

varying attack scenarios 

NA 

(%) 

E (mJ) 

DRLBTS 

E (mJ) 

QoS_ML_DSS  

E (mJ) 

SLGAF 

E (mJ) 

Proposed 

TMSCQB 

2 4.16 4.37 4.68 3.62 

3 4.43 4.64 4.96 3.84 

4 4.68 4.91 5.27 4.07 

5 4.96 5.31 5.79 4.39 

6 5.44 6.07 6.73 4.98 

7 6.45 7.34 8.15 6.00 

8 7.94 8.90 9.80 7.29 

9 9.51 10.49 11.46 8.61 

10 11.08 12.03 13.07 9.91 

11 12.54 13.49 14.62 11.13 

12 13.94 15.01 16.31 12.39 

13 15.54 16.81 18.22 13.84 

14 17.47 18.67 20.15 15.40 

16 18.60 19.84 21.41 16.37 

18 19.52 20.87 22.51 17.21 

20 20.33 21.70 23.44 17.91 

 
The evaluation results in Table 9 and Fig. 9 highlight the 

significant energy efficiency of the proposed Grey Wolf 

Optimization (GWO)-powered approach in blockchain 

communication. 

Fig 9: The energy requirements for communication under 

varying attacks  

 

 The model reduces energy consumption by 8.3% compared to 

DRLBTS, 9.5% compared to QoS_ML_DSS, and 10.4% 

compared to SLGAF, even under attack scenarios. This 
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improvement enhances the sustainability and efficiency of 

blockchain systems, making it ideal for resource-constrained 

environments. 

Similarly, the throughput obtained for communication can be 

observed from Table 10 as follows, 

Table 10 Throughput obtained for communication under 

different attacks 

 

NA 

(%) 

THR 

(kbps) 

DRLBT

S 

THR 

(kbps) 

QoS_ML

_DSS 

THR 

(kbps)  

SLGAF 

THR 

(kbps) 

Proposed 

TMSCQ

B 

2 1729 1843 1993 2393 

3 1659 1772 1913 2290 

4 1581 1685 1820 2177 

5 1485 1586 1712 2052 

6 1321 1429 1548 1914 

7 1186 1276 1387 1773 

8 1067 1146 1244 1600 

9 942 1023 1113 1431 

10 808 891 977 1254 

11 674 756 834 1084 

12 548 624 694 935 

13 463 516 573 803 

14 421 451 493 683 

16 399 418 450 589 

18 376 395 423 530 

20 354 372 399 491 

As shown in Fig. 10, the evaluation results highlight the 

substantial improvement in throughput achieved by the 

proposed Grey Wolf Optimization (GWO)-powered model. It 

outperforms DRLBTS by 23.5%, QoS_ML_DSS by 19.4%, 

and SLGAF by 18.5% under various attack conditions. This 

notable enhancement demonstrates the model’s robustness 

and efficiency in sustaining high data rates across diverse 

communication scenarios, even in the presence of adversarial 

threats. 

8. CONCLUSION AND FUTURE SCOPE 
The proposed Grey Wolf Optimization (GWO)-powered 

hybrid consensus model marks a significant advancement in 

blockchain-based fog computing by addressing key challenges 

in energy efficiency, security, and scalability within dynamic 

and resource-constrained environments. By integrating Proof-

of-Work (PoW) and Proof-of-Stake (PoS) mechanisms with 

trust-based miner selection via GWO, the model optimizes 

resource utilization, enhances system robustness, and ensures 

high Quality of Service (QoS). 

To reinforce privacy preservation and access control, the 

framework incorporates a Modified Attribute-Based 

Encryption (ABE) scheme, improving computational 

efficiency and enabling lightweight attribute-based key 

generation. This ensures that only authorized entities can 

access sensitive medical and fog computing data while 

maintaining fine-grained, decentralized access control. 

Experimental evaluations validate the model’s effectiveness, 

demonstrating reductions of 10.5%–16.5% in communication 

delay, improvements of 8.3%–10.4% in energy efficiency, 

and enhancements of 18.5%–23.5% in throughput compared 

to state-of-the-art approaches such as DRLBTS, 

QoS_ML_DSS, and SLGAF. Additionally, temporal 

parameter optimization using GWO strengthens resilience 

against adversarial threats, including Sybil attacks, ensuring 

adaptive security and trust management. 

With a low-complexity hybrid consensus mechanism and 

lightweight cryptographic enhancements, the model is well-

suited for real-time applications in resource-constrained 

environments. The integration of GWO-optimized consensus 

and Modified ABE establishes a strong foundation for 

scalable, privacy-aware, and resilient blockchain solutions in 

domains such as healthcare, smart cities, and industrial IoT. 

Future research can further enhance the proposed model by 

integrating quantum-resistant cryptographic algorithms and 

AI-driven anomaly detection to improve security against 

evolving threats. Cross-chain interoperability with platforms 

like Hyperledger and Ethereum can increase adaptability, 

while advanced privacy-preserving techniques such as 

homomorphic encryption and multi-authority ABE can 

strengthen secure data sharing. Additionally, federated 

learning integration can enable privacy-preserving machine 

learning in fog computing, ensuring collaborative intelligence 

without compromising user data privacy. 
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