
International Journal of Computer Applications Technology and Research

Volume 14–Issue 03, 132 – 139, 2025, ISSN:-2319–8656

DOI:10.7753/IJCATR1403.1012

www.ijcat.com 132

Development of Enhanced Advanced Encryption

Standard (AES) Cryptographic Model for Smartphone

C.V Mbamala

Department of Information

Technology,

Federal University of Technology

Owerri

Imo state. Nigeria

M.O Onyesolu

Department of Computer Science

Nnamdi Azukiwe University,

Awka

Anambra, Nigeria

G.N Ezeh

Department of Information

Technology,

Federal University of Technology

Owerri

Imo state, Nigeria

U.V Maduabuchi

Department of Computer Education

Federal College of Education (Technical) Umunze

Anambra, Nigeria

C.D Anyiam

Department of Computer Science

Federal University of Technology,

Owerri, Nigeria

Abstract: Smartphones typically store data locally or transmit it to the cloud, both of which pose significant security and privacy risks.

Data transmission to cloud storage is vulnerable to interception, while local storage is susceptible to physical theft. To mitigate these

risks, encryption of data at rest and in transit is essential. The Advanced Encryption Standard (AES) is widely employed for such

purposes; however, its computational demands can strain the limited resources of smartphones. This study introduces an optimized

version of AES, referred to as Enhanced AES, (E-AES) which incorporates modifications to the shift row transformation, reduces the

number of encryption rounds, and integrates an XOR operation. These enhancements aim to improve both security and computational

efficiency. Both the conventional AES and enhanced were implemented and compared based on several performance metrics,

including avalanche effect, encryption and decryption time, and memory usage. The enhanced AES demonstrated an avalanche effect

of 56.25%, higher than the 49.22% achieved by conventional AES, indicating improved security. Additionally, enhanced AES showed

a slight speed advantage in encryption and decryption time. In terms of memory usage, E-AES used an average space of 1862.57(MB)

when encrypting 1000KB while Conventional AES based application used an average space of 1864.34(MB). This means in every

1000KB encrypted our application saves 1.77(MB) of memory space.

Keywords: Smartphone, Cryptography, Security, Encryption. Decryption.

1. INTRODUCTION
 Smartphones have significantly transformed modern life,

especially in areas like business, communication, social

networking, and access to information. However, with the

vast amount of sensitive data generated and stored on

smartphones such as personal information, financial

transactions, and business communications [1]. Data safety

and privacy have become major concerns [2]. To address

these concerns, encryption is employed to secure data both in

transit (when data is being transmitted over networks) and at

rest (when stored on the device). Advanced Encryption

Standard (AES) is a widely adopted symmetric encryption

algorithm known for its strong security properties [3]. It has

been approved by the National Institute of Standards and

Technology (NIST) for securing sensitive data [1][3]. Due to

its robustness and effectiveness, AES is commonly used on

smartphones for various purposes, including encrypting files,

securing communications, and protecting data stored in

applications [5]. However, despite its high level of security,

the use of AES on smartphones poses some challenges,

particularly when dealing with large files in a resource-

constrained environment. These challenges include

1 Poor performance issues: AES can be slow when

encrypting large files, resulting in delays and a decrease in

user experience. This can cause the smartphone to become

sluggish, especially when the device is handling multiple

encryption and decryption processes simultaneously.

2 Battery drain: The encryption and decryption

processes in AES are computationally intensive. For

smartphones, which are inherently limited by battery life, this

can lead to rapid battery drainage, reducing the overall

efficiency and usability of the device.

3 Resource utilization: Some Smartphones have

limited processing power, memory, and storage compared to

desktop computers and servers. Running AES on such

devices, especially without optimization, can lead to high

CPU usage, increased thermal output, and potential

overheating, which impacts the device's performance and

longevity.

This paper suggests an enhanced AES encryption algorithm

that aims to solve the problem of balancing between

performance and complexity in resource-constrained

environments like smartphones. This is done by streamlining

the algorithm to use fewer computational resources without

compromising the security level.

