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Abstract: In recent years, the innovative development of attention mechanism modules has provided new ideas for algorithm 

optimization, including large-scale separable kernel attention (LSKA), efficient multi-scale attention (EMA) and dilated multi-scale 

attention (MSDA). The impact of these attention mechanism modules on the performance improvement of the YOLO model remains 

to be explored. In this experiment, the Traffic Sign Localization and Detection dataset is used to explore how CBAM can improve the 

object detection performance of the yolov8 model. Experimental results show that the improved YOLOv8-CBAM model shows 

significant performance improvements, with a single-frame inference time increase of 0.6 ms, an average accuracy (mAP@50) of 

2.1%, and a recall rate of 9.2%. Comparative experiments further reveal that the CBAM module strengthens the feature selection 

ability through the attention mechanism, especially in complex background or small target detection. 
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1. INTRODUCTION 
Deep learning models are typically constructed based on 

multi-layer Convolutional Neural Networks (CNN), with 

training paradigms encompassing various modes such as 

supervised learning, semi-supervised learning, and 

unsupervised learning (Schmidhuber, 2015)[1]. CNNs exhibit 

powerful image feature extraction capabilities due to their 

unique local perception and weight sharing mechanisms 

(LeCun et al., 2015)[2]. The core feature extraction process is 

achieved through the sliding operation of convolutional 

kernels across the image spatial domain, and this end-to-end 

learning approach allows CNNs to significantly surpass 

traditional image processing methods in image understanding 

tasks (LeCun et al., 2015). The successful application of this 

technology has extended to multiple fields: achieving high-

accuracy facial recognition in the field of computer vision 

(Guo et al., 2016); advancing intelligent monitoring in 

agriculture and medical image analysis across disciplines 

(Gawehn et al., 2016); and playing a critical role in 

environmental perception in autonomous driving systems[3]. 

As an innovative detection paradigm within the CNN 

framework, YOLO (You Only Look Once) adopts a single-

stage detection strategy, achieving real-time detection by 

jointly predicting the coordinates of target bounding boxes 

and class probabilities (Redmon et al., 2016). Compared to 

traditional two-stage detectors, the YOLO series models 

exhibit two notable advantages: first, they enhance detection 

speed to the millisecond level through a fully convolutional 

network architecture; second, they effectively address the 

issue of missed detections in scenarios with overlapping 

targets by employing a dense prediction mechanism 

(Bochkovskiy et al., 2020)[4]. Since the introduction of the 

initial model by the Redmon team in 2016, the YOLO 

architecture has continuously evolved—YOLOv4 

incorporates the CSPDarknet backbone network to strengthen 

feature representation (Bochkovskiy et al., 2020); YOLOv5 

optimizes training strategies to enhance model generalization 

(Jocher, 2020); YOLOv6 and YOLOv7 achieve 

breakthroughs in accuracy through reparameterization design 

and dynamic label assignment, respectively (Li et al., 2022; 

Wang et al., 2023)[5]. The recently released YOLOv8, as the 

most representative algorithm in this series, achieves a new 

height in the balance between detection accuracy and 

inference speed (Diwan et al., 2023). Its innovative 

improvements include the use of mosaic data augmentation to 

enhance few-shot learning capabilities, the design of the C3 

module to reduce computational complexity, and the 

introduction of an anchor-free detection mechanism to 

strengthen scale adaptability (Sohan et al., 2024). These 

technological innovations collectively drive the marginal 

improvement of object detection performance. YOLOv8 can 

not only perform object detection tasks but also 

simultaneously support instance segmentation and pose 

estimation tasks. This means users can utilize the same model 

to accomplish various types of computer vision tasks, thereby 

reducing the complexity of model development and 

deployment[6]. Additionally, it can handle a variety of 
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common data formats and supports exporting trained models 

into different formats, such as ONNX and TensorRT, 

facilitating deployment across various hardware platforms and 

frameworks. Ultralytics offers a range of pre-trained models 

for YOLOv8, which have been trained on large-scale datasets, 

demonstrating good generalization capabilities. Users can 

select appropriate pre-trained models for fine-tuning based on 

their needs, significantly shortening the training time and 

development cycle of the models[7]. 

The main purpose of this experiment is to analyze the role of 

the CBAM module in enhancing object recognition when 

integrated with yolov8. The experimental results indicate that 

CBAM primarily focuses on the interdependency 

relationships among the various channels of feature maps 

during the training process on the Traffic Sign Localization 

and Detection dataset, generating a weight for each channel to 

represent its importance, emphasizing significant channel 

features while suppressing those of lesser importance. 

Compared to the yolov8 model, the yolov8-CBAM model has 

achieved a 9.2% increase in recall and a 2.1% improvement in 

mean average precision (mAP@50), along with an 

enhancement in inference speed. 

Finally, this paper summarizes the performance improvement 

of the CBAM module under the structural framework of 

yolov8. The structure of the paper is as follows: Section 2 

reviews the work of the yolov8 algorithm with CBDAM, 

Section 3 describes the working methods of the CBAM 

module, Section 4 describes the experimental setup and 

results in detail, and Section 5 summarizes the research results. 

2. RELATED WORK 
This chapter describes the current research direction: Firstly, 

YOLOv8 is a model for object detection, instance 

segmentation, and pose estimation developed by Ultralytics 

on the basis of the YOLO series of algorithms, representing 

the crystallization of YOLO's development. YOLOv8 adopts 

an improved version called CSPDarknet as its backbone 

network. It is optimized based on the inherited CSP (Cross 

Stage Partial) structure, enabling more efficient extraction of 

image features[8]. The neck network employs a combined 

structure of PAN (Path Aggregation Network) and FPN 

(Feature Pyramid Network). This hybrid structure allows for 

efficient information transfer and fusion between feature maps 

at different scales, leveraging the top-down path of FPN for 

high-level semantic information and the bottom-up path of 

PAN to supplement low-level detail information. 

Additionally, CBAM was proposed in 2018 by Jongchan 

Park, Sanghyun Woo, Joon-Young Lee, and In So Kweon[9]. 

Through two modules, channel attention and spatial attention, 

it adjusts the feature map from both channel and spatial 

dimensions. The channel attention module emphasizes 

important feature channels while suppressing less important 

ones, thus enabling the model to focus more on discriminative 

features; the spatial attention module can focus on the spatial 

areas where the target objects are located, enhancing the 

feature response in the target regions. Furthermore, CBAM 

can adaptively learn attention distributions across different 

tasks and datasets, demonstrating excellent generalization 

capabilities[10]. YOLOv8 and CBAM are particularly favored 

in deep learning, especially in image detection. 

3. SYSTEM MODEL 
This section first briefly introduces the working principles of 

yolov8 and CBAM, and then describes the process of 

integrating yolov8 with CBAM. 

3.1 Yolov8 structure 
The YOLOv8 is primarily composed of three main 

components: the backbone network, the neck network, and the 

head network. The backbone network is responsible for 

extracting basic features from the input images; the neck 

network further processes and fuses the features output by the 

backbone network to enhance feature representation; the head 

network decodes the features based on different tasks (object 

detection, instance segmentation, pose estimation) and outputs 

the final prediction results. The structural diagram is shown in 

Figure 1 below. 

 
Figure 1: YOLOv8 Architecture Diagram 

The backbone network is primarily composed of the 

CSPDarknet and the SPPF (Spatial Pyramid Pooling - Fast) 

module. CSPDarknet serves as the core of the YOLOv8 

backbone network, where CSP reduces computational load 

while enhancing the model's feature extraction capability by 

splitting and reorganizing the feature maps along the channel 

dimension. The SPPF module is introduced at the end of the 

backbone network, allowing for pooling operations on feature 

maps at different scales, and subsequently merging the 

features of varying scales to strengthen the model's perception 

of objects of different sizes. The neck network PANet (Path 

Aggregation Network) integrates both top-down and bottom-

up feature fusion paths. The top-down path facilitates the 

transfer of high-level semantic information to lower-level 

feature maps, thereby enhancing the semantic representation 

of lower-level features; conversely, the bottom-up path 

transmits low-level localization information to higher-level 

feature maps, improving the model's localization accuracy for 

objects. The detection head separates the classification and 

regression tasks, utilizing different branches for processing. 

3.2 CBAM Principle 
First, there is an original feature map in CBAM, which is the 

input feature map. Next, the input feature map will be sent to 

a Channel Attention Module and a Spatial Attention Module, 

and ultimately the refined feature map will be obtained. 