The remainder of this study is structured as follows: Section 2

provides an overview of the existing AES algorithm, Section

3 reviews related work, Section 4 outlines the proposed

methodology, Section 5 details the evaluation of the enhanced

algorithm, Section 6 presents the results and discussion, and

finally, the conclusion is provided in Section 7.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 14–Issue 03, 132 – 139, 2025, ISSN:-2319–8656

DOI:10.7753/IJCATR1403.1012

www.ijcat.com 133

2. EXISTING AES ALGORITHM
The process of encryption in the AES algorithm consists of a

set of steps or transformations that are carried out onto the

data [7]. In AES 128 variant, it takes a block of 128- bits with

128- bits key and then performs four operations in ten rounds

to get a cipher text. The operations include an initial add

round key transformation, substitution byte, shift rows, mix-

columns and add round key [8]. The output of one operation is

the input of the next operation and the decryption process is

the inverse of the encryption process.

2.1 AddRound key Transformation
The add round key is performed by XORing the plaintext with

the round key,

State = Plaintext ⊕ Round Key [i] .

Where state – The current state matrix.

⊕ - Bitwise XOR operation.

Round key[i] – Round key derived for the i-th round using

AES key schedule.

2.2 Substitution byte operation

Transformation
 During the substitution byte (sub bytes) step, each byte in the

state is replaced with another byte using a fixed substitution

box (S-Box) [9]. The AES substitution box (s-box) is a 16x16

matrix that contains all possible 256-byte values (from 0x00

to 0xFF). Each byte in the state is used as an index to look up

its corresponding byte in the S-box.

2.3 Shift row operation Transformation
This step introduces diffusion by rearranging the bytes within

the rows of the matrix [10]. Unlike sub bytes, the shift rows

operation does not involve any complex mathematical

transformations like substitutions or arithmetic operations.

Instead, it relies on a simple shifting mechanism [5][11]. The

rows of AES are shifted cylindrically using the following

equation and steps to give new position for all element in i

row.

Si.j = Si, (j + i) mod 4

Where,

S is the original state matrix

S is the state matrix after the shift rows transformation

i represents the row index (starting from 0).

j represents the column index (starting from 0)

(j + i) mod 4 determines the new column position for each

element in row i

Consider a matrix before applying AES shift row formula.

Using the equation Si.j = Si, (j + i) mod 4

Row 0: S0.j = S0, (j + 0) mod 4 - no shift (all elements remain in

their original positions)

S0,0 = S0, 0, S0,1 = S0,1, S0,2 = S0,2, S0,3 = S0,3

Row 1: S1.j = S1, (j + 1) mod 4 – elements shift left by 1 position

S1,0 = S1, 1, S1,1 = S1,2, S1,2 = S1,3, S1,3 = S1,0.

Row 2: S2.j = S2, (j + 2) mod 4 - elements shift left by 2

positions)

S2,0 = S2, 2, S2,1 = S2,3, S2,2 = S2,0, S2,3 = S2,1

Row 3: S3.j = S3, (j + 3) mod 4 – elements shift left by 3

positions

S3,0 = S3, 3, S3,1 = S3,0, S3,2 = S3,1, S3,3 = S3,2.

The resulting position after the formular.

2.4 Mix column operation Transformation
 Mix columns step is a matrix multiplication of the state by

Galois fields (GF) [13]. Each value in a column is eventually

multiplied against every value of Galois matrix. The results of

a column multiplication are XORed together to produce a

ciphered column [8].

Each column of the state matrix is treated as a polynomial and

multiplied with a fixed polynomial a(x) = {03}x3 + {01}x2 +

{01}x + {02} in GF (28)

For each column c = (s0, s1, s2, s3):

Multiplication is performed using polynomial arithmetic

modulo x8 + x4 + x3 + x + 1

In AES operation, mix columns are the highest computational

burden of the four. There are two arithmetic operations in the

mix column: multiplication and addition. Because of the

complicated mathematical process that requires computing

resources in a software implementation of AES, it is a costly

transformation that slows down the encryption process.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 14–Issue 03, 132 – 139, 2025, ISSN:-2319–8656

DOI:10.7753/IJCATR1403.1012

www.ijcat.com 134

2.5 Key expansion
 Key expansion generates a series of round keys from the

initial cipher key

Word (W): A word is a 32- bit portion of the key.

Rcon (round constant): Used in key expansion, define as

Rcon(i)= {02i-1, 00,00,00} in hexadecimal

Steps:

Split the original key into 4 words (W0, W1, W2, W3).

Each new word is generated as:

Wi = Wi-4 ⊕ Sub Word (Rot Word (Wi-1)) ⊕ Rcon [i/4] for I

= 4,8,12, …

Sub Word: Applies s-box substitution to each byte

Rot Word: Rotates the word left by one byte

Figure 1 shows the encryption and decryption process of AES.

Figure 1, Encryption and decryption process of AES [14].

3. RELATED WORKS
In today's resource-constrained environments, the focus is

increasingly shifting toward efficient cryptographic

algorithms. Several studies have proposed modifications of

AES to reduce complexity, improve security, execution speed,

memory efficiency, and adaptability for resource-constrained

environments such as smartphones and IoT devices.

[2] utilized the linear feedback shift register (LFSR) for key

generation and reduced the number of rounds to five, resulting

in faster encryption time; however, the impact on security was

not specified. [3] integrated AES with the flower pollination

algorithm to enhance the S-Box, resulting in improved

security and increased randomness in key generation. [4]

implemented a flexible AES variant, transitioning between

AES-128 and AES-256, incorporating a secure key generator

(SKG) and one-time pad (OTP), which enhanced security

adaptability based on requirements. Proposed modified AES

proposed in [5] tailored for IoT applications, incorporating

dynamic shift rows and initial permutation, which resulted in

a 19.24% higher throughput compared to related studies. [6]

introduced a preprocessing stage called zigzag padding,

removed the Sub Byte operation, and reduced the number of

rounds. These modifications led to a 10% increase in

encryption throughput, a 9.3% increase in decryption

throughput, and a 29.5% improvement in randomness. Similar

to [6],[7] reduced the number of rounds to six, resulting in

improved security and speed, with encryption throughput

increasing by 10% and decryption by 9.3%. [8] eliminated the

Mix Columns operation, directly obtaining output from Shift

Rows, which led to faster execution and reduced

complexity.[9] reduced the Mix Columns operation and

introduced a continued fraction transformation to compress

the plaintext to 16 bits. Their approach achieved an execution

time of 280ms for 45.1KB, compared to 294ms in standard

AES. [10] modified the Shift Rows and Mix Columns

operations, integrating them with Add Round Key into a

single cycle while reducing the number of rounds to six.

These enhancements resulted in a faster implementation with

improved security. [11] replaced the Mix Columns operation

with chaotic theories, achieving the shortest encryption time

of 0.0169s, compared to 4.1249s for the SPECK algorithm.

[12] modified the Sub Byte and Shift Rows operations,

achieving a 10% faster performance than the original AES,

with an avalanche effect of 52.08% compared to 51.82% in

the original AES. [13] replaced the standard Shift Rows with

a dynamic Shift Rows and utilized two S-Boxes instead of

one. Their approach achieved an encryption time of 0.0169s,

outperforming the SPECK algorithm. [14] replaced the Mix

Columns operation with Junction Jump, reduced the number

of rounds, and achieved a 14.68% decrease in memory usage

along with a 50% reduction in encryption and decryption

time.

4. PROPOSED METHODOLOGY
This section presents the methodology adopted in this study in

detail.

4.1 Modified Sub Bytes Transformation
In our modified shift row, we provided a more complex

transformation where elements in matrix both rows and

columns are mixed, this will spread diffusion more than the

conventional AES. We derived a formula that determines the

new position of byte after rows and columns are mixed.

Given that the new position M
[i, j] for an element M [i, j]

should depend on the function of both the original row i and

column j indices.

The formula can be expressed as

M [i, j] = M [(i + j) mod 4, (j +2i) mod 4] [3]

Where

M is the original input matrix.

M is the transformed output matrix

i refer to the element in the original matrix M

j refer to the column index of the element in the original

matrix M

i and j defines the location of the element in the transformed

matrix M.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 14–Issue 03, 132 – 139, 2025, ISSN:-2319–8656

DOI:10.7753/IJCATR1403.1012

www.ijcat.com 135

Mod 4 ensures that the indices stay within the valid range for

a 4x4 matrix (0,1, 2, 3)

Consider a matrix before applying our derived dynamic shift

byte equation.