3.2.1 Channel Attention Module 
First of all, we will do a global maximum pooling 

downsampling and global average pooling downsampling for 

the input feature map F, and F will change from the original H 
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× W × C to two 1 × 1 × C feature maps, and then we will send 

these two feature maps into two fully connected layer [MLP], 

and finally output two 1 × 1 × C feature maps. After obtaining 

the two 1 × 1 × C feature plots, we add them together and 

limit their values to 0-1 through the sigmoid activation 

function, which gives us the final Channel Attention, which is 

M-C. and its dimensions are 1 × 1 × C. This process is 

represented by Equation 1 as follows: 

 

 

Figure 2: • Channel Attention Module 

3.2.2 Spatial Attention Module 
First of all, we will get a feature map of H × W × C size F ′, 

and the spatial attention will also perform a global maximum 

pooling downsampling and global average pooling 

downsampling respectively, but at this time we do it in the 

channel dimension, and the global maximum pooling will get 

the blue feature map in the above figure, its size is H × W × 1, 

and the global average pooling downsampling will get the 

orange feature map in the above figure, and its size is H × W 

× 1. Then we stitch the orange and blue feature maps in the 

channel dimension to get the H × W × 2 size feature maps. A 

convolution is then performed to turn the resulting H × W × 2 

feature map into an H × W × 1 feature map. Finally, a sigmoid 

activation function restricts the value of the eigengram to 0-1, 

that is, the final M-s. 。 Its dimensions are 1 × 1 × C. This 

process is represented by Equation 2 as follows: 

 

 

Figure 3: Spatial Attention Module 

3.3 Yolov8 and CBAM Integration 
A CBAM module is added behind all C2f modules in the 

original neck network of yolov8. First, the input feature map 

is processed through the backbone network and then fed into 

the neck network. In the neck network, the C2f module 

performs feature extraction and fusion, outputting a feature 

map rich in feature information. The output feature map of the 

C2f module is used as the input for the CBAM module, which 

is then processed sequentially through the channel attention 

module and the spatial attention module, resulting in a feature 

map weighted by the attention mechanism. The feature map 

processed by the CBAM module can then be passed to 

subsequent network layers for further feature extraction and 

object detection tasks. The structural diagram after the 

combination of Yolov8 and CDAM is shown in Figure 4: 

 

Figure 4: The structural diagram of Yolov8 combined with CDAM. 

 

4. COMPARISON EXPERIMENT 
We used the Traffic Sign Localization and Detection dataset 

for testing, which consists of 6164 images of traffic signs. The 

training set includes 4170 images, while the test set contains 

1994 images, categorized into 29 classes of traffic signs. 

Testing was conducted for 300 rounds on both the yolov8 

model and yolov8_CBAM, and it was found that the yolov8 

model converged in 182 rounds, while yolov8_CBAM 

converged in 217 rounds. The experimental data is shown in 

Figures 5 and 6 below: 

 

Figure 5: Yolov8 model result chart 

 

Figure 6: Yolov8_CBAM model result chart 

The experimental results indicate that the yolov8_CBAM model 

shows faster fitting speed and better stability compared to the yolov8 

model. Although the initial loss is higher, the optimization magnitude 

is greater. The val/box_loss of the yolov8_CBAM model decreased 

from 6 to 1, representing a reduction of 83.3%. The validation loss 

decreases in parallel with the training loss, demonstrating good 
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generalization capability of the model. The comparison results of the 

experiment are shown in Table 1 below: 

Table 1 Comparison test results 

model Box(precision) recall, mAP50 mAP(50-
95) 

LOPs 
（G） 

Infer 
Time 

（ms） 

Yolov8 0.775 0.579 0.688 0.529 8.1 1.2 

Yolov8_CBAM 0.799 0.671 0.708 0.543 8.2 1.6 

The CBAM module can improve the network's mAP_50 by 0.02, but 

it also increases the model's parameters and computational load, 

leading to an increase in inference time by 0.4ms, which can be 

considered negligible. This demonstrates that the CBAM module 

enhances the feature selection capability through the attention 

mechanism, particularly exhibiting superior performance in complex 

backgrounds or small object detection. 

5. CONCLUSION 
This research incorporates the CBAM module into the C2f 

layer of the YOLOv8 neck network, achieving dual-

dimensional dynamic calibration of feature responses through 

channel-space. The YOLOv8-CBAM model enhances the 

average precision (mAP@50) by 2.1% and a recall rate 

increase of 9.2% while maintaining the image preprocessing 

time at 0.2 ms/frame. Comparative experiments further reveal 

that the spatial attention module can improve the accuracy of 

YOLOv8 in object detection. 
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