Apply Formula: M [i, j] = M [i + j) mod 4, (j +2i) mod 4]

 Row 0

 M[0,0] = M [(0 + 0) mod 4, (0 + 2 x 0) mod 4] = M [0 ,0]

 M[0,1] = M [(0 + 1) mod 4, (1 + 2 x 0) mod 4] = M [1 ,1]

 M[0,2] = M [(0 + 2) mod 4, (2 + 2 x 0) mod 4] = M [2 ,2]

 M[0,3] = M [(0 + 3) mod 4, (3 + 2 x 0) mod 4] = M [3 ,3]

Row 1

M[1,0] = M [(1 + 0) mod 4, (0 + 2 x 1) mod 4] = M [1 ,2]

 M[1,1] = M [1 + 1) mod 4, (1 + 2 x 1) mod 4] = M [2 ,3]

 M[1,2] = M [(1 + 2) mod 4, (2 + 2 x 1) mod 4] = M [3 ,0]

 M[1,3] = M [(1 + 3) mod 4, (3 + 2 x 1) mod 4] = M [0 ,1]

Row 2

M[2,0] = M [(0 + 0) mod 4, (0 + 2 x 2) mod 4] = M [2 ,0]

M[2,1] = M [2+ 1) mod 4, (1 + 2 x 2) mod 4] = M [3 ,1]

 M[2,2] = M [(2 + 2) mod 4, (2 + 2 x 2) mod 4] = M [0 ,2]

 M[2,3] = M [(2 + 3) mod 4, (3 + 2 x 2) mod 4] = M [1 ,3]

Row 3

M[3,0] = M [(3 + 0) mod 4, (0 + 2 x 3) mod 4] = M [3 ,2]

 M[3,1] = M [3 + 1) mod 4, (1 + 2 x 3) mod 4] = M [0 ,3]

 M[3,2] = M [(3 + 2) mod 4, (2 + 2 x 3) mod 4] = M [1 ,0]

 M[3,3] = M [(3 + 3) mod 4, (3 + 2 x 3) mod 4] = M [2 ,1]

The resulting position after the formula.

The results of the two methods, namely the AES ShiftRows

and our dynamic shift-byte approach, indicate that our

approach achieves greater diffusion by mixing the entire byte

across the matrix, compared to the conventional AES

approach, which only mixes within individual rows.

4.2 New Sub Byte Transformation
The output of the sub-byte and dynamic mix byte presents as

4x4 matrix in hexadecimal respectively, XORed and the

output is the new mix column. bitwise operation XOR was

introduced because it is effective and has less complex

computation. It will replace the mix column operation, that

was eliminated due to its long and time-consuming

mathematical operations.

Mathematically, the formula is expressed as

N [i, j] = S [i, j] ⊕ D [i, j]. [4]

Where,

S[i j] - Is the input byte from the sub byte state matrix

⊕- The XOR (exclusive OR) operation, a fundamental binary

operation that outputs 1 if the bits are different and 0 if they

are the same.

D[i, j]- Is the input byte from the dynamic mix byte state

matrix

N [i, j] – Is the final byte after XOR operation i.e. the new sub

byte. Figure 2 shows the encryption and decryption process of

E-AES.

Figure 2. Encryption and decryption process of AES

5. EVALUATING THE PERFORMANCE

OF THE TWO ALGORITHMS
The enhanced AES and conventional AES were assessed

based on the avalanche effect, encryption/decryption time,

and memory usage. The evaluation was carried out on a

smartphone with the following specifications: Dolphin v7.6.0,

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 14–Issue 03, 132 – 139, 2025, ISSN:-2319–8656

DOI:10.7753/IJCATR1403.1012

www.ijcat.com 136

Android 11, 2GB RAM, and a non-removable 5000mAh

battery, with both algorithms installed.

5.1 Measuring the avalanche effect
The avalanche effect is a desirable property of block

ciphers that ensures a single bit flip in input text produces at

least 50% change in the output text. If a cryptographic

algorithm does not exhibit a significant degree of avalanche

effect (at least 50%), then that algorithm has poor

randomization. Thus, cryptanalysts can make predictions

about the input, only being given the output. This may be

enough to partially or completely break the algorithm.

Avalanche effect could also be computed using Equation (5)

such that:

The avalanche effect of the enhanced AES and

conventional AES were carried out using a short plain text. A

short plain text: I Love UNIZIK with hexadecimal values: 49

20 6c 6f 76 65 20 55 6e 69 7a 69 6b was used to measure the

avalanche effect of the enhanced and conventional AES.

The following steps were used to calculate the avalanche

effect of the selected algorithms.

1. Encrypt plaintext P1 using key K1 to produce

ciphertext C1.

2. Flip one bit in the plaintext (or key) to create P2 (or

K2).

3. Encrypt the modified plaintext (or key) to produce

ciphertext C2

4. Convert C1 and C2 into binary format.

5. Count the number of differing bits between C1 and

C2.

6. Calculate Avalanche Percentage using the formula

Table 1 presents the avalanche effect that was obtained after

flipping a single bit into the plain text. Table 1 shows the

result of the avalanche effect. Figure 3 illustrates the result of

the avalanche effect in a bar chart.

5.2 Measuring the encryption and

decryption time
Encryption time is the time taken to convert a plain text

to a cipher text and the time that is needed to convert the

cipher text back to the plain text the decryption time. The

encryption time and decryption time are expected to be small

to have a responsive and fast system. Furthermore, they

depend to some extent on the configuration of the system

used.

Table 2 presents the encryption and decryption time test

results in milliseconds (ms), which was obtained by

computing the average encryption/decryption time after

encrypting/decrypting the same input text while using the

same key five times. Figure 4 shows the result comparison for

encryption time for conventional AES and E-AES while

figure 5 shows the result comparison for decryption time for

conventional AES and E-AES.

5.3Measuring memory usage

To compare the memory usage of the two algorithms, i.e.

the conventional AES and E-AES, we encrypted 1000kb with

the different algorithm using the same key. To do this, a

popular AES android-based application called Android crypt

was installed on our device to evaluate the memory usage of

both algorithms. Qualcomm trepn profiler was used to profile

the memory for the two encryption applications. Trepn

profiler is a diagnostic tool for profiling performance and

power consumption on android applications running on

devices. Figure 6 presents the result of memory usage.

6 RESULTS AND DISCUSSION

This section presents the findings of this research

Table 1. Avalanche effect result obtained after flipping a

single bit in the plaintext.

Figure 3 Result of the avalanche effect

From the result, the enhanced AES achieved an

avalanche effect of 56.25% when compared to 49.21875%

achieved by the conventional AES algorithm. This

characteristic is essential for cryptographic strength, as it

helps obscure patterns and resists differential attacks,

indicating E-AES offer better security than conventional AES

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 14–Issue 03, 132 – 139, 2025, ISSN:-2319–8656

DOI:10.7753/IJCATR1403.1012

www.ijcat.com 137

Figure 4 Result comparison of encryption time of

conventional AES and E-AES.

Table 1. Avalanche effect result obtained after flipping a single bit in the plaintext.

Algorithm Secret key Plaintext Plaintext (Hex) Ciphertext (Hex) Avalanche

effect

Convention

al AES

2b7e151628ae

2a6abf715880

9cf4f3c

I love Unizik 49 20 6c 6f 76

65 20 55 6e 69

7a 69 6b

3925841d02

dc09fbdc11859

7196a0b32

0.492187

(49.2187)

I love Unizic 49 20 6c 6f 76

 65 20 55 6e 69

 7a 69 63

3243f6a888

5a308d31319

8a2e0370735

E-AES I love Unizik 49 20 6c 6f 76

65 20 55 6e 69

7a 69 6b

3925841d02

dc09fbdc118

597196a0b32

0.5625

(56.25)

I love Unizic 49 20 6c 6f 76

65 20 55 6e 69

 7a 69 63

2a1793732f6

7437d447f8d

55ed40a50e

Table 2 Encryption and decryption Time result

Plain Text Size (kb) Algorithm Average encryption time (MS) Average decryption time

(MS)

1000 kb Conventional AES

E-AES

4332

4005

4337

4027

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 14–Issue 03, 132 – 139, 2025, ISSN:-2319–8656

DOI:10.7753/IJCATR1403.1012

www.ijcat.com 138

2000 kb Conventional AES

E-AES

5130

4204

5138

5003

300kb Conventional AES

E-AES

6001

5003

6007

5888

400kb Conventional AES

E-AES

6705

5505

7148

6902

500kb Conventional AES

E-AES

7704

5900

8008

7900

Figure 5. Result comparison of decryption time of

conventional AES and E-AES

The encryption and decryption result above indicates that

the enhanced AES has a slight increase in the encryption and

decryption time when compared to the conventional AES

algorithm. The graph highlights E-AES as a more efficient

choice than Conventional AES for encryption, especially for

larger plaintext sizes. This efficiency can contribute to

reduced energy consumption and faster performance in data-

intensive applications

Figure 6. Result of memory usage

The result as shown in figure 4 demonstrates our

application keep maintaining the smallest memory

usage when encrypted 1000KB file. E-AES used an

average space of 1862.57(MB) when encrypting

1000KB while Conventional AES based application

used an average space of 1864.34(MB). This means in

every 1000KB encrypted our application saves

1.77(MB) of memory space.

7 CONCLUSION

The Enhanced AES (E-AES) cryptographic model

outperforms conventional AES across key metrics,

including a higher avalanche effect, faster encryption

and decryption times, and reduced memory

consumption. These enhancements not only improve

energy efficiency, but contribute to longer battery life

strength, it improved also security which is an essential

factor in mobile device encryption. This study affirms

E-AES as a robust, secure, and efficient solution for

data protection in mobile environments, addressing

complexity, and performance.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 14–Issue 03, 132 – 139, 2025, ISSN:-2319–8656

DOI:10.7753/IJCATR1403.1012

www.ijcat.com 139

REFERENCES

[1] Sun, X. and Shanshan, L. (2023). Multi-sensor network

tracking research utilizes searchable encryption

algorithm in the cloud computing environment.

International Journal Sensor Networks, 2024 (7), 1-9.

[2] Ali, H.H. and Shaimaa, H.S. (2020). Modified advanced

encryption standard algorithm for fast transmitted data

protection. In the 2nd International scientific conference

of AI- Ayen university, 6-11 October 2024 (pp. 1-11).

Melbourne, Victoria, Australia: IEEE Xplore

[3] Indrasena, M. and Kumar, S. (2020). A modified

advanced encryption standard. Journal of Mechanics of

Continua and Mathematical Science, 4(5), 333–340.

[4] Shikha, G., Satbiri, J., Mohit, A. and Nalin, N. (2024).

An encryption approach to improve the security and

performance of data by integrating AES with a modified

OTP technique. International Journal of Advanced

Intelligence Paradigms,27(2), 129-149.

[5] Fadhil, Meryam Saad, Alaa Kadhim Farhan, and

Mohammad Natiq Fadhil. (2021).

[6] Gao, R., Shen, L., Yuqi, G. and Rui, G. (2021). A

lightweight cryptographic algorithm for the transmission

of images from road environments in self-driving.

Journal of cybersecurity 4(1), 402-407

[7] Abdul, H., Farah T., Abdul, Monem, S.R. and Hala B.A.

(2021). A secure environment using a new lightweight

AES encryption algorithm for e-commerce websites.

security and communication networks. International

Journal of Research and Innovation. 56(3), 456-462

[8] Kumar, K., Ramkumar, K. and Amanpreet, K. (2022). A

lightweight AES algorithm implementation for

encrypting voice messages using field programmable

gate arrays. Journal of King Saud University - Computer

and Information Sciences, 34(6), 3878–3885.

[9] Mohammad, H.M. and Abdullah, A. (2022).

Enhancement Process of AES: a lightweight

cryptography algorithm-AES for constrained devices.

Telkomnika Telecommunication Computing Electronics

and Control 20(3), 551–560.

[10] Rasool, S.S, Alaa, K.F. and Ali, S. (2022). Lightweight

modifications in the advanced encryption standard (AES)

for IOT application, a comparative survey. In

International Conference on Computer Science and

Software Engineering (CSASE), 20-23 November 2013

(pp.612-617). Rwanda: IOP conference series.

[11] Jassim, S. and Farhan, A. (2022). Designing a new

lightweight AES algorithm to Improve the Security of

the IoT Environment. Iraqi Journal of Computers,

Communications, Control, and Systems Engineering,

22(2), 96–108

[12] Hammod, D.N. (2022). Modified lightweight AES based

on replacement table and chaotic system. International

Congress on Human-Computer Interaction, Optimization

and Robotic Applications (HORA). 43(2), 1-5

[13] Sameeh, A.J. and Alla, K.F. (2022). Designing a new

lightweight AES algorithm to improve the security of the

IoT environment. Iraqi Journal of Computer,

Communication, Control and System Engineering, 8(9)

96–108.

[14] Shah, A., Sanja,Y S., Hiren, P., and Namit, S. (2023).

LSA: A lightweight symmetric encryption algorithm for

resource constrained IOT system. Journal of Reliability:

Theory and Application, 18(3),374-379

http://www.ijcat.com/